Skip to content
2000
image of Design, In Silico, and In vitro Evaluation of Polymer-Based Drug Conjugates Incorporated with Derivative of Cinnamic Acid, Zidovudine, and 
4-Aminosalicylic Acid against Pseudo-HIV-1

Abstract

Background

The incorporation of anti-HIV drugs into polymer to form polymer-drug conjugates has been reported to result in improved therapeutic activity. Zidovudine, an anti-HIV drug, was explored alone and in combination with known drug molecules using polyamidoamine-based carriers.

Objective

Polymer-drug conjugates incorporated with zidovudine, cinnamic acid, and 4-aminosalicylic acid were prepared and evaluated for their potential efficacy against pseudo-HIV-1.

Methods

Aqueous Michael addition polymerization reaction was employed to prepare the conjugates. The conjugates were incorporated with zidovudine, cinnamic acid, and 4-aminosalicylic acid. They were characterized by SEM/EDX, XRD, FTIR, NMR, LC-MS, particle size analysis, analysis, computational studies, and toxicity predictions.

Results

The conjugates displayed spherically shaped morphology. The findings showed that polymer-drug conjugates, T15 and T16, with a single drug were effective against pseudo-HIV-1 at high concentrations of 111.11 and 333.33 µg/mL, respectively. Molecular docking studies supported the results. Additionally, SwissADME, ProTox-II, and GUSAR (General Unrestricted Structure-Activity Relationships) analyses revealed that these compounds have promising antiviral potential.

Conclusion

The prepared polymer-drug conjugates with a single drug showed promising effects against the Pseudo-HIV-1, and the conjugates displayed features that make them potential anti-HIV therapeutics that require further studies.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X334858241008071722
2024-10-17
2025-01-20
Loading full text...

Full text loading...

References

  1. Ekladious I. Colson Y.L. Grinstaff M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov. 2019 18 4 273 294 10.1038/s41573‑018‑0005‑0 30542076
    [Google Scholar]
  2. Yavuz B. Morgan J.L. Showalter L. Pharmaceutical approaches to HIV treatment and prevention. Adv. Ther. (Weinh.) 2018 1 6 1800054 10.1002/adtp.201800054 32775613
    [Google Scholar]
  3. Xu J. Ma M. Mukerabigwi J.F. The effect of spacers in dual drug-polymer conjugates toward combination therapeutic efficacy. Sci. Rep. 2021 11 1 22116 10.1038/s41598‑021‑01550‑6 34764340
    [Google Scholar]
  4. Feng Q. Tong R. Anticancer nanoparticulate polymer‐drug conjugate. Bioeng. Transl. Med. 2016 1 3 277 296 10.1002/btm2.10033 29313017
    [Google Scholar]
  5. Zuwala K. Smith A.A.A. Tolstrup M. Zelikin A.N. HIV anti-latency treatment mediated by macromolecular prodrugs of histone deacetylase inhibitor, panobinostat. Chem. Sci. (Camb.) 2016 7 3 2353 2358 10.1039/C5SC03257A 29997778
    [Google Scholar]
  6. Danial M. Telwatte S. Tyssen D. Combination anti-HIV therapy via tandem release of prodrugs from macromolecular carriers. Polym. Chem. 2016 7 48 7477 7487 10.1039/C6PY01882C
    [Google Scholar]
  7. Tsou Y.H. Zhang X.Q. Zhu H. Syed S. Xu X. Drug delivery to the brain across the blood–brain barrier using nanomaterials. Small 2017 13 43 1701921 10.1002/smll.201701921 29045030
    [Google Scholar]
  8. Aggarwal N. Sachin, Nabi B, Aggarwal S, Baboota S, Ali J. Nano-based drug delivery system: A smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS. Drug Deliv. Transl. Res. 2022 12 1 27 48 10.1007/s13346‑021‑00907‑8 33486689
    [Google Scholar]
  9. Amblard F. Patel D. Michailidis E. HIV nucleoside reverse transcriptase inhibitors. Eur. J. Med. Chem. 2022 240 114554 10.1016/j.ejmech.2022.114554 35792384
    [Google Scholar]
  10. Popović-Djordjević J. Quispe C. Giordo R. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur. J. Med. Chem. 2022 233 114217 10.1016/j.ejmech.2022.114217 35276425
    [Google Scholar]
  11. Sever B. Otsuka M. Fujita M. Ciftci H. A Review of FDA-approved Anti-HIV-1 drugs, Anti-Gag compounds, and potential strategies for HIV-1 eradication. Int. J. Mol. Sci. 2024 25 7 3659 10.3390/ijms25073659 38612471
    [Google Scholar]
  12. Tompa D.R. Immanuel A. Srikanth S. Kadhirvel S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol. 2021 172 524 541 10.1016/j.ijbiomac.2021.01.076 33454328
    [Google Scholar]
  13. Mansky L.M. Bernard L.C. 3′-Azido-3′-deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1. J. Virol. 2000 74 20 9532 9539 10.1128/JVI.74.20.9532‑9539.2000 11000223
    [Google Scholar]
  14. Drake R.R. Underwood L.J. Jones R. AZT metabolism and toxicity: Application of 5-azido-3′-azido-2′,3′-dideoxyuridine monophosphate, a photoaffinity analog of AZT-monophosphate. Antiviral Res. 1995 26 3 A265 A5 10.1016/0166‑3542(95)94771‑S
    [Google Scholar]
  15. Neeraj A. Chandrasekar M.J.N. Sara U.V.S. Rohini A. Poly(HEMA-Zidovudine) conjugate: A macromolecular pro-drug for improvement in the biopharmaceutical properties of the drug. Drug Deliv. 2011 18 4 272 280 10.3109/10717544.2010.536272 21110710
    [Google Scholar]
  16. Pargoo E.M. Aghasadeghi M.R. Parivar K. Novel delivery based anionic linear globular dendrimerg2-zidovudine nano-conjugate significantly decreased retroviral activity. Pak. J. Pharm. Sci. 2020 33 2 705 714 10.36721/PJPS.2020.33.2.REG.705‑714.1 32276917
    [Google Scholar]
  17. Joshy KS Susan MA Snigdha S Nandakumar K Laly AP Sabu T Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery. Int J Biol MacromolM 2018 107 Pt A 929 937 10.1016/j.ijbiomac.2017.09.078 28939525
    [Google Scholar]
  18. Kuo Y.C. Chen H.H. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate–sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. Int. J. Pharm. 2006 327 1-2 160 169 10.1016/j.ijpharm.2006.07.044 16939704
    [Google Scholar]
  19. Saiyed Z.M. Gandhi N.H. Nair M.P.N. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood-brain barrier. Int. J. Nanomedicine 2010 5 157 166 20463931
    [Google Scholar]
  20. de Kock L. Sy S.K.B. Rosenkranz B. Pharmacokinetics of para-aminosalicylic acid in HIV-uninfected and HIV-coinfected tuberculosis patients receiving antiretroviral therapy, managed for multidrug-resistant and extensively drug-resistant tuberculosis. Antimicrob. Agents Chemother. 2014 58 10 6242 6250 10.1128/AAC.03073‑14 25114132
    [Google Scholar]
  21. Liwa A.C. Schaaf H.S. Rosenkranz B. Seifart H.I. Diacon A.H. Donald P.R. Para-aminosalicylic acid plasma concentrations in children in comparison with adults after receiving a granular slow-release preparation. J. Trop. Pediatr. 2013 59 2 90 94 10.1093/tropej/fms053 23174991
    [Google Scholar]
  22. Manosuthi W. Wiboonchutikul S. Sungkanuparph S. Integrated therapy for HIV and tuberculosis. AIDS Res. Ther. 2016 13 22 10.1186/s12981‑016‑0106‑y
    [Google Scholar]
  23. Zhu M. Shan Q. Ma L. Design and biological evaluation of cinnamic and phenylpropionic amide derivatives as novel dual inhibitors of HIV-1 protease and reverse transcriptase. Eur. J. Med. Chem. 2021 220 220 113498 10.1016/j.ejmech.2021.113498 33933756
    [Google Scholar]
  24. Thakkar J.N. Tiwari V. Desai U.R. Nonsulfated, cinnamic acid-based lignins are potent antagonists of HSV-1 entry into cells. Biomacromolecules 2010 11 5 1412 1416 10.1021/bm100161u 20411926
    [Google Scholar]
  25. Mandal S. Kang G. Prathipati P.K. Fan W. Li Q. Destache C.J. Long-acting parenteral combination antiretroviral loaded nano-drug delivery system to treat chronic HIV-1 infection: A humanized mouse model study. Antiviral Res. 2018 156 85 91 10.1016/j.antiviral.2018.06.005 29885378
    [Google Scholar]
  26. Prathipati P.K. Mandal S. Pon G. Vivekanandan R. Destache C.J. Pharmacokinetic and tissue distribution profile of long acting tenofovir alafenamide and elvitegravir loaded nanoparticles in humanized mice model. Pharm. Res. 2017 34 12 2749 2755 10.1007/s11095‑017‑2255‑7 28905173
    [Google Scholar]
  27. Ogunwuyi O. Kumari N. Smith K.A. Antiretroviral drugs-loaded nanoparticles fabricated by dispersion polymerization with potential for HIV/AIDS treatment. Infect Dis 2016 9 21 32
    [Google Scholar]
  28. Eshaghi B. Fofana J. Nodder S.B. Gummuluru S. Reinhard B.M. Virus-mimicking polymer nanoparticles targeting CD169+ macrophages as long-acting nanocarriers for combination antiretrovirals. ACS Appl. Mater. Interfaces 2022 14 2 2488 2500 10.1021/acsami.1c17415 34995059
    [Google Scholar]
  29. Li W. Yu F. Wang Q. Co-delivery of HIV-1 entry inhibitor and nonnucleoside reverse transcriptase inhibitor shuttled by nanoparticles. AIDS 2016 30 6 827 838 10.1097/QAD.0000000000000971 26595538
    [Google Scholar]
  30. Kumar A.M. Ownby R.L. Waldrop-Valverde D. Fernandez B. Kumar M. Human immunodeficiency virus infection in the CNS and decreased dopamine availability: Relationship with neuropsychological performance. J. Neurovirol. 2011 17 1 26 40 10.1007/s13365‑010‑0003‑4 21165787
    [Google Scholar]
  31. Devine A. Hill F. Carey E. Szűcs D. Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety. J. Educ. Psychol. 2018 110 3 431 444 10.1037/edu0000222
    [Google Scholar]
  32. Huang J.F. Zhong J. Chen G.P. A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano 2016 10 7 6464 6473 10.1021/acsnano.6b00601 27244244
    [Google Scholar]
  33. Tang S. Wang A. Yan X. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv. 2019 26 1 700 707 10.1080/10717544.2019.1636420 31290705
    [Google Scholar]
  34. Wannachaiyasit S. Chanvorachote P. Nimmannit U. A novel anti-HIV dextrin-zidovudine conjugate improving the pharmacokinetics of zidovudine in rats. AAPS PharmSciTech 2008 9 3 840 850 10.1208/s12249‑008‑9122‑0 18626772
    [Google Scholar]
  35. Sarzotti-Kelsoe M. Bailer R.T. Turk E. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 2014 409 131 146 10.1016/j.jim.2013.11.022 24291345
    [Google Scholar]
  36. Obisesan O.S. Tshweu L.L. Chauke S. Synthesis and characterization of tenofovir disoproxil fumarate loaded nanoparticles for HIV‐1 treatment. Nano Select 2024 5 6 2300157 10.1002/nano.202300157
    [Google Scholar]
  37. Berman H. Henrick K. Nakamura H. Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol. 2003 10 12 980 0 10.1038/nsb1203‑980 14634627
    [Google Scholar]
  38. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  39. Khan K. Kumar V. Colombo E. Lombardo A. Benfenati E. Roy K. Intelligent consensus predictions of bioconcentration factor of pharmaceuticals using 2D and fragment-based descriptors. Environ. Int. 2022 170 107625 10.1016/j.envint.2022.107625 36375281
    [Google Scholar]
  40. Tkaczyk A. Bownik A. Dudka J. Kowal K. Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci. Total Environ. 2021 763 143038 10.1016/j.scitotenv.2020.143038 33127157
    [Google Scholar]
  41. Toropova A.P. Schultz T.W. Toropov A.A. Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives. Environ. Toxicol. Pharmacol. 2016 42 135 145 10.1016/j.etap.2016.01.010 26851376
    [Google Scholar]
  42. Braga R.C. Alves V.M. Silva M.F.B. Pred‐hERG: A novel web‐accessible computational tool for predicting cardiac toxicity. Mol. Inform. 2015 34 10 698 701 10.1002/minf.201500040 27490970
    [Google Scholar]
  43. Aderibigbe B.A. Sadiku E.R. Sinha Ray S. Synthesis and characterization of polyamidoamine conjugates of neridronic acid. Polym. Bull. 2015 72 3 417 439 10.1007/s00289‑014‑1286‑z
    [Google Scholar]
  44. Mukaya H.E. Van Zyl R.L. Jansen van Vuuren N.C. Chen C.T. Mbianda X.Y. Synthesis, characterization, biological evaluation, and drug release study of polyamidoamine-containing neridronate. Int. J. Polym. Mater. 2019 68 9 489 498 10.1080/00914037.2018.1466135
    [Google Scholar]
  45. Aderibigbe B.A. Mhlwatika Z. Nwamadi M. Balogun M.O. Matshe W.M.R. Synthesis, characterization and in vitro analysis of polymer-based conjugates containing dihydrofolate reductase inhibitors. J. Drug Deliv. Sci. Technol. 2019 50 388 401 10.1016/j.jddst.2019.01.038
    [Google Scholar]
  46. Saifullah B. Arulselvan P. El Zowalaty M.E. A novel para-amino salicylic acid magnesium layered hydroxide nanocomposite anti-tuberculosis drug delivery system with enhanced in vitro therapeutic and anti-inflammatory properties. Int. J. Nanomed 2021 2021 7035 7050
    [Google Scholar]
  47. Lu Y.M. Pan J. Zhang W.N. Synthesis, in silico and in vivo blood brain barrier permeability of ginkgolide B cinnamate. Fitoterapia 2015 106 110 114 10.1016/j.fitote.2015.08.012 26327588
    [Google Scholar]
  48. Naki T. Matshe W.M.R. Balogun M.O. Sinha Ray S. Egieyeh S.A. Aderibigbe B.A. Polymer drug conjugates containing memantine, tacrine and cinnamic acid: Promising nanotherapeutics for the treatment of Alzheimer’s disease. J. Microencapsul. 2023 40 1 15 28 10.1080/02652048.2023.2167011 36622880
    [Google Scholar]
  49. Sadeghi F. Eidizade A. Saremnejad F. Hadizadeh F. Khodaverdi E. Akhgari A. Synthesis of a novel PEGylated colon-specific azo-based 4- aminosalicylic acid prodrug. Iran. J. Basic Med. Sci. 2020 23 6 781 787 32695295
    [Google Scholar]
  50. Vale J.A. Rodrigues M.P. Lima Â.M.A. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Biomed. Pharmacother. 2022 148 112689 10.1016/j.biopha.2022.112689 35149386
    [Google Scholar]
  51. Liu R. Lai Y. He B. Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery. Int. J. Nanomedicine 2012 7 5249 8
    [Google Scholar]
  52. Dahmane E.M. Rhazi M. Taourirte M. Chitosan nanoparticles as a new delivery system for the anti-HIV drug zidovudine. Bull. Korean Chem. Soc. 2013 34 5 1333 1338 10.5012/bkcs.2013.34.5.1333
    [Google Scholar]
  53. Mainardes R.M. Khalil N.M. Gremião M.P.D. Intranasal delivery of zidovudine by PLA and PLA–PEG blend nanoparticles. Int. J. Pharm. 2010 395 1-2 266 271 10.1016/j.ijpharm.2010.05.020 20580792
    [Google Scholar]
  54. Dhore M.S. Butoliya S.S. Zade A.B. Removal of toxic metal ions from water using chelating Terpolymer resin as a function of different concentration time and pH. Int. Sch. Res. Notices 2014
    [Google Scholar]
  55. Alvarez J. Saudino G. Musteata V. 3D analysis of ordered porous polymeric particles using complementary electron microscopy methods. Sci. Rep. 2019 9 1 13987 10.1038/s41598‑019‑50338‑2 31562349
    [Google Scholar]
  56. Panda S. Formulation and evaluation of zidovudine loaded olibanum resin microcapsules: Exploring the use of natural resins as biodegradable polymeric materials for controlled release. Asian J. Pharm. Clin. Res. 2013 2013 191 196
    [Google Scholar]
  57. Pedreiro L.N. Cury B.S.F. Chaud M.V. Gremião M.P.D. A novel approach in mucoadhesive drug delivery system to improve zidovudine intestinal permeability. Braz. J. Pharm. Sci. 2016 52 4 715 725 10.1590/s1984‑82502016000400016
    [Google Scholar]
  58. Santos J.V. Batista de Carvalho L.A.E. Pina M.E.T. The influence of the compression force on zidovudine release from matrix tablets. AAPS PharmSciTech 2010 11 3 1442 1448 10.1208/s12249‑010‑9497‑6 20842543
    [Google Scholar]
  59. Ahmad M.Z. Sabri A.H.B. Anjani Q.K. Domínguez-Robles J. Abdul Latip N. Hamid K.A. Design and development of levodopa loaded polymeric nanoparticles for intranasal delivery. Pharmaceuticals (Basel) 2022 15 3 370 10.3390/ph15030370 35337167
    [Google Scholar]
  60. Cavalcanti S.M.T. Nunes C. Costa Lima S.A. Soares-Sobrinho J.L. Reis S. Optimization of nanostructured lipid carriers for Zidovudine delivery using a microwave-assisted production method. Eur. J. Pharm. Sci. 2018 122 22 30 10.1016/j.ejps.2018.06.017 29933076
    [Google Scholar]
  61. Badawi N.M. Attia Y.M. El-Kersh D.M. Hammam O.A. Khalifa M.K. Investigating the impact of optimized trans-cinnamic acid-loaded PLGA nanoparticles on epithelial to mesenchymal transition in breast cancer. Int. J. Nanomed 2022 17 733 750
    [Google Scholar]
  62. Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013 2013 1 18 10.1155/2013/238428 25937958
    [Google Scholar]
  63. Nowak M. Brown T.D. Graham A. Helgeson M.E. Mitragotri S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng. Transl. Med. 2020 5 2 e10153 10.1002/btm2.10153 32440560
    [Google Scholar]
  64. Hanada S. Fujioka K. Inoue Y. Kanaya F. Manome Y. Yamamoto K. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int. J. Mol. Sci. 2014 15 2 1812 1825 10.3390/ijms15021812 24469316
    [Google Scholar]
  65. Danaei M. Dehghankhold M. Ataei S. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  66. Saraiva C. Praça C. Ferreira R. Santos T. Ferreira L. Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016 235 34 47 10.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  67. Zaman R.U. Mulla N.S. Braz Gomes K. D’Souza C. Murnane K.S. D’Souza M.J. Nanoparticle formulations that allow for sustained delivery and brain targeting of the neuropeptide oxytocin. Int. J. Pharm. 2018 548 1 698 706 10.1016/j.ijpharm.2018.07.043 30031864
    [Google Scholar]
  68. Uchechi O. Ogbonna J.D.N. Attama A.A. Nanoparticles for dermal and transdermal drug delivery. Application Of Nanotechnology In Drug Delivery. London. InTechOpen 2014 4 193 227 10.5772/58672
    [Google Scholar]
  69. Kakad S. Kshirsagar S. Nose to brain delivery of Efavirenz nanosuspension for effective neuro AIDS therapy: In-vitro, in-vivo and pharmacokinetic assessment. Heliyon 2021 7 11 e08368 10.1016/j.heliyon.2021.e08368 34901485
    [Google Scholar]
  70. Dutta T. Jain N.K. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim. Biophys. Acta, Gen. Subj. 2007 1770 4 681 686 10.1016/j.bbagen.2006.12.007 17276009
    [Google Scholar]
  71. Fotooh Abadi L. Damiri F. Zehravi M. Novel nanotechnology-based approaches for targeting HIV reservoirs. Polymers (Basel) 2022 14 15 3090 10.3390/polym14153090 35956604
    [Google Scholar]
  72. Edagwa B. Zhou T. McMillan J. Liu X.M. Gendelman H. Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies. Curr. Med. Chem. 2014 21 36 4186 4198 10.2174/0929867321666140826114135 25174930
    [Google Scholar]
  73. Montenegro-Burke J.R. Woldstad C.J. Fang M. Nanoformulated antiretroviral therapy attenuates brain metabolic oxidative stress. Mol. Neurobiol. 2019 56 4 2896 2907 10.1007/s12035‑018‑1273‑8 30069830
    [Google Scholar]
  74. Chattopadhyay N. Zastre J. Wong H.L. Wu X.Y. Bendayan R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm. Res. 2008 25 10 2262 2271 10.1007/s11095‑008‑9615‑2 18516666
    [Google Scholar]
  75. Gomes M.J. Neves J.D. Sarmento B. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int. J. Nanomed 2014 9 1757 1769
    [Google Scholar]
  76. El-Gamal F.R. Akl M.A. Mowafy H.A. Mukai H. Kawakami S. Afouna M.I. Synthesis and evaluation of high functionality and quality cell-penetrating peptide conjugated lipid for octaarginine modified PEGylated liposomes in U251 and U87 glioma cells. J. Pharm. Sci. 2022 111 6 1719 1727 10.1016/j.xphs.2021.11.022 34863974
    [Google Scholar]
  77. Honary S. Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop. J. Pharm. Res. 2013 12 2 255 264
    [Google Scholar]
  78. Ding S. Khan A.I. Cai X. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020 37 112 125 10.1016/j.mattod.2020.02.001 33093794
    [Google Scholar]
  79. Dardet J.P. Serrano N. András I.E. Toborek M. Overcoming blood-brain barrier resistance: Implications for extracellular vesicle-mediated drug brain delivery. Front Drug Deliv 2022 2 855017 10.3389/fddev.2022.855017
    [Google Scholar]
  80. Nance E.A. Woodworth G.F. Sailor K.A. A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 2012 149 149ra119
    [Google Scholar]
  81. Arvizo R.R. Miranda O.R. Moyano D.F. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 2011 6 9 e24374 10.1371/journal.pone.0024374 21931696
    [Google Scholar]
  82. Ntshangase S. Mdanda S. Singh S.D. Mass spectrometry imaging demonstrates the regional brain distribution patterns of three first-line antiretroviral drugs. ACS Omega 2019 4 25 21169 21177 10.1021/acsomega.9b02582 31867510
    [Google Scholar]
  83. Devrukhakar P.S. Shiva Shankar M. Shankar G. Srinivas R. A stability-indicating LC–MS/MS method for zidovudine: Identification, characterization and toxicity prediction of two major acid degradation products. J. Pharm. Anal. 2017 7 4 231 236 10.1016/j.jpha.2017.01.006 29404043
    [Google Scholar]
  84. Abafe O.A. Späth J. Fick J. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa. Chemosphere 2018 200 660 670 10.1016/j.chemosphere.2018.02.105 29524887
    [Google Scholar]
  85. Chandran J. Zheng Z. Thomas V.I. Rajalakshmi C. Attygalle A.B. LC-MS analysis of p -aminosalicylic acid under electrospray ionization conditions manifests a profound solvent effect. Analyst (Lond.) 2020 145 15 5333 5344 10.1039/D0AN00680G 32568330
    [Google Scholar]
  86. Bolhassani A. Javanzad S. Saleh T. Hashemi M. Aghasadeghi M.R. Sadat S.M. Polymeric nanoparticles. Hum. Vaccin. Immunother. 2014 10 2 321 332 10.4161/hv.26796 24128651
    [Google Scholar]
  87. Bianculli R.H. Mase J.D. Schulz M.D. Antiviral polymers: Past approaches and future possibilities. Macromolecules 2020 53 21 9158 9186 10.1021/acs.macromol.0c01273
    [Google Scholar]
  88. Zhuang M. Jiang H. Suzuki Y. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res. 2009 82 1 73 81 10.1016/j.antiviral.2009.02.001 19428598
    [Google Scholar]
  89. Cox S.W. Albert J. Wahlberg J. Uhlén M. Wahren B. Loss of synergistic response to combinations containing AZT in AZT-resistant HIV-1. AIDS Res. Hum. Retroviruses 1992 8 7 1229 1234 10.1089/aid.1992.8.1229 1520536
    [Google Scholar]
  90. Havlir D.V. Tierney C. Friedland G.H. In vivo antagonism with zidovudine plus stavudine combination therapy. J. Infect. Dis. 2000 182 1 321 325 10.1086/315683 10882616
    [Google Scholar]
  91. Medina D.J. Hsiung G.D. Mellors J.W. Ganciclovir antagonizes the anti-human immunodeficiency virus type 1 activity of zidovudine and didanosine in vitro. Antimicrob. Agents Chemother. 1992 36 5 1127 1130 10.1128/AAC.36.5.1127 1510405
    [Google Scholar]
  92. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  93. Anusionwu CG, Aderibigbe BA, Adeyemi SA, et al. Novel ferrocenylbisphosphonate hybrid compounds: Synthesis, characterization and potent activity against cancer cell lines. Bioorg Med Chem 2022 116652 10.1016/j.bmc.2022.116652 35180594
    [Google Scholar]
  94. Noser A.A. El-Naggar M. Donia T. Abdelmonsef A.H. Synthesis, in silico and in vitro assessment of new quinazolinones as anticancer agents via potential AKT inhibition. Molecules 2020 25 20 4780 10.3390/molecules25204780 33080996
    [Google Scholar]
  95. Lagunin A.A. Romanova M.A. Zadorozhny A.D. Comparison of quantitative and qualitative (Q) SAR models created for the prediction of Ki and IC50 values of antitarget inhibitors. Front. Pharmacol. 2018 9 1136 1136 10.3389/fphar.2018.01136 30364128
    [Google Scholar]
  96. Banerjee P. Kemmler E. Dunkel M. Preissner R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 52 W1 W513 W520 10.1093/nar/gkae303 38647086
    [Google Scholar]
  97. Segall M.D. Barber C. Addressing toxicity risk when designing and selecting compounds in early drug discovery. Drug Discov. Today 2014 19 5 688 693 10.1016/j.drudis.2014.01.006 24451294
    [Google Scholar]
  98. Garrido A. Lepailleur A. Mignani S.M. Dallemagne P. Rochais C. hERG toxicity assessment: Useful guidelines for drug design. Eur. J. Med. Chem. 2020 195 112290 10.1016/j.ejmech.2020.112290 32283295
    [Google Scholar]
  99. Kalyaanamoorthy S. Barakat K.H. Development of safe drugs: The hERG challenge. Med. Res. Rev. 2018 38 2 525 555 10.1002/med.21445 28467598
    [Google Scholar]
  100. Liu M. Zhang L. Li S. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints. Toxicol. Lett. 2020 332 88 96 10.1016/j.toxlet.2020.07.003 32629073
    [Google Scholar]
/content/journals/chr/10.2174/011570162X334858241008071722
Loading
/content/journals/chr/10.2174/011570162X334858241008071722
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: polymer-drug conjugates ; 4-aminosalicylic acid ; cinnamic acid ; zidovudine ; HIV ; molecular docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test