Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Background

HIV-associated pulmonary arterial hypertension (HIV-PAH), a rare and fatal condition within the pulmonary arterial hypertension spectrum, is linked to HIV infection. While ferroptosis, an iron-dependent cell death form, is implicated in various lung diseases, its role in HIV-PAH development remains unclear.

Methods

Leveraging Gene Expression Omnibus data, we identified differentially expressed genes (DEGs) in pulmonary arterial smooth muscle cells, including HIV-related DEGs (HIV-DEGs) and ferroptosis-related HIV-DEGs (FR-HIV-DEGs). PPI network analysis of FR-HIV-DEGs using CytoHubba in Cytoscape identified hub genes. We conducted functional and pathway enrichment analyses for FR-HIV-DEGs, HIV-DEGs, and hub genes. Diagnostic value assessment of hub genes utilized ROC curve analysis. Key genes were further screened, and external validation was performed. Additionally, we predicted a potential ceRNA regulatory network for key genes.

Results

1372 DEGs were found, of which 228 were HIV-DEGs, and 20 were FR-HIV-DEGs. TP53, IL6, PTGS2, IL1B (downregulated), and PPARG (upregulated) were the five hub genes that were screened. TP53, IL6, and IL1B act as ferroptosis drivers, PTGS2 as a ferroptosis marker, and PPARG as a ferroptosis inhibitor. Enrichment analysis indicated biological processes enriched in “response to oxidative stress” and pathways enriched in “human cytomegalovirus infection.” Key genes IL6 and PTGS2 exhibited strong predictive value ROC curve analysis and external validation. The predicted ceRNA regulatory network identified miRNAs (has-mir-335-5p, has-mir-124-3p) targeting key genes and lncRNAs (XIST, NEAT1) targeting these miRNAs.

Conclusion

This study advances our understanding of potential mechanisms in HIV-PAH pathogenesis, emphasizing the involvement of ferroptosis. The findings offer valuable insights for future research in HIV-PAH.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X304876240821062047
2024-08-26
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/chr/22/5/CHR-22-5-04.html?itemId=/content/journals/chr/10.2174/011570162X304876240821062047&mimeType=html&fmt=ahah

References

  1. HumbertM. KovacsG. HoeperM.M. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension.Eur. Heart J.2022433836183731
    [Google Scholar]
  2. RuoppN.F. CockrillB.A. Diagnosis and treatment of pulmonary arterial hypertension.JAMA2022327141379139110.1001/jama.2022.4402 35412560
    [Google Scholar]
  3. CicaliniS. ChinelloP. GrilliE. PetrosilloN. Treatment and outcome of pulmonary arterial hypertension in HIV-infected patients: A review of the literature.Curr. HIV Res.20097658959610.2174/157016209789973583 19929793
    [Google Scholar]
  4. PalakeelJ.J. AliM. ChaduvulaP. An outlook on the etiopathogenesis of pulmonary hypertension in HIV.Cureus2022147e2739010.7759/cureus.27390 36046315
    [Google Scholar]
  5. Henriques-ForsytheM. AnnangiS. FarberH.W. Prevalence and hospital discharge status of human immunodeficiency virus-associated pulmonary arterial hypertension in the United States.Pulm. Circ.20155350651210.1086/682222 26401251
    [Google Scholar]
  6. JarrettH. BarnettC. HIV-associated pulmonary hypertension.Curr. Opin. HIV AIDS201712656657110.1097/COH.0000000000000418 28902721
    [Google Scholar]
  7. DhillonN.K. LiF. XueB. Effect of cocaine on human immunodeficiency virus-mediated pulmonary endothelial and smooth muscle dysfunction.Am. J. Respir. Cell Mol. Biol.2011451405210.1165/rcmb.2010‑0097OC 20802087
    [Google Scholar]
  8. JinH. JiaoY. GuoL. Astragaloside IV blocks monocrotaline induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling.Int. J. Mol. Med.202047259560610.3892/ijmm.2020.4813 33416126
    [Google Scholar]
  9. GuoM.L. KookY.H. ShannonC.E. BuchS. Notch3/VEGF-A axis is involved in TAT-mediated proliferation of pulmonary artery smooth muscle cells: Implications for HIV-associated PAH.Cell Death Discov.2018418510.1038/s41420‑018‑0087‑9 30109141
    [Google Scholar]
  10. MouY. WangJ. WuJ. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer.J. Hematol. Oncol.20191213410.1186/s13045‑019‑0720‑y 30925886
    [Google Scholar]
  11. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  12. LiS. ZhangX. Iron in cardiovascular disease: Challenges and potentials.Front. Cardiovasc. Med.2021870713810.3389/fcvm.2021.707138 34917655
    [Google Scholar]
  13. RenJ.X. SunX. YanX.L. GuoZ.N. YangY. Ferroptosis in neurological diseases.Front. Cell. Neurosci.20201421810.3389/fncel.2020.00218 32754017
    [Google Scholar]
  14. LiY. YangY. YangY. Multifaceted roles of ferroptosis in lung diseases.Front. Mol. Biosci.2022991918710.3389/fmolb.2022.919187 35813823
    [Google Scholar]
  15. RuiterG. LankhorstS. BoonstraA. Iron deficiency is common in idiopathic pulmonary arterial hypertension.Eur. Respir. J.20113761386139110.1183/09031936.00100510 20884742
    [Google Scholar]
  16. RhodesC.J. HowardL.S. BusbridgeM. Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: Clinical prevalence, outcomes, and mechanistic insights.J. Am. Coll. Cardiol.201158330030910.1016/j.jacc.2011.02.057 21737024
    [Google Scholar]
  17. CribbsS.K. CrothersK. MorrisA. Pathogenesis of HIV-related lung disease: Immunity, infection, and inflammation.Physiol. Rev.2020100260363210.1152/physrev.00039.2018 31600121
    [Google Scholar]
  18. BasyalB. JarrettH. BarnettC.F. Pulmonary hypertension in HIV.Can. J. Cardiol.201935328829810.1016/j.cjca.2019.01.005 30825951
    [Google Scholar]
  19. ZhuW. LiuS. The role of human cytomegalovirus in atherosclerosis: A systematic review.Acta Biochim. Biophys. Sin. (Shanghai)202052433935310.1093/abbs/gmaa005 32253424
    [Google Scholar]
  20. MonkC.H. ZwezdarykK.J. Host mitochondrial requirements of cytomegalovirus replication.Curr. Clin. Microbiol. Rep.20207411512310.1007/s40588‑020‑00153‑5 33816061
    [Google Scholar]
  21. FulkersonH.L. NogalskiM.T. Collins-McMillenD. YurochkoA.D. Overview of human cytomegalovirus pathogenesis.Methods Mol. Biol.2021224411810.1007/978‑1‑0716‑1111‑1_1 33555579
    [Google Scholar]
  22. SmithF.B. AriasJ.H. ElmquistT.H. MazzaraJ.T. Microvascular cytomegalovirus endothelialitis of the lung: A possible cause of secondary pulmonary hypertension in a patient with AIDS.Chest1998114133734010.1378/chest.114.1.337 9674494
    [Google Scholar]
  23. Walter-NicoletE. LeblancM. Leruez-VilleM. HubertP. MitanchezD. Congenital cytomegalovirus infection manifesting as neonatal persistent pulmonary hypertension: Report of two cases.Pulm. Med.201120111410.1155/2011/293285 21766016
    [Google Scholar]
  24. ManzoniP. VivaldaM. MostertM. CMV infection associated with severe lung involvement and persistent pulmonary hypertension of the newborn (PPHN) in two preterm twin neonates.Early Hum. Dev.201490Suppl. 2S25S2710.1016/S0378‑3782(14)50008‑4 25220122
    [Google Scholar]
  25. PhamA. El MjatiH. NathanN. KiefferF. MitanchezD. Congenital cytomegalovirus infection manifesting as neonatal respiratory distress in an HIV-exposed uninfected newborn.Arch. Pediatr.2017249872876
    [Google Scholar]
  26. MaturaL.A. VentetuoloC.E. PalevskyH.I. Interleukin-6 and tumor necrosis factor-α are associated with quality of life-related symptoms in pulmonary arterial hypertension.Ann. Am. Thorac. Soc.201512337037510.1513/AnnalsATS.201410‑463OC 25615959
    [Google Scholar]
  27. TcherakianC. RivaudE. CatherinotE. ZucmanD. MetivierA.C. CoudercL.J. Pulmonary arterial hypertension related to HIV: Is inflammation related to IL-6 the cornerstone?Rev. Pneumol. Clin.201167425025710.1016/j.pneumo.2011.06.006 21920286
    [Google Scholar]
  28. AlqarniA.A. BrandO.J. PasiniA. AlahmariM. AlghamdiA. PangL. Imbalanced prostanoid release mediates cigarette smoke-induced human pulmonary artery cell proliferation.Respir. Res.202223113610.1186/s12931‑022‑02056‑z 35643499
    [Google Scholar]
  29. FredenburghL.E. LiangO.D. MaciasA.A. Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells.Circulation2008117162114212210.1161/CIRCULATIONAHA.107.716241 18391113
    [Google Scholar]
  30. DurmusS. AtahanE. Avci KilickiranB. Significance of Cyclooxgenase-2 gene polymorphism and related miRNAs in pulmonary arterial hypertension.Clin. Biochem.2022107333910.1016/j.clinbiochem.2022.06.001 35724768
    [Google Scholar]
  31. NgL. The role of thiamine in HIV infection.Int. J. Infect. Dis.2013174e221e227
    [Google Scholar]
  32. SamikkannuT. RaoK.V.K. DingH. Immunopathogenesis of HIV infection in cocaine users: Role of arachidonic acid.PLoS One201498e10634810.1371/journal.pone.0106348 25171226
    [Google Scholar]
  33. ChinniahR. AdimulamT. NandlalL. ArumugamT. RamsuranV. The effect of miRNA gene regulation on HIV disease.Front. Genet.20221386264210.3389/fgene.2022.862642 35601502
    [Google Scholar]
  34. ShenL. WuC. ZhangJ. Roles and potential applications of lncRNAs in HIV infection.Int. J. Infect. Dis.20209297104
    [Google Scholar]
  35. WangD. XuH. WuB. Long non coding RNA MALAT1 sponges miR 124 3p.1/KLF5 to promote pulmonary vascular remodeling and cell cycle progression of pulmonary artery hypertension.Int. J. Mol. Med.201944387188410.3892/ijmm.2019.4256 31257528
    [Google Scholar]
  36. WuL. TianX. ZuoH. miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia–reperfusion injury in steatotic grafts.J. Nanobiotechnology202220119610.1186/s12951‑022‑01407‑8 35459211
    [Google Scholar]
  37. MaH. YeP. ZhangA. YuW. LinS. ZhengY. Upregulation of miR-335-5p contributes to right ventricular remodeling via calumenin in pulmonary arterial hypertension.BioMed Res. Int.2022202211610.1155/2022/9294148 36246958
    [Google Scholar]
  38. ChengX. WangY. LiuL. LvC. LiuC. XuJ. SLC7A11, a potential therapeutic target through induced ferroptosis in colon adenocarcinoma.Front. Mol. Biosci.2022988968810.3389/fmolb.2022.889688 35517862
    [Google Scholar]
  39. QinS. PredescuD. CarmanB. Up-regulation of the long noncoding RNA x-inactive–specific transcript and the sex bias in pulmonary arterial hypertension.Am. J. Pathol.202119161135115010.1016/j.ajpath.2021.03.009 33836164
    [Google Scholar]
  40. PintoD.O. ScottT.A. DeMarinoC. Effect of transcription inhibition and generation of suppressive viral non-coding RNAs.Retrovirology20191611310.1186/s12977‑019‑0475‑0 31036006
    [Google Scholar]
  41. DouX. MaY. QinY. NEAT1 silencing alleviates pulmonary arterial smooth muscle cell migration and proliferation under hypoxia through regulation of miR 34a 5p/KLF4 in vitro.Mol. Med. Rep.202124574910.3892/mmr.2021.12389 34468014
    [Google Scholar]
  42. ZhangY. LuoM. CuiX. O’ConnellD. YangY. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA.Cell Death Differ.20222991850186310.1038/s41418‑022‑00970‑9 35338333
    [Google Scholar]
  43. ShadrinaO.A. KikhayT.F. AgapkinaY.Y. GottikhM.B. SFPQ and NONO proteins and long non-coding NEAT1 RNA: Cellular functions and role in the HIV-1 life cycle.Mol. Biol.2022562259274 35403619
    [Google Scholar]
  44. DuyneR.V. NarayananA. K-Hall K, Saifuddin M, Shultz L, Kashanchi F. Humanized mouse models of HIV-1 latency.Curr. HIV Res.20119859560510.2174/157016211798998781 22211664
    [Google Scholar]
  45. Rodriguez-IrizarryV.J. SchneiderA.C. AhleD. Mice with humanized immune system as novel models to study HIV-associated pulmonary hypertension.Front. Immunol.20221393616410.3389/fimmu.2022.936164 35990658
    [Google Scholar]
/content/journals/chr/10.2174/011570162X304876240821062047
Loading
/content/journals/chr/10.2174/011570162X304876240821062047
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test