Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Introduction

People living with HIV (PLHIV) suffer from a range of consequences related to infection, including hyperlipidemia and neurologic and sleep disorders. Supplements containing phenolic compounds with high antioxidant properties can reduce these side effects. Resveratrol is a phenolic compound that improves the symptoms of diabetes, cancer, and viral infections. This study aimed to evaluate the effects of resveratrol on hyperlipidemia and neurological problems in PLHIV in Iran.

Methods

In this double-blind, randomized clinical trial, 41 PLHIV were randomly assigned to two groups: a placebo group (n=21) and a resveratrol group (n=20). Triglyceride and cholesterol levels were determined for all the subjects before and one month after they used the medication. Additionally, standard questionnaires were used to evaluate the quality of sleep, stress, depression, and quality of life of the participants. The data were analyzed via analysis of covariance in Stata 17.0.

Results

The study population did not significantly differ in terms of age (=0.49), sex (=0.09), marital status (=0.90), level of education (=0.90), duration of HIV infection (=0.54), or mode of HIV transmission (=0.51). The administration of resveratrol did not affect psychological parameters or blood cholesterol (=0.091) or triglyceride (=0.932) levels.

Conclusion

The administration of resveratrol did not affect cholesterol or triglyceride levels or the rates of depression, anxiety, sleep quality, or quality of life in PLHIV. The resveratrol supplementation in a large-scale clinical study involving more patients for a longer course of treatment may have had more significant effects on the serum levels of lipids and psychological factors.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X301403241104043813
2024-12-01
2025-01-20
Loading full text...

Full text loading...

References

  1. LiX. LinC. GaoZ. HIV/AIDS knowledge and the implications for health promotion programs among Chinese college students: geographic, gender and age differences.Health Promot. Int.200419334535610.1093/heapro/dah308 15306619
    [Google Scholar]
  2. Júnior AJB. Human immunodeficiency virus-HIV: a review.Brazilian J Surg Clin Res201492438
    [Google Scholar]
  3. SinghS.K. Human immunodeficiency virus (HIV) infection.In: Diagnostics to Pathogenomics of Sexually Transmitted Infections.John & Wiley2018
    [Google Scholar]
  4. JiX. ChenY. FaroJ. GewurzH. BremerJ. SpearG.T. Interaction of human immunodeficiency virus (HIV) glycans with lectins of the human immune system.Curr. Protein Pept. Sci.20067431732410.2174/138920306778017990 16918446
    [Google Scholar]
  5. GranichR. GuptaS. SutharA.B. Antiretroviral therapy in prevention of HIV and TB: update on current research efforts.Curr. HIV Res.20119644646910.2174/157016211798038597 21999779
    [Google Scholar]
  6. ChemparthyD.T. KannanM. GordonL. BuchS. SilS. Alzheimer’s-like pathology at the crossroads of HIV-associated neurological disorders.Vaccines20219893010.3390/vaccines9080930 34452054
    [Google Scholar]
  7. CarrA. SamarasK. BurtonS. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors.AIDS1998127F51F5810.1097/00002030‑199807000‑00003 9619798
    [Google Scholar]
  8. AhmedM. AhmedM. MitalD. AhmedM.H. Management of hypercholesterolemia in individuals living with HIV/AIDS.In: Cholesterol.Elsevier20229991020
    [Google Scholar]
  9. BouzoniE. PerakakisN. ConnellyM.A. PCSK9 and ANGPTL3 levels correlate with hyperlipidemia in HIV-lipoatrophy, are regulated by fasting and are not affected by leptin administered in physiologic or pharmacologic doses.Metabolism202213415526510.1016/j.metabol.2022.155265 35820631
    [Google Scholar]
  10. CalzaL. HIV infection and myocardial infarction.Curr. HIV Res.201614645646510.2174/1570162X14666160803114651 27492726
    [Google Scholar]
  11. FragkouP.C. MoschopoulosC.D. DimopoulouD. Cardiovascular disease and risk assessment in people living with HIV: Current practices and novel perspectives.Hellenic J. Cardiol.202371425410.1016/j.hjc.2022.12.013 36646212
    [Google Scholar]
  12. WangL.X. HerediaA. SongH. Resveratrol glucuronides as the metabolites of resveratrol in humans: Characterization, synthesis, and anti-HIV activity.J. Pharm. Sci.200493102448245710.1002/jps.20156 15349955
    [Google Scholar]
  13. HerediaA. DavisC. RedfieldR. Synergistic inhibition of HIV-1 in activated and resting peripheral blood mononuclear cells, monocyte-derived macrophages, and selected drug-resistant isolates with nucleoside analogues combined with a natural product, resveratrol.J. Acquir. Immune Defic. Syndr.200025324625510.1097/00126334‑200011010‑00006 11115955
    [Google Scholar]
  14. GrahamN.M. Metabolic disorders among HIV-infected patients treated with protease inhibitors: a review.J. Acquir. Immune Defic. Syndr.200025Suppl. 1S4S1110.1097/00126334‑200010001‑00002 11126425
    [Google Scholar]
  15. PaparizosV.A. KyriakisK.P. BotsisC. PapastamopoulosV. HadjivassiliouM. StavrianeasN.G. Protease inhibitor therapy-associated lipodystrophy, hypertriglyceridaemia and diabetes mellitus.AIDS200014790390510.1097/00002030‑200005050‑00023 10839604
    [Google Scholar]
  16. Gkrania-KlotsasE. KlotsasA.E. HIV and HIV treatment: effects on fats, glucose and lipids.Br. Med. Bull.2007841496810.1093/bmb/ldm030 17981955
    [Google Scholar]
  17. MondalD. PradhanL. AliM. AgrawalK.C. HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells: exacerbation by inflammatory cytokines and amelioration by antioxidants.Cardiovasc. Toxicol.20044328730210.1385/CT:4:3:287 15470276
    [Google Scholar]
  18. HenningR.J. GreeneJ.N. The epidemiology, mechanisms, diagnosis and treatment of cardiovascular disease in adult patients with HIV.Am. J. Cardiovasc. Dis.2023132101121 37213313
    [Google Scholar]
  19. MadzimeM. RossouwT.M. TheronA.J. AndersonR. SteelH.C. Interactions of HIV and antiretroviral therapy with neutrophils and platelets.Front. Immunol.20211263438610.3389/fimmu.2021.634386 33777022
    [Google Scholar]
  20. AgasA. KalluruJ. LeiserB. GarciaR. KataruH. HaorahJ. Possible mechanisms of HIV neuro-infection in alcohol use: Interplay of oxidative stress, inflammation, and energy interruption.Alcohol202194254110.1016/j.alcohol.2021.04.003 33864851
    [Google Scholar]
  21. PorterK.M. SutliffR.L. HIV-1, reactive oxygen species, and vascular complications.Free Radic. Biol. Med.201253114315910.1016/j.freeradbiomed.2012.03.019 22564529
    [Google Scholar]
  22. Loaiza-CanoV. Monsalve-EscuderoL.M. FilhoC.S.M.B. Martinez-GutierrezM. SousaD.P. Filho CdSMB, Martinez-Gutierrez M, Sousa DPd. Antiviral role of phenolic compounds against dengue virus: A review.Biomolecules20201111110.3390/biom11010011 33374457
    [Google Scholar]
  23. SinghG. PaiR.S. Recent advances of resveratrol in nanostructured based delivery systems and in the management of HIV/AIDS.J. Control. Release201419417818810.1016/j.jconrel.2014.09.002 25217813
    [Google Scholar]
  24. Andrae-MarobelaK. GhislainF.W. OkatchH. MajindaR.R.T. Polyphenols: a diverse class of multi-target anti-HIV-1 agents.Curr. Drug Metab.201314439241310.2174/13892002113149990095 23330927
    [Google Scholar]
  25. AllardJ.P. AghdassiE. ChauJ. SalitI. WalmsleyS. Oxidative stress and plasma antioxidant micronutrients in humans with HIV infection.Am. J. Clin. Nutr.199867114314710.1093/ajcn/67.1.143 9440389
    [Google Scholar]
  26. BenedettiF. SorrentiV. BurianiA. FortinguerraS. ScapagniniG. ZellaD. Resveratrol, rapamycin and metformin as modulators of antiviral pathways.Viruses20201212145810.3390/v12121458 33348714
    [Google Scholar]
  27. SaadN.M. SekarM. GanS.H. LumP.T. VaijanathappaJ. RaviS. Resveratrol: Latest scientific evidences of its chemical, biological activities and therapeutic potentials.Pharmacogn. J.202012617791791
    [Google Scholar]
  28. PaceG.W. LeafC.D. The role of oxidative stress in HIV disease.Free Radic. Biol. Med.199519452352810.1016/0891‑5849(95)00047‑2 7590404
    [Google Scholar]
  29. JarugaP. JarugaB. GackowskiD. Supplementation with antioxidant vitamins prevents oxidative modification of DNA in lymphocytes of HIV-infected patients.Free Radic. Biol. Med.200232541442010.1016/S0891‑5849(01)00821‑8 11864781
    [Google Scholar]
  30. LiangT. WuZ. LiY. A synthetic resveratrol analog termed Q205 reactivates latent HIV-1 through activation of P-TEFb.Biochem. Pharmacol.202219711490110.1016/j.bcp.2021.114901 34971588
    [Google Scholar]
  31. FrémontL. Biological effects of resveratrol.Life Sci.200066866367310.1016/S0024‑3205(99)00410‑5 10680575
    [Google Scholar]
  32. IzzoC. AnnunziataM. MelaraG. The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials.Nutrients202113393310.3390/nu13030933 33805795
    [Google Scholar]
  33. MaY. ZhengX. ZhuP. Novel resveratrol-chalcone derivatives: synthesis and biological evaluation.Mini Rev. Med. Chem.201919542443610.2174/1389557518666180727165358 30058485
    [Google Scholar]
  34. QasemR.J. The estrogenic activity of resveratrol: a comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption.Crit. Rev. Toxicol.202050543946210.1080/10408444.2020.1762538 32744480
    [Google Scholar]
  35. ChudzińskaM RogowiczD WołowiecŁ BanachJ SielskiS BujakR Resveratrol and cardiovascular system—The unfulfilled hopes.Irish. J. Med. Sci.2021190981986
    [Google Scholar]
  36. HaunschildR. MarxW. On health effects of resveratrol in wine.Int. J. Environ. Res. Public Health2022195311010.3390/ijerph19053110 35270803
    [Google Scholar]
  37. KhosraviA. DeyhimM.R. YariF. Nikougoftar ZarifM. Resveratrol; a double-edged sword antioxidant agent for preserving platelet cell functions during storage; Molecular Insights.Rep. Biochem. Mol. Biol.202311455356410.52547/rbmb.11.4.553 37131901
    [Google Scholar]
  38. OlasB. The antioxidant, anti-platelet and anti-coagulant properties of phenolic compounds, associated with modulation of hemostasis and cardiovascular disease, and their possible effect on COVID-19.Nutrients2022147139010.3390/nu14071390 35406002
    [Google Scholar]
  39. OlasB. WachowiczB. Saluk-JuszczakJ. Zieliński T, Kaca W, Buczyński A. Antioxidant activity of resveratrol in endotoxin-stimulated blood platelets.Cell Biol. Toxicol.200117211712510.1023/A:1010962222305 11499695
    [Google Scholar]
  40. WurzD.A. Marcon FilhoJ.L. BrighentiA.F. AllebrandtR. Bem BPd, Rufato L. Phenolic composition of wine from’Cabernet Sauvignon’grapes subjected to leaf removal at different timing in Southern Brazil.Pesqui. Agropecu. Bras.202055
    [Google Scholar]
  41. XueY. ChenH. ZhangS. Resveratrol confers vascular protection by suppressing TLR4/Syk/NLRP3 signaling in oxidized low-density lipoprotein‐activated platelets.Oxid. Med. Cell. Longev.202120211881923110.1155/2021/8819231 33728029
    [Google Scholar]
  42. TungW.C. RizzoB. DabbaghY. Polyphenols bind to low density lipoprotein at biologically relevant concentrations that are protective for heart disease.Arch. Biochem. Biophys.202069410858910.1016/j.abb.2020.108589 33010229
    [Google Scholar]
  43. WuC.W. NakamotoY. HisatomeT. YoshidaS. MiyazakiH. Resveratrol and its dimers ε‐viniferin and δ‐viniferin in red wine protect vascular endothelial cells by a similar mechanism with different potency and efficacy.Kaohsiung J. Med. Sci.202036753554210.1002/kjm2.12199 32118360
    [Google Scholar]
  44. XiaN. ForstermannU. LiH. Resveratrol as a gene regulator in the vasculature.Curr. Pharm. Biotechnol.201415440140810.2174/1389201015666140711114450 25022271
    [Google Scholar]
  45. Caldeira-DiasM. Viana-MattioliS. de Souza Rangel MachadoJ. CarlströmM. de Carvalho CavalliR. SandrimVC. Resveratrol and grape juice: Effects on redox status and nitric oxide production of endothelial cells in in vitro preeclampsia model.Pregnancy Hypertens.20212320521010.1016/j.preghy.2021.01.001 33515977
    [Google Scholar]
  46. HsiehT-c. WuJ.M. Unraveling and trailblazing cardioprotection by resveratrol.In: Resveratrol: State-of-the-Art Science and Health Applications: Actionable Targets and Mechanisms of Resveratrol.World Scientific2019128
    [Google Scholar]
  47. BahunM JukićM OblakD Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols.Food Chem2022373Pt B13159410.1016/j.foodchem.2021.131594 34838409
    [Google Scholar]
  48. ShiraniF. KhorvashF. ArabA. Review on selected potential nutritional intervention for treatment and prevention of viral infections: possibility of recommending these for Coronavirus 2019.Int. J. Food Prop.20202311722173610.1080/10942912.2020.1825483
    [Google Scholar]
  49. S FA MadhuM Udaya KumarV Nutritional aspects of people living with HIV (PLHIV) amidst COVID-19 pandemic: an insight.Curr. Pharmacol. Rep.20228535036410.1007/s40495‑022‑00301‑z 35966952
    [Google Scholar]
  50. SilvaL.L.G. SantosE.M.D. NascimentoL.C.P.D. Lipodystrophic syndrome of HIV and associated factors: a study in a university hospital.Cien. Saude Colet.202025398999810.1590/1413‑81232020253.11772018 32159668
    [Google Scholar]
  51. van WijkJ.P.H. CabezasM.C. Hypertriglyceridemia, metabolic syndrome, and cardiovascular disease in HIV‐infected patients: effects of antiretroviral therapy and adipose tissue distribution.Int. J. Vasc. Med.20122012111310.1155/2012/201027 21876813
    [Google Scholar]
  52. JaniN. YadegarfarG. HajishafiyeeM. AzadbakhtL. Antioxidants and improvement of immune system function in HIV infected patients: A review article.Majallah-i Danishkadah-i Pizishki-i Isfahan201129135
    [Google Scholar]
  53. MauricioK.S.S. HIV/AIDS: The mechanisms and consequences of oxidative stress and the benefits of antioxidants. HIV/AIDS: the mechanisms and consequences of oxidative stress and the benefits of antioxidants.PhD thesis, University of Coimbra2019
    [Google Scholar]
  54. GerberM.T. MondyK.E. YarasheskiK.E. Niacin in HIV-infected individuals with hyperlipidemia receiving potent antiretroviral therapy.Clin. Infect. Dis.200439341942510.1086/422144 15307011
    [Google Scholar]
  55. MontazeriA. VahdaniniaM. EbrahimiM. JarvandiS. The Hospital Anxiety and Depression Scale (HADS): translation and validation study of the Iranian version.Health Qual. Life Outcomes2003111410.1186/1477‑7525‑1‑14 12816545
    [Google Scholar]
  56. Farrahi MoghaddamJ. NakhaeeN. SheibaniV. GarrusiB. AmirkafiA. reliability and validity of the persian version of the pittsburgh sleep quality index (PSQI-P).Sleep Breath.2012161798210.1007/s11325‑010‑0478‑5 21614577
    [Google Scholar]
  57. BurckhardtC.S. AndersonK.L. The Quality of Life Scale (QOLS): reliability, validity, and utilization.Health Qual. Life Outcomes2003116010.1186/1477‑7525‑1‑60 14613562
    [Google Scholar]
  58. XieH.C. HanH.P. ChenZ. HeJ.P. A study on the effect of resveratrol on lipid metabolism in hyperlipidemic mice.Afr. J. Tradit. Complement. Altern. Med.201311120921210.4314/ajtcam.v11i1.33 24653579
    [Google Scholar]
  59. AkbariM. TamtajiO.R. LankaraniK.B. The effects of resveratrol on lipid profiles and liver enzymes in patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials.Lipids Health Dis.20201912510.1186/s12944‑020‑1198‑x 32066446
    [Google Scholar]
  60. FarzinL. AsghariS. RafrafM. Asghari-JafarabadiM. ShirmohammadiM. No beneficial effects of resveratrol supplementation on atherogenic risk factors in patients with nonalcoholic fatty liver disease.Int. J. Vitam. Nutr. Res.2020903-4279289 30789808
    [Google Scholar]
  61. SahebkarA. Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials.Nutr. Rev.2013711282283510.1111/nure.12081 24111838
    [Google Scholar]
  62. HausenblasH.A. SchouldaJ.A. SmoligaJ.M. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus—systematic review and meta‐analysis.Mol. Nutr. Food Res.201559114715910.1002/mnfr.201400173 25138371
    [Google Scholar]
  63. SahebkarA. SerbanC. UrsoniuS. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors — Results from a systematic review and meta-analysis of randomized controlled trials.Int. J. Cardiol.2015189475510.1016/j.ijcard.2015.04.008 25885871
    [Google Scholar]
  64. HeebøllS KreuzfeldtM Hamilton-DutoitS Placebo-controlled, randomised clinical trial: high-dose resveratrol treatment for non-alcoholic fatty liver disease.Scand J Gastroenterol201651445646410.3109/00365521.2015.1107620 26784973
    [Google Scholar]
  65. ChachayV.S. MacdonaldG.A. MartinJ.H. WhiteheadJ.P. O’Moore–SullivanT.M. LeeP. Resveratrol does not benefit patients with nonalcoholic fatty liver disease.Clin. Gastroenterol. Hepatol.201412122092210310.1016/j.cgh.2014.02.024
    [Google Scholar]
  66. FaghihzadehF. AdibiP. RafieiR. HekmatdoostA. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease.Nutr. Res.2014341083784310.1016/j.nutres.2014.09.005 25311610
    [Google Scholar]
  67. AsghariS. Asghari-JafarabadiM. SomiM.H. GhavamiS.M. RafrafM. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial.J. Am. Coll. Nutr.201837322323310.1080/07315724.2017.1392264 29313746
    [Google Scholar]
  68. WeiR.M. ZhangY.M. FengY.Z. Resveratrol ameliorates maternal separation-induced anxiety- and depression-like behaviors and reduces Sirt1-NF-kB signaling-mediated neuroinflammation.Front. Behav. Neurosci.202317117209110.3389/fnbeh.2023.1172091 37273278
    [Google Scholar]
  69. SuryaK. ManickamN. JayachandranK.S. KandasamyM. AnusuyadeviM. Resveratrol mediated regulation of hippocampal neuroregenerative plasticity via SIRT1 pathway in synergy with Wnt signaling: Neurotherapeutic implications to mitigate memory loss in Alzheimer’s disease.J. Alzheimers Dis.20222022117
    [Google Scholar]
  70. WalkerA.J. JohnsonK.P. MiaskowskiC. LeeK.A. Gedaly-DuffV. Sleep quality and sleep hygiene behaviors of adolescents during chemotherapy.J. Clin. Sleep Med.20106543944410.5664/jcsm.27932 20957843
    [Google Scholar]
  71. PardoC.A. McArthurJ.C. GriffinJ.W. HIV neuropathy: Insights in the pathology of HIV peripheral nerve disease.J. Peripher. Nerv. Syst.200161212710.1046/j.1529‑8027.2001.006001021.x 11293804
    [Google Scholar]
  72. CruessD.G. AntoniM.H. GonzalezJ. Sleep disturbance mediates the association between psychological distress and immune status among HIV-positive men and women on combination antiretroviral therapy.J. Psychosom. Res.200354318518910.1016/S0022‑3999(02)00501‑9 12614827
    [Google Scholar]
  73. SeayJ.S. McIntoshR. FeketeE.M. Self-reported sleep disturbance is associated with lower CD4 count and 24-h urinary dopamine levels in ethnic minority women living with HIV.Psychoneuroendocrinology201338112647265310.1016/j.psyneuen.2013.06.022 23850225
    [Google Scholar]
  74. WightmanE.L. Haskell-RamsayC.F. ReayJ.L. The effects of chronic trans -resveratrol supplementation on aspects of cognitive function, mood, sleep, health and cerebral blood flow in healthy, young humans.Br. J. Nutr.201511491427143710.1017/S0007114515003037 26344014
    [Google Scholar]
  75. BentonT. LynchK. DubéB. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.Psychosom. Med.201072992593210.1097/PSY.0b013e3181f883ce 20947783
    [Google Scholar]
  76. NolanR. GaskillP.J. The role of catecholamines in HIV neuropathogenesis.Brain Res.20191702547310.1016/j.brainres.2018.04.030 29705605
    [Google Scholar]
/content/journals/chr/10.2174/011570162X301403241104043813
Loading
/content/journals/chr/10.2174/011570162X301403241104043813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test