Skip to content
2000
image of Integrated Computational Analysis of C-2 Substituted Pyrazolopyrimidine and Amide Isosteres ALLINI: 3D-QSAR, Molecular Docking, and ADMET Studies

Abstract

Introduction

The rapid increase in incidences of drug resistance and off-target toxicity in the case of Human Immunodeficiency Virus (HIV) has increased the demand for drugs with fewer side effects. HIV-1 Integrase (IN) is a promising target that helps integrate viral DNA with human DNA. It acts as a target for strand transfer inhibitors. However, the emergence of resistant mutations in the proteins necessitates the exploration of potent allosteric drugs. The allosteric integrase inhibitors (ALLINI) that interrupt the association of the integrase binding domain of the lens epithelium growth factor (LEDGF/p75) and LEDGF/p75 binding site of the IN are more promising as they hinder site specificity and viral replication.

Objective

In this study, a 3D-QSAR, molecular docking, and ADMET were carried out to investigate the binding of the C2-pyrazolopyrimidine amides and amide isosteres. Method: The 3D-QSAR model was developed using a series of 24 C-2 substituted pyrazolopyrimidine and amide isosteres. A statistically significant model was constructed, showing the determination coefficient (r2) and five-fold cross-validation (q2) at 0.946 and 0.506, respectively. Furthermore, the contour maps of the electrostatic potential and van der Waals coefficient provided structural modifications in the features to improve the inhibitory activity.

Result

A molecular docking study was also performed to check the binding of the compounds to the LEDGF/p75 binding site of the IN, along with ADMET evaluation.

Conclusion

The outcome of the study will help to prepare the potent molecules with enhanced allosteric inhibitory activity.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X360219250206082406
2025-02-12
2025-05-09
Loading full text...

Full text loading...

References

  1. WHO HIV and AIDS 2024 https://www.who.int/news-room/fact-sheets/detail/hiv-aids
  2. Sharma A.K. George V. Valiathan R. Pilakka-Kanthikeel S. Pallikkuth S. Inhibitors of HIV-1 entry and integration: Recent developments and impact on treatment. Recent Pat. Inflamm. Allergy Drug Discov. 2013 7 2 151 161 10.2174/1872213X11307020006 23578097
    [Google Scholar]
  3. Batisse C. Lapaillerie D. Humbert N. Real E. Zhu R. Mély Y. Parissi V. Ruff M. Batisse J. Integrase-LEDGF/p75 complex triggers the formation of biomolecular condensates that modulate HIV-1 integration efficiency in vitro. J. Biol. Chem. 2024 300 6 107374 10.1016/j.jbc.2024.107374 38762180
    [Google Scholar]
  4. Tarrago-Litvak L. Andreola M. Fournier M. Nevinsky G. Parissi V. Richard de Soultrait V. Litvak S. Inhibitors of HIV-1 reverse transcriptase and integrase: Classical and emerging therapeutical approaches. Curr. Pharm. Des. 2002 8 8 595 614 10.2174/1381612024607162 11945161
    [Google Scholar]
  5. Renzi G. Carta F. Supuran C.T. The integrase: An overview of a key player enzyme in the antiviral scenario. Int. J. Mol. Sci. 2023 24 15 12187 10.3390/ijms241512187 37569561
    [Google Scholar]
  6. Kwon H.J. Tirumalai R. Landy A. Ellenberger T. Flexibility in DNA recombination: Structure of the lambda integrase catalytic core. Science 1997 276 5309 126 131 10.1126/science.276.5309.126 9082984
    [Google Scholar]
  7. Andréola M.L. Closely related antiretroviral agents as inhibitors of two HIV-1 enzymes, ribonuclease H and integrase: “killing two birds with one stone”. Curr. Pharm. Des. 2004 10 30 3713 3723 10.2174/1381612043382648 15579066
    [Google Scholar]
  8. Moranguinho I. Taveira N. Bártolo I. Antiretroviral treatment of HIV-2 infection: Available drugs, resistance pathways, and promising new compounds. Int. J. Mol. Sci. 2023 24 6 5905 10.3390/ijms24065905 36982978
    [Google Scholar]
  9. Krishnan L. Engelman A. Retroviral integrase proteins and HIV-1 DNA integration. J. Biol. Chem. 2012 287 49 40858 40866 10.1074/jbc.R112.397760 23043109
    [Google Scholar]
  10. Eriketi Zeinalipour-Loizidou Christos Nicolaou Athanasios Nicolaides Kostrikis L.G. Leondios G. Kostrikis HIV-1 integrase: From biology to chemotherapeutics. Curr. HIV Res. 2007 5 4 365 388 10.2174/157016207781023965 17627500
    [Google Scholar]
  11. Kessl J.J. McKee C.J. Eidahl J.O. Shkriabai N. Katz A. Kvaratskhelia M. HIV-1 integrase-DNA recognition mechanisms. Viruses 2009 1 3 713 736 10.3390/v1030713 21994566
    [Google Scholar]
  12. Eijkelenboom A.P.A.M. van den Ent F.M.I. Vos A. Doreleijers J.F. Hård K. Tullius T.D. Plasterk R.H.A. Kaptein R. Boelens R. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: A three-helix bundle stabilized by zinc. Curr. Biol. 1997 7 10 739 746 10.1016/S0960‑9822(06)00332‑0 9368756
    [Google Scholar]
  13. Kulkosky J. Jones K.S. Katz R.A. Mack J.P. Skalka A.M. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 1992 12 5 2331 2338 1314954
    [Google Scholar]
  14. Ballandras-Colas A. Brown M. Cook N.J. Dewdney T.G. Demeler B. Cherepanov P. Lyumkis D. Engelman A.N. Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 2016 530 7590 358 361 10.1038/nature16955 26887496
    [Google Scholar]
  15. Chikkamath V. Nagappa A.N. Role of structural flexibility of HIV-1 integrase in the design of potent anti-HIV drugs. Curr. Chem. Biol. 2018 12 1 40 52 10.2174/2212796812666180529103809
    [Google Scholar]
  16. Brown P.O. Bowerman B. Varmus H.E. Bishop J.M. Retroviral integration: Structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc. Natl. Acad. Sci. USA 1989 86 8 2525 2529 10.1073/pnas.86.8.2525 2539592
    [Google Scholar]
  17. Fujiwara T. Mizuuchi K. Retroviral DNA integration: Structure of an integration intermediate. Cell 1988 54 4 497 504 10.1016/0092‑8674(88)90071‑2 3401925
    [Google Scholar]
  18. Maertens G.N. Engelman A.N. Cherepanov P. Structure and function of retroviral integrase. Nat. Rev. Microbiol. 2022 20 1 20 34 10.1038/s41579‑021‑00586‑9 34244677
    [Google Scholar]
  19. Maehigashi T. Ahn S. Kim U.I. Lindenberger J. Oo A. Koneru P.C. Mahboubi B. Engelman A.N. Kvaratskhelia M. Kim K. Kim B. A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site. PLoS Pathog. 2021 17 7 e1009671 10.1371/journal.ppat.1009671 34293041
    [Google Scholar]
  20. Kaur M. Rawal R.K. Rath G. Goyal A.K. Structure based drug design: Clinically relevant HIV-1 integrase inhibitors. Curr. Top. Med. Chem. 2019 18 31 2664 2680 10.2174/1568026619666190119143239 30659539
    [Google Scholar]
  21. Salari S. Karbasforooshan H. Hosseinjani H. Anti-HIV integrase inhibitors as new candidates for the treatment of COVID-19: A narrative literature review. Antiinfect. Agents 2022 20 2 e280921196843 10.2174/2211352519666210928110627
    [Google Scholar]
  22. Sever B. Otsuka M. Fujita M. Ciftci H. A review of FDA-approved Anti-HIV-1 drugs, Anti-Gag compounds, and potential strategies for HIV-1 eradication. Int. J. Mol. Sci. 2024 25 7 3659 10.3390/ijms25073659 38612471
    [Google Scholar]
  23. Wohl D.A. Yazdanpanah Y. Baumgarten A. Clarke A. Thompson M.A. Brinson C. Hagins D. Ramgopal M.N. Antinori A. Wei X. Acosta R. Collins S.E. Brainard D. Martin H. Bictegravir combined with emtricitabine and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection: Week 96 results from a randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet HIV 2019 6 6 e355 e363 10.1016/S2352‑3018(19)30077‑3 31068270
    [Google Scholar]
  24. Psichogiou M. Poulakou G. Basoulis D. Paraskevis D. Markogiannakis A. Daikos G.L. Recent advances in antiretroviral agents: Potent integrase inhibitors. Curr. Pharm. Des. 2017 23 18 2552 2567 28356041
    [Google Scholar]
  25. Quashie P.K. Mesplède T. Wainberg M.A. HIV drug resistance and the advent of integrase inhibitors. Curr. Infect. Dis. Rep. 2013 15 1 85 100 10.1007/s11908‑012‑0305‑1 23180144
    [Google Scholar]
  26. Komal D. Khushboo J. Aaftaab S. Lakshmi S. Mallika A. Targeting integrase enzyme: A therapeutic approach to combat HIV resistance. Mini Rev. Med. Chem. 2020 20 3 219 238 10.2174/1389557519666191015124932 31613727
    [Google Scholar]
  27. Himmel D.M. Arnold E. Non-nucleoside reverse transcriptase inhibitors join forces with integrase inhibitors to combat HIV. Pharmaceuticals 2020 13 6 122 10.3390/ph13060122 32545407
    [Google Scholar]
  28. Bonnard D. Le Rouzic E. Singer M.R. Yu Z. Le Strat F. Batisse C. Batisse J. Amadori C. Chasset S. Pye V.E. Emiliani S. Ledoussal B. Ruff M. Moreau F. Cherepanov P. Benarous R. Biological and structural analyses of new potent allosteric inhibitors of HIV-1 integrase. Antimicrob. Agents Chemother. 2023 67 7 e00462-23 10.1128/aac.00462‑23 37310224
    [Google Scholar]
  29. Craigie R. Bushman F.D. Host factors in retroviral integration and the selection of integration target sites. Mob. DNA 2015 III 1035 1050
    [Google Scholar]
  30. Lesbats P. Engelman A.N. Cherepanov P. Retroviral DNA integration. Chem. Rev. 2016 116 20 12730 12757 10.1021/acs.chemrev.6b00125 27198982
    [Google Scholar]
  31. Waheed A. A. Brass A. L. Gummuluru S. Tachedjian G. Host-pathogen interactions of retroviruses. Mol. Biol. Int. 2012 2012 10.1155/2012/648512
    [Google Scholar]
  32. Koneru P.C. Mechanistic and structural investigations into the mode of action of allosteric HIV-1 integrase inhibitors. The Ohio State University 2019
    [Google Scholar]
  33. Choi E. Mallareddy J.R. Lu D. Kolluru S. Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase. Future Sci. OA 2018 4 9 FSO338 10.4155/fsoa‑2018‑0060 30416746
    [Google Scholar]
  34. Bruggemans A. Vansant G. Balakrishnan M. Mitchell M.L. Cai R. Christ F. Debyser Z. GS-9822, a preclinical LEDGIN candidate, displays a block-and-lock phenotype in cell culture. Antimicrob. Agents Chemother. 2023 65 5 02328 02320 10.1128/aac 33619061
    [Google Scholar]
  35. Engelman A. Cherepanov P. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog. 2008 4 3 e1000046 10.1371/journal.ppat.1000046 18369482
    [Google Scholar]
  36. Llano M. Vanegas M. Hutchins N. Thompson D. Delgado S. Poeschla E.M. Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J. Mol. Biol. 2006 360 4 760 773 10.1016/j.jmb.2006.04.073 16793062
    [Google Scholar]
  37. Busschots K. Voet A. De Maeyer M. Rain J.C. Emiliani S. Benarous R. Desender L. Debyser Z. Christ F. Identification of the LEDGF/p75 binding site in HIV-1 integrase. J. Mol. Biol. 2007 365 5 1480 1492 10.1016/j.jmb.2006.10.094 17137594
    [Google Scholar]
  38. Lapaillerie D. Lelandais B. Mauro E. Lagadec F. Tumiotto C. Miskey C. Ferran G. Kuschner N. Calmels C. Métifiot M. Rooryck C. Ivics Z. Ruff M. Zimmer C. Lesbats P. Toutain J. Parissi V. Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75. Nucleic Acids Res. 2021 49 19 11241 11256 10.1093/nar/gkab886 34634812
    [Google Scholar]
  39. Christ F. Debyser Z. The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy. Virology 2013 435 1 102 109 10.1016/j.virol.2012.09.033 23217620
    [Google Scholar]
  40. Demeulemeester J. Chaltin P. Marchand A. De Maeyer M. Debyser Z. Christ F. LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: A patent review (2006 – 2014). Expert Opin. Ther. Pat. 2014 24 6 609 632 10.1517/13543776.2014.898753 24666332
    [Google Scholar]
  41. Poeschla E.M. Integrase, LEDGF/p75 and HIV replication. Cell. Mol. Life Sci. 2008 65 9 1403 1424 10.1007/s00018‑008‑7540‑5 18264802
    [Google Scholar]
  42. Peese K. M. Allard C. W. Connolly T. Johnson B. L. Li C. Patel M. Sorensen M. E. Walker M. A. Meanwell N. A. McAuliffe B. ,6,7,8-Tetrahydro-1,6-naphthyridine derivatives as potent HIV-1-Integrase-allosteric-site inhibitors. J. Med Chem. 2019 62 3 1348 10.1021/acs.jmedchem.
    [Google Scholar]
  43. Debyser Z. Bruggemans A. Van Belle S. Janssens J. Christ F. LEDGINs, inhibitors of the interaction between HIV-1 Integrase and LEDGF/p75, are potent antivirals with a potential to cure HIV infection. Adv Exp Med Biol. 2021 1322 97 114 10.1007/978‑981‑16‑0267‑2_4.
    [Google Scholar]
  44. Feng L. Larue R. C. Slaughter A. Kessl J. J. Kvaratskhelia M. HIV-1 integrase multimerization as a therapeutic target. Curr. Top. Microbiol. Immunol. 2015 ;389 93 119 10.1007/82_2015_439.
    [Google Scholar]
  45. Kugelman J.R. The role Of LEDGF/p75 in transcriptional regulation. Thesis The University of Texas at El Paso 2010
    [Google Scholar]
  46. Patterson K. Transposons: Molecular tools for genome investigation. Irvine PhD Thesis, University of California 2016
    [Google Scholar]
  47. Hare S. Cherepanov P. The interaction between lentiviral integrase and LEDGF: Structural and functional insights. Viruses 2009 1 3 780 801 10.3390/v1030780 21994569
    [Google Scholar]
  48. Panwar U. Singh S.K. In silicovirtual screening of potent inhibitor to hamper the interaction between HIV-1 integrase and LEDGF/p75 interaction using E-pharmacophore modeling, molecular docking, and dynamics simulations. Comput. Biol. Chem. 2021 93 107509 10.1016/j.compbiolchem.2021.107509 34153658
    [Google Scholar]
  49. Wielens J. Headey S.J. Deadman J.J. Rhodes D.I. Parker M.W. Chalmers D.K. Scanlon M.J. Scanlon M.J. Fragment-based design of ligands targeting a novel site on the integrase enzyme of human immunodeficiency virus 1. ChemMedChem 2011 6 2 258 261 10.1002/cmdc.201000483 21275048
    [Google Scholar]
  50. Esposito F. Tintori C. Martini R. Christ F. Debyser Z. Ferrarese R. Cabiddu G. Corona A. Ceresola E.R. Calcaterra A. Iovine V. Botta B. Clementi M. Canducci F. Botta M. Tramontano E. Kuwanon‐L as a new allosteric HIV‐1 integrase inhibitor: Molecular modeling and biological evaluation. Chem. Bio. Chem. 2015 16 17 2507 2512 10.1002/cbic.201500385 26360521
    [Google Scholar]
  51. Patel M. Cianci C. Allard C.W. Parker D.D. Simmermacher J. Jenkins S. Mcauliffe B. Minassian B. Discotto L. Krystal M. Meanwell N.A. Naidu B.N. Design, synthesis and SAR study of novel C2-pyrazolopyrimidine amides and amide isosteres as allosteric integrase inhibitors. Bioorg. Med. Chem. Lett. 2020 30 21 127516 10.1016/j.bmcl.2020.127516 32860982
    [Google Scholar]
  52. Studio D. Discovery studio. 2008 Available from: https://discover.3ds.com/discovery-studio-visualizer-download
  53. Jejurikar B. L. Rohane S. H. Drug designing in discovery studio. . Asian J. Research Chem. 2021 14 2 135 10.5958/0974‑4150.2021.00025.0
    [Google Scholar]
  54. Arodola O.A. Soliman M.E.S. Hybrid 2D/3D-quantitative structure-activity relationship and modeling studies perspectives of pepstatin A analogs as cathepsin D inhibitors. Future Med. Chem. 2018 10 1 5 26 10.4155/fmc‑2017‑0077 29235371
    [Google Scholar]
  55. Brooks B.R. Bruccoleri R.E. Olafson B.D. States D.J. Swaminathan S. Karplus M. CHARMM : A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983 4 2 187 217 10.1002/jcc.540040211
    [Google Scholar]
  56. Luo Y. Zhang S. Qiu K.M. Liu Z.J. Yang Y.S. Fu J. Zhong W.Q. Zhu H.L. Synthesis, biological evaluation, 3D-QSAR studies of novel aryl-2H-pyrazole derivatives as telomerase inhibitors. Bioorg. Med. Chem. Lett. 2013 23 4 1091 1095 10.1016/j.bmcl.2012.12.010 23312949
    [Google Scholar]
  57. Kothandan G. Gadhe C.G. Madhavan T. Choi C.H. Cho S.J. Docking and 3D-QSAR (quantitative structure activity relationship) studies of flavones, the potent inhibitors of p-glycoprotein targeting the nucleotide binding domain. Eur. J. Med. Chem. 2011 46 9 4078 4088 10.1016/j.ejmech.2011.06.008 21723648
    [Google Scholar]
  58. Debnath A. Application of 3D-QSAR techniques in anti-HIV-1 drug design: An overview. Curr. Pharm. Des. 2005 11 24 3091 3110 10.2174/1381612054864902 16178747
    [Google Scholar]
  59. Kubinyi H. Comparative molecular field analysis (CoMFA), topomer CoMFA, and hologram QSAR studies on a series of novel HIV-1 protease inhibitors. Chem. Biol. Drug. Des. 1998 89 6 918 931 10.1111/cbdd.12917.
    [Google Scholar]
  60. Golbraikh A. Tropsha A. Beware of q2! J. Mol. Graph. Model. 2002 20 4 269 276 10.1016/S1093‑3263(01)00123‑1 11858635
    [Google Scholar]
  61. Ahmed N. Anwar S. Thet Htar T. Docking based 3D-QSAR study of tricyclic guanidine analogues of batzelladine K as anti-malarial agents. Front Chem. 2017 5 36 10.3389/fchem.2017.00036 28664157
    [Google Scholar]
  62. Huang L. Wu X. Fu X. Wang H. Tang B. Xiao Y. Zhou C. Zhao Z. Wan Y. Chen H. Tang Z. Yao H. Shan Z. Bu T. Ligand based 3D-QSAR model, pharmacophore, molecular docking and ADME to identify potential fibroblast growth factor receptor 1 inhibitors. J. Biomol. Struct. Dyn. 2022 40 16 7584 7597 10.1080/07391102.2021.1899049 33734039
    [Google Scholar]
  63. Im C. Docking and three-dimensional quantitative structure–activity relationship analyses of imidazole and thiazolidine derivatives as Aurora A kinase inhibitors. Arch. Pharm. Res. 2016 39 12 1635 1643 10.1007/s12272‑016‑0870‑1 27909956
    [Google Scholar]
  64. Khedkar V.M. Ambre P.K. Verma J. Shaikh M.S. Pissurlenkar R.R.S. Coutinho E.C. Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors. J. Mol. Model. 2010 16 7 1251 1268 10.1007/s00894‑009‑0636‑5 20069323
    [Google Scholar]
  65. Akamatsu M. Current state and perspectives of 3D-QSAR. Curr. Top. Med. Chem. 2002 2 12 1381 1394 10.2174/1568026023392887 12470286
    [Google Scholar]
  66. Dinh T. Tber Z. Rey J.S. Mengshetti S. Annamalai A.S. Haney R. Briganti L. Amblard F. Fuchs J.R. Cherepanov P. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. bioRxiv 2024
    [Google Scholar]
  67. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  68. Kramer B. Rarey M. Lengauer T. CASP2 experiences with docking flexible ligands using FLEXX. Proteins 1997 29 S1 Suppl. 1 221 225 10.1002/(SICI)1097‑0134(1997)1+<221::AID‑PROT30>3.0.CO;2‑O 9485516
    [Google Scholar]
  69. Rarey M. Kramer B. Lengauer T. Klebe G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 1996 261 3 470 489 10.1006/jmbi.1996.0477 8780787
    [Google Scholar]
  70. Rana N. Patel D. Parmar M. Mukherjee N. Jha P.C. Manhas A. Targeting allosteric binding site in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) to identify natural product inhibitors via structure-based computational approach. Sci. Rep. 2023 13 1 18090 10.1038/s41598‑023‑45175‑3 37872243
    [Google Scholar]
  71. Böhm H-J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comput. Aided Mol. Des. 1994 8 3 243 256 10.1007/BF00126743 7964925
    [Google Scholar]
  72. Bhatia R. Narang R.K. Rawal R.K. Repurposing of RdRp inhibitors against SARS-CoV-2 through molecular docking tools. Coronaviruses 2020 1 1 108 116 10.2174/2666796701999200617155629
    [Google Scholar]
  73. da Silva-Junior E.F. Barcellos Franca P.H. Ribeiro F.F. Bezerra Mendonca-Junior F.J. Scotti L. Scotti M.T. de Aquino T.M. de Araujo-Junior J.X. Molecular docking studies applied to a dataset of cruzain inhibitors. Curr. Computeraided Drug Des. 2018 14 1 68 78 10.2174/1573409913666170519112758 28523999
    [Google Scholar]
  74. Fang C. Xiao Z. Receptor-based 3D-QSAR in drug design: Methods and applications in kinase studies. Curr. Top. Med. Chem. 2016 16 13 1463 1477 10.2174/1568026615666150915120943 26369822
    [Google Scholar]
  75. Yang Y.S. Zhang F. Tang D.J. Yang Y.H. Zhu H.L. Modification, biological evaluation and 3D QSAR studies of novel 2-(1,3-diaryl- 4,5-dihydro-1H-pyrazol-5-yl)phenol derivatives as inhibitors of B-Raf kinase. PLoS One 2014 9 5 e95702 10.1371/journal.pone.0095702 24827980
    [Google Scholar]
/content/journals/chr/10.2174/011570162X360219250206082406
Loading
/content/journals/chr/10.2174/011570162X360219250206082406
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test