Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Background

The incorporation of anti-HIV drugs into polymer to form polymer-drug conjugates has been reported to result in improved therapeutic activity. Zidovudine, an anti-HIV drug, was explored alone and in combination with known drug molecules using polyamidoamine-based carriers.

Objective

Polymer-drug conjugates incorporated with zidovudine, cinnamic acid, and 4-aminosalicylic acid were prepared and evaluated for their potential efficacy against pseudo-HIV-1.

Methods

Aqueous Michael addition polymerization reaction was employed to prepare the conjugates. The conjugates were incorporated with zidovudine, cinnamic acid, and 4-aminosalicylic acid. They were characterized by SEM/EDX, XRD, FTIR, NMR, LC-MS, particle size analysis, analysis, computational studies, and toxicity predictions.

Results

The conjugates displayed spherically shaped morphology. The findings showed that polymer-drug conjugates, T15 and T16, with a single drug were effective against pseudo-HIV-1 at high concentrations of 111.11 and 333.33 µg/mL, respectively. Molecular docking studies supported the results. Additionally, SwissADME, ProTox-II, and GUSAR (General Unrestricted Structure-Activity Relationships) analyses revealed that these compounds have promising antiviral potential.

Conclusion

The prepared polymer-drug conjugates with a single drug showed promising effects against the Pseudo-HIV-1, and the conjugates displayed features that make them potential anti-HIV therapeutics that require further studies.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X334858241008071722
2024-12-01
2025-04-21
Loading full text...

Full text loading...

References

  1. EkladiousI. ColsonY.L. GrinstaffM.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects.Nat. Rev. Drug Discov.201918427329410.1038/s41573‑018‑0005‑0 30542076
    [Google Scholar]
  2. YavuzB. MorganJ.L. ShowalterL. Pharmaceutical approaches to HIV treatment and prevention.Adv. Ther. (Weinh.)201816180005410.1002/adtp.201800054 32775613
    [Google Scholar]
  3. XuJ. MaM. MukerabigwiJ.F. The effect of spacers in dual drug-polymer conjugates toward combination therapeutic efficacy.Sci. Rep.20211112211610.1038/s41598‑021‑01550‑6 34764340
    [Google Scholar]
  4. FengQ. TongR. Anticancer nanoparticulate polymer-drug conjugate.Bioeng. Transl. Med.20161327729610.1002/btm2.10033 29313017
    [Google Scholar]
  5. ZuwalaK. SmithA.A.A. TolstrupM. ZelikinA.N. HIV anti-latency treatment mediated by macromolecular prodrugs of histone deacetylase inhibitor, panobinostat.Chem. Sci. (Camb.)2016732353235810.1039/C5SC03257A 29997778
    [Google Scholar]
  6. DanialM. TelwatteS. TyssenD. Combination anti-HIV therapy via tandem release of prodrugs from macromolecular carriers.Polym. Chem.20167487477748710.1039/C6PY01882C
    [Google Scholar]
  7. TsouY.H. ZhangX.Q. ZhuH. SyedS. XuX. Drug delivery to the brain across the blood–brain barrier using nanomaterials.Small20171343170192110.1002/smll.201701921 29045030
    [Google Scholar]
  8. AggarwalN. Sachin, Nabi B, Aggarwal S, Baboota S, Ali J. Nano-based drug delivery system: A smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS.Drug Deliv. Transl. Res.2022121274810.1007/s13346‑021‑00907‑8 33486689
    [Google Scholar]
  9. AmblardF. PatelD. MichailidisE. HIV nucleoside reverse transcriptase inhibitors.Eur. J. Med. Chem.202224011455410.1016/j.ejmech.2022.114554 35792384
    [Google Scholar]
  10. Popović-DjordjevićJ QuispeC GiordoR Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs.Eur J Med Chem202223311421710.1016/j.ejmech.2022.114217 35276425
    [Google Scholar]
  11. SeverB. OtsukaM. FujitaM. CiftciH. A Review of FDA-approved Anti-HIV-1 drugs, Anti-Gag compounds, and potential strategies for HIV-1 eradication.Int. J. Mol. Sci.2024257365910.3390/ijms25073659 38612471
    [Google Scholar]
  12. TompaD.R. ImmanuelA. SrikanthS. KadhirvelS. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs.Int. J. Biol. Macromol.202117252454110.1016/j.ijbiomac.2021.01.076 33454328
    [Google Scholar]
  13. ManskyL.M. BernardL.C. 3′-Azido-3′-deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1.J. Virol.200074209532953910.1128/JVI.74.20.9532‑9539.2000 11000223
    [Google Scholar]
  14. DrakeR.R. UnderwoodL.J. JonesR. AZT metabolism and toxicity: Application of 5-azido-3′-azido-2′3′-dideoxyuridine monophosphate, a photoaffinity analog of AZT-monophosphate.Antiviral Res.1995263A265A510.1016/0166‑3542(95)94771‑S
    [Google Scholar]
  15. NeerajA. ChandrasekarM.J.N. SaraU.V.S. RohiniA. Poly(HEMA-Zidovudine) conjugate: A macromolecular pro-drug for improvement in the biopharmaceutical properties of the drug.Drug Deliv.201118427228010.3109/10717544.2010.536272 21110710
    [Google Scholar]
  16. PargooE.M. AghasadeghiM.R. ParivarK. Novel delivery based anionic linear globular dendrimerg2-zidovudine nano-conjugate significantly decreased retroviral activity.Pak. J. Pharm. Sci.202033270571410.36721/PJPS.2020.33.2.REG.705‑714.1 32276917
    [Google Scholar]
  17. JoshyKS SusanMA SnigdhaS NandakumarK LalyAP SabuT Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery.Int J Biol Macromol2018107Pt A92993710.1016/j.ijbiomac.2017.09.078 28939525
    [Google Scholar]
  18. KuoY.C. ChenH.H. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate–sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier.Int. J. Pharm.20063271-216016910.1016/j.ijpharm.2006.07.044 16939704
    [Google Scholar]
  19. SaiyedZ.M. GandhiN.H. NairM.P.N. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood-brain barrier.Int. J. Nanomedicine20105157166 20463931
    [Google Scholar]
  20. de KockL. SyS.K.B. RosenkranzB. Pharmacokinetics of para-aminosalicylic acid in HIV-uninfected and HIV-coinfected tuberculosis patients receiving antiretroviral therapy, managed for multidrug-resistant and extensively drug-resistant tuberculosis.Antimicrob. Agents Chemother.201458106242625010.1128/AAC.03073‑14 25114132
    [Google Scholar]
  21. LiwaA.C. SchaafH.S. RosenkranzB. SeifartH.I. DiaconA.H. DonaldP.R. Para-aminosalicylic acid plasma concentrations in children in comparison with adults after receiving a granular slow-release preparation.J. Trop. Pediatr.2013592909410.1093/tropej/fms053 23174991
    [Google Scholar]
  22. ManosuthiW. WiboonchutikulS. SungkanuparphS. Integrated therapy for HIV and tuberculosis.AIDS Res. Ther.2016132210.1186/s12981‑016‑0106‑y
    [Google Scholar]
  23. ZhuM. ShanQ. MaL. Design and biological evaluation of cinnamic and phenylpropionic amide derivatives as novel dual inhibitors of HIV-1 protease and reverse transcriptase.Eur. J. Med. Chem.202122022011349810.1016/j.ejmech.2021.113498 33933756
    [Google Scholar]
  24. ThakkarJ.N. TiwariV. DesaiU.R. Nonsulfated, cinnamic acid-based lignins are potent antagonists of HSV-1 entry into cells.Biomacromolecules20101151412141610.1021/bm100161u 20411926
    [Google Scholar]
  25. MandalS. KangG. PrathipatiP.K. FanW. LiQ. DestacheC.J. Long-acting parenteral combination antiretroviral loaded nano-drug delivery system to treat chronic HIV-1 infection: A humanized mouse model study.Antiviral Res.2018156859110.1016/j.antiviral.2018.06.005 29885378
    [Google Scholar]
  26. PrathipatiP.K. MandalS. PonG. VivekanandanR. DestacheC.J. Pharmacokinetic and tissue distribution profile of long acting tenofovir alafenamide and elvitegravir loaded nanoparticles in humanized mice model.Pharm. Res.201734122749275510.1007/s11095‑017‑2255‑7 28905173
    [Google Scholar]
  27. OgunwuyiO. KumariN. SmithK.A. Antiretroviral drugs-loaded nanoparticles fabricated by dispersion polymerization with potential for HIV/AIDS treatment.Infect Dis201692132
    [Google Scholar]
  28. EshaghiB. FofanaJ. NodderS.B. GummuluruS. ReinhardB.M. Virus-mimicking polymer nanoparticles targeting CD169+ macrophages as long-acting nanocarriers for combination antiretrovirals.ACS Appl. Mater. Interfaces20221422488250010.1021/acsami.1c17415 34995059
    [Google Scholar]
  29. LiW. YuF. WangQ. Co-delivery of HIV-1 entry inhibitor and nonnucleoside reverse transcriptase inhibitor shuttled by nanoparticles.AIDS201630682783810.1097/QAD.0000000000000971 26595538
    [Google Scholar]
  30. KumarA.M. OwnbyR.L. Waldrop-ValverdeD. FernandezB. KumarM. Human immunodeficiency virus infection in the CNS and decreased dopamine availability: Relationship with neuropsychological performance.J. Neurovirol.2011171264010.1007/s13365‑010‑0003‑4 21165787
    [Google Scholar]
  31. DevineA. HillF. CareyE. Szűcs D. Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety.J. Educ. Psychol.2018110343144410.1037/edu0000222
    [Google Scholar]
  32. HuangJ.F. ZhongJ. ChenG.P. A hydrogel-based hybrid theranostic contact lens for fungal keratitis.ACS Nano20161076464647310.1021/acsnano.6b00601 27244244
    [Google Scholar]
  33. TangS. WangA. YanX. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease.Drug Deliv.201926170070710.1080/10717544.2019.1636420 31290705
    [Google Scholar]
  34. WannachaiyasitS. ChanvorachoteP. NimmannitU. A novel anti-HIV dextrin-zidovudine conjugate improving the pharmacokinetics of zidovudine in rats.AAPS PharmSciTech20089384085010.1208/s12249‑008‑9122‑0 18626772
    [Google Scholar]
  35. Sarzotti-KelsoeM. BailerR.T. TurkE. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1.J. Immunol. Methods201440913114610.1016/j.jim.2013.11.022 24291345
    [Google Scholar]
  36. ObisesanO.S. TshweuL.L. ChaukeS. Synthesis and characterization of tenofovir disoproxil fumarate loaded nanoparticles for HIV-1 treatment.Nano Select202456230015710.1002/nano.202300157
    [Google Scholar]
  37. BermanH. HenrickK. NakamuraH. Announcing the worldwide protein data bank.Nat. Struct. Mol. Biol.20031012980010.1038/nsb1203‑980 14634627
    [Google Scholar]
  38. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  39. KhanK. KumarV. ColomboE. LombardoA. BenfenatiE. RoyK. Intelligent consensus predictions of bioconcentration factor of pharmaceuticals using 2D and fragment-based descriptors.Environ. Int.202217010762510.1016/j.envint.2022.107625 36375281
    [Google Scholar]
  40. TkaczykA BownikA DudkaJ KowalK Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review.Sci. Total Environ.202176314303810.1016/j.scitotenv.2020.143038 33127157
    [Google Scholar]
  41. ToropovaA.P. SchultzT.W. ToropovA.A. Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives.Environ. Toxicol. Pharmacol.20164213514510.1016/j.etap.2016.01.010 26851376
    [Google Scholar]
  42. BragaR.C. AlvesV.M. SilvaM.F.B. Pred-hERG: A novel web-accessible computational tool for predicting cardiac toxicity.Mol. Inform.2015341069870110.1002/minf.201500040 27490970
    [Google Scholar]
  43. AderibigbeB.A. SadikuE.R. Sinha RayS. Synthesis and characterization of polyamidoamine conjugates of neridronic acid.Polym. Bull.201572341743910.1007/s00289‑014‑1286‑z
    [Google Scholar]
  44. MukayaH.E. Van ZylR.L. Jansen van VuurenN.C. ChenC.T. MbiandaX.Y. Synthesis, characterization, biological evaluation, and drug release study of polyamidoamine-containing neridronate.Int. J. Polym. Mater.201968948949810.1080/00914037.2018.1466135
    [Google Scholar]
  45. AderibigbeB.A. MhlwatikaZ. NwamadiM. BalogunM.O. MatsheW.M.R. Synthesis, characterization and in vitro analysis of polymer-based conjugates containing dihydrofolate reductase inhibitors.J. Drug Deliv. Sci. Technol.20195038840110.1016/j.jddst.2019.01.038
    [Google Scholar]
  46. SaifullahB. ArulselvanP. El ZowalatyM.E. A novel para-amino salicylic acid magnesium layered hydroxide nanocomposite anti-tuberculosis drug delivery system with enhanced in vitro therapeutic and anti-inflammatory properties.Int. J. Nanomed.2021202170357050
    [Google Scholar]
  47. LuY.M. PanJ. ZhangW.N. Synthesis, in silico and in vivo blood brain barrier permeability of ginkgolide B cinnamate.Fitoterapia201510611011410.1016/j.fitote.2015.08.012 26327588
    [Google Scholar]
  48. NakiT. MatsheW.M.R. BalogunM.O. Sinha RayS. EgieyehS.A. AderibigbeB.A. Polymer drug conjugates containing memantine, tacrine and cinnamic acid: Promising nanotherapeutics for the treatment of Alzheimer’s disease.J. Microencapsul.2023401152810.1080/02652048.2023.2167011 36622880
    [Google Scholar]
  49. SadeghiF. EidizadeA. SaremnejadF. HadizadehF. KhodaverdiE. AkhgariA. Synthesis of a novel PEGylated colon-specific azo-based 4- aminosalicylic acid prodrug.Iran. J. Basic Med. Sci.2020236781787 32695295
    [Google Scholar]
  50. ValeJ.A. RodriguesM.P. LimaÂ.M.A. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells.Biomed. Pharmacother.202214811268910.1016/j.biopha.2022.112689 35149386
    [Google Scholar]
  51. LiuR. LaiY. HeB. Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery.Int. J. Nanomedicine2012752498
    [Google Scholar]
  52. DahmaneE.M. RhaziM. TaourirteM. Chitosan nanoparticles as a new delivery system for the anti-HIV drug zidovudine.Bull. Korean Chem. Soc.20133451333133810.5012/bkcs.2013.34.5.1333
    [Google Scholar]
  53. MainardesR.M. KhalilN.M. GremiãoM.P.D. Intranasal delivery of zidovudine by PLA and PLA–PEG blend nanoparticles.Int. J. Pharm.20103951-226627110.1016/j.ijpharm.2010.05.020 20580792
    [Google Scholar]
  54. DhoreM.S. ButoliyaS.S. ZadeA.B. Removal of toxic metal ions from water using chelating Terpolymer resin as a function of different concentration time and pH.Int. Sch. Res. Notices2014
    [Google Scholar]
  55. AlvarezJ. SaudinoG. MusteataV. 3D analysis of ordered porous polymeric particles using complementary electron microscopy methods.Sci. Rep.2019911398710.1038/s41598‑019‑50338‑2 31562349
    [Google Scholar]
  56. PandaS. Formulation and evaluation of zidovudine loaded olibanum resin microcapsules: Exploring the use of natural resins as biodegradable polymeric materials for controlled release.Asian J. Pharm. Clin. Res.20132013191196
    [Google Scholar]
  57. PedreiroL.N. CuryB.S.F. ChaudM.V. GremiãoM.P.D. A novel approach in mucoadhesive drug delivery system to improve zidovudine intestinal permeability.Braz. J. Pharm. Sci.201652471572510.1590/s1984‑82502016000400016
    [Google Scholar]
  58. SantosJ.V. Batista de CarvalhoL.A.E. PinaM.E.T. The influence of the compression force on zidovudine release from matrix tablets.AAPS PharmSciTech20101131442144810.1208/s12249‑010‑9497‑6 20842543
    [Google Scholar]
  59. AhmadM.Z. SabriA.H.B. AnjaniQ.K. Domínguez-RoblesJ. Abdul LatipN. HamidK.A. Design and development of levodopa loaded polymeric nanoparticles for intranasal delivery.Pharmaceuticals (Basel)202215337010.3390/ph15030370 35337167
    [Google Scholar]
  60. CavalcantiS.M.T. NunesC. Costa LimaS.A. Soares-SobrinhoJ.L. ReisS. Optimization of nanostructured lipid carriers for Zidovudine delivery using a microwave-assisted production method.Eur. J. Pharm. Sci.2018122223010.1016/j.ejps.2018.06.017 29933076
    [Google Scholar]
  61. BadawiN.M. AttiaY.M. El-KershD.M. HammamO.A. KhalifaM.K. Investigating the impact of optimized trans-cinnamic acid-loaded PLGA nanoparticles on epithelial to mesenchymal transition in breast cancer.Int. J. Nanomed.202217733750
    [Google Scholar]
  62. MasseriniM. Nanoparticles for brain drug delivery.ISRN Biochem.2013201311810.1155/2013/238428 25937958
    [Google Scholar]
  63. NowakM. BrownT.D. GrahamA. HelgesonM.E. MitragotriS. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow.Bioeng. Transl. Med.202052e1015310.1002/btm2.10153 32440560
    [Google Scholar]
  64. HanadaS. FujiokaK. InoueY. KanayaF. ManomeY. YamamotoK. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification.Int. J. Mol. Sci.20141521812182510.3390/ijms15021812 24469316
    [Google Scholar]
  65. DanaeiM. DehghankholdM. AtaeiS. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  66. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  67. ZamanR.U. MullaN.S. Braz GomesK. D’SouzaC. MurnaneK.S. D’SouzaM.J. Nanoparticle formulations that allow for sustained delivery and brain targeting of the neuropeptide oxytocin.Int. J. Pharm.2018548169870610.1016/j.ijpharm.2018.07.043 30031864
    [Google Scholar]
  68. UchechiO. OgbonnaJ.D.N. AttamaA.A. Nanoparticles for dermal and transdermal drug delivery. Application Of Nanotechnology In Drug Delivery.London: InTechOpen2014419322710.5772/58672
    [Google Scholar]
  69. KakadS. KshirsagarS. Nose to brain delivery of Efavirenz nanosuspension for effective neuro AIDS therapy: In-vitro, in-vivo and pharmacokinetic assessment.Heliyon2021711e0836810.1016/j.heliyon.2021.e08368 34901485
    [Google Scholar]
  70. DuttaT. JainN.K. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer.Biochim. Biophys. Acta, Gen. Subj.20071770468168610.1016/j.bbagen.2006.12.007 17276009
    [Google Scholar]
  71. Fotooh AbadiL. DamiriF. ZehraviM. Novel nanotechnology-based approaches for targeting HIV reservoirs.Polymers (Basel)20221415309010.3390/polym14153090 35956604
    [Google Scholar]
  72. EdagwaB. ZhouT. McMillanJ. LiuX.M. GendelmanH. Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies.Curr. Med. Chem.201421364186419810.2174/0929867321666140826114135 25174930
    [Google Scholar]
  73. Montenegro-BurkeJ.R. WoldstadC.J. FangM. Nanoformulated antiretroviral therapy attenuates brain metabolic oxidative stress.Mol. Neurobiol.20195642896290710.1007/s12035‑018‑1273‑8 30069830
    [Google Scholar]
  74. ChattopadhyayN. ZastreJ. WongH.L. WuX.Y. BendayanR. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line.Pharm. Res.200825102262227110.1007/s11095‑008‑9615‑2 18516666
    [Google Scholar]
  75. GomesM.J. NevesJ.D. SarmentoB. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system.Int. J. Nanomed.2014917571769
    [Google Scholar]
  76. El-GamalF.R. AklM.A. MowafyH.A. MukaiH. KawakamiS. AfounaM.I. Synthesis and evaluation of high functionality and quality cell-penetrating peptide conjugated lipid for octaarginine modified PEGylated liposomes in U251 and U87 glioma cells.J. Pharm. Sci.202211161719172710.1016/j.xphs.2021.11.022 34863974
    [Google Scholar]
  77. HonaryS. ZahirF. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1).Trop. J. Pharm. Res.2013122255264
    [Google Scholar]
  78. DingS. KhanA.I. CaiX. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies.Mater. Today20203711212510.1016/j.mattod.2020.02.001 33093794
    [Google Scholar]
  79. DardetJ.P. SerranoN. AndrásI.E. ToborekM. Overcoming blood-brain barrier resistance: Implications for extracellular vesicle-mediated drug brain delivery.Front. Drug Deliv.2022285501710.3389/fddev.2022.855017
    [Google Scholar]
  80. NanceE.A. WoodworthG.F. SailorK.A. A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue.Sci. Transl. Med.2012149149ra119
    [Google Scholar]
  81. ArvizoR.R. MirandaO.R. MoyanoD.F. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles.PLoS One201169e2437410.1371/journal.pone.0024374 21931696
    [Google Scholar]
  82. NtshangaseS. MdandaS. SinghS.D. Mass spectrometry imaging demonstrates the regional brain distribution patterns of three first-line antiretroviral drugs.ACS Omega2019425211692117710.1021/acsomega.9b02582 31867510
    [Google Scholar]
  83. DevrukhakarP.S. Shiva ShankarM. ShankarG. SrinivasR. A stability-indicating LC–MS/MS method for zidovudine: Identification, characterization and toxicity prediction of two major acid degradation products.J. Pharm. Anal.20177423123610.1016/j.jpha.2017.01.006 29404043
    [Google Scholar]
  84. AbafeO.A. SpäthJ. FickJ. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa.Chemosphere201820066067010.1016/j.chemosphere.2018.02.105 29524887
    [Google Scholar]
  85. ChandranJ. ZhengZ. ThomasV.I. RajalakshmiC. AttygalleA.B. LC-MS analysis of p -aminosalicylic acid under electrospray ionization conditions manifests a profound solvent effect.Analyst (Lond.)2020145155333534410.1039/D0AN00680G 32568330
    [Google Scholar]
  86. BolhassaniA. JavanzadS. SalehT. HashemiM. AghasadeghiM.R. SadatS.M. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.Hum. Vaccin. Immunother.201410232133210.4161/hv.26796 24128651
    [Google Scholar]
  87. BianculliR.H. MaseJ.D. SchulzM.D. Antiviral polymers: Past approaches and future possibilities.Macromolecules202053219158918610.1021/acs.macromol.0c01273
    [Google Scholar]
  88. ZhuangM. JiangH. SuzukiY. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection.Antiviral Res.2009821738110.1016/j.antiviral.2009.02.001 19428598
    [Google Scholar]
  89. CoxS.W. AlbertJ. WahlbergJ. UhlénM. WahrenB. Loss of synergistic response to combinations containing AZT in AZT-resistant HIV-1.AIDS Res. Hum. Retroviruses1992871229123410.1089/aid.1992.8.1229 1520536
    [Google Scholar]
  90. HavlirD.V. TierneyC. FriedlandG.H. In vivo antagonism with zidovudine plus stavudine combination therapy.J. Infect. Dis.2000182132132510.1086/315683 10882616
    [Google Scholar]
  91. MedinaD.J. HsiungG.D. MellorsJ.W. Ganciclovir antagonizes the anti-human immunodeficiency virus type 1 activity of zidovudine and didanosine in vitro.Antimicrob. Agents Chemother.19923651127113010.1128/AAC.36.5.1127 1510405
    [Google Scholar]
  92. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  93. AnusionwuCG AderibigbeBA AdeyemiSA Novel ferrocenylbisphosphonate hybrid compounds: Synthesis, characterization and potent activity against cancer cell lines.Bioorg Med Chem20225811665210.1016/j.bmc.2022.116652 35180594
    [Google Scholar]
  94. NoserA.A. El-NaggarM. DoniaT. AbdelmonsefA.H. Synthesis, in silico and in vitro assessment of new quinazolinones as anticancer agents via potential AKT inhibition.Molecules20202520478010.3390/molecules25204780 33080996
    [Google Scholar]
  95. LaguninA.A. RomanovaM.A. ZadorozhnyA.D. Comparison of quantitative and qualitative (Q) SAR models created for the prediction of Ki and IC50 values of antitarget inhibitors.Front. Pharmacol.201891136113610.3389/fphar.2018.01136 30364128
    [Google Scholar]
  96. BanerjeeP. KemmlerE. DunkelM. PreissnerR. ProTox 3.0: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.202452W1W513-2010.1093/nar/gkae303 38647086
    [Google Scholar]
  97. SegallM.D. BarberC. Addressing toxicity risk when designing and selecting compounds in early drug discovery.Drug Discov. Today201419568869310.1016/j.drudis.2014.01.006 24451294
    [Google Scholar]
  98. GarridoA. LepailleurA. MignaniS.M. DallemagneP. RochaisC. hERG toxicity assessment: Useful guidelines for drug design.Eur. J. Med. Chem.202019511229010.1016/j.ejmech.2020.112290 32283295
    [Google Scholar]
  99. KalyaanamoorthyS. BarakatK.H. Development of safe drugs: The hERG challenge.Med. Res. Rev.201838252555510.1002/med.21445 28467598
    [Google Scholar]
  100. LiuM. ZhangL. LiS. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.Toxicol. Lett.2020332889610.1016/j.toxlet.2020.07.003 32629073
    [Google Scholar]
/content/journals/chr/10.2174/011570162X334858241008071722
Loading
/content/journals/chr/10.2174/011570162X334858241008071722
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test