Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Background

Human immunodeficiency virus-1 infection still remains a global health threat. While antiretroviral therapy is the primary treatment option, concerns about the emergence of drug-resistance mutations and treatment failure in HIV-infected patients persist.

Objective

In this study, we investigated the development of drug resistance in HIV-1-infected individuals receiving antiretroviral therapy for 6-10 years.

Methods

In this cross-sectional study, we evaluated 144 people living with HIV-1 who had received antiretroviral therapy for at least 6 years. Plasma specimens were collected, and the HIV-1 viral load and drug-resistance mutations were assessed using molecular techniques.

Results

The demographic and epidemiological characteristics of the participants were also analyzed: Twelve [8.3%) of the studied patients showed a viral load over 1000 copies per/mL, which indicates the suboptimal response to antiretroviral therapy. Significant correlations were found between viral load and CD4 count, as well as epidemiological factors, such as vertical transmission, history of imprisonment, and needle stick injuries. Drug resistance mutations were detected in 10 (83.3%) of patients who failed on antiretroviral therapy, with the most common mutations observed against nucleoside reverse transcriptase inhibitors (5 (41.7%)) and non-nucleoside reverse transcriptase inhibitors (9 (75%)). Phylogenetic analysis revealed that 12 patients who failed treatment were infected with CRF35_AD.

Conclusion

Our study provides important insights into the characteristics and development of drug resistance in HIV-1-infected individuals receiving long-term antiretroviral therapy in Iran. The findings underline the need for regular viral load monitoring, individualized treatment selection, and targeted interventions to optimize treatment outcomes and prevent the further spread of drug-resistant strains.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X273321240105081444
2024-01-19
2025-01-27
Loading full text...

Full text loading...

References

  1. van HeuvelY. SchatzS. RosengartenJ.F. StitzJ. Infectious RNA: Human immunodeficiency virus (HIV) biology, therapeutic intervention, and the quest for a vaccine.Toxins202214213810.3390/toxins1402013835202165
    [Google Scholar]
  2. FeinbergJ. KeeshinS. Prevention and initial management of HIV infection.Ann. Intern. Med.20221756ITC81ITC9610.7326/AITC20220621035696682
    [Google Scholar]
  3. MillarA.J.W. CoxS.G. Surgical implications of HIV infection.Pediatr. Surg. Int.20223913910.1007/s00383‑022‑05333‑636482099
    [Google Scholar]
  4. UrakovnaN.N. SultanovnaM.G. YunusovichM.A. FakhridinovnaA.M. ToshtemirovnaX.N. VlademirovnaB.E. Epidemiological analysis of the human immunodeficiency virus.World Bulletin of Public Health.2023219598
    [Google Scholar]
  5. RangwalaH.S. AnwarZ. OvaisM.H. FatimaH. SiddiqM.A. Rising HIV cases in Pakistan: Start of a pandemic?Ann. Med. Surg.20228210479110.1016/j.amsu.2022.10479136268456
    [Google Scholar]
  6. Al-TawfiqJ.A. AlhumaidS. AltawfiqK.J. BearmanG. 2022 World AIDS day: Past achievements and future optimism.New Microbes New Infect.20235110106710.1016/j.nmni.2022.10106736593884
    [Google Scholar]
  7. HargraveA. MustafaA.S. HanifA. TunioJ.H. HanifS.N.M. Current status of HIV-1 vaccines.Vaccines202199102610.3390/vaccines909102634579263
    [Google Scholar]
  8. García DeltoroM. Rapid initiation of antiretroviral therapy after HIV diagnosis.AIDS Rev.2019212556410.24875/AIDSRev.M1900002731332395
    [Google Scholar]
  9. KirichenkoA. KireevD. LopatukhinA. MurzakovaA. LapovokI. SaleevaD. LadnayaN. GadirovaA. IbrahimovaS. SafarovaA. GrigoryanT. PetrosyanA. SarhatyanT. GasichE. BunasA. GlinskayaI. YurovskyP. NurovR. SolievA. IsmatovaL. MusabaevE. KazakovaE. RakhimovaV. PokrovskyV. Prevalence of HIV-1 drug resistance in Eastern European and Central Asian countries.PLoS One2022171e025773110.1371/journal.pone.025773135061671
    [Google Scholar]
  10. GarshasbiS. MarjaniA. AlipourA. KhanalihaK. EsghaeiM. FakhimA. Bokharaei-SalimF. The frequency of HIV-1 infection and surveillance drug-resistant mutations determination among Iranians with high-risk behaviors, during 2014 to 2020.Iran. J. Microbiol.202113687888610.18502/ijm.v13i6.809435222867
    [Google Scholar]
  11. WangY. WuG. WenZ. LeiH. LinF. Highly active antiretroviral therapy-related effects on morphological connectivity in HIV.AIDS202438220721510.1097/QAD.000000000000375937861678
    [Google Scholar]
  12. BoenderT.S. KityoC.M. BoermaR.S. HamersR.L. OndoaP. WellingtonM. SiwaleM. NankyaI. KaudhaE. AkanmuA.S. BotesM.E. SteegenK. CalisJ.C.J. Rinke de WitT.F. SigaloffK.C.E. Accumulation of HIV-1 drug resistance after continued virological failure on first-line ART in adults and children in sub-Saharan Africa.J. Antimicrob. Chemother.201671102918292710.1093/jac/dkw21827342546
    [Google Scholar]
  13. Bokharaei-SalimF. KalantariS. GholamypourZ. NajafiA. KeyvaniH. EsghaeiM. MonavariS.H. KhanalihaK. BastaniM.N. FakhimA. GarshasbiS. Investigation of the effects of a prevention of mother-to-child HIV transmission program among Iranian neonates.Arch. Virol.201816351179118510.1007/s00705‑017‑3661‑129383588
    [Google Scholar]
  14. AgostoL.M. ZhongP. MunroJ. MothesW. Highly active antiretroviral therapies are effective against HIV-1 cell-to-cell transmission.PLoS Pathog.2014102e100398210.1371/journal.ppat.100398224586176
    [Google Scholar]
  15. JarchiM. Bokharaei-SalimF. EsghaeiM. KianiS.J. JahanbakhshF. MonavariS.H. Ataei-PirkoohA. MarjaniA. KeyvaniH. The frequency of HIV-1 infection in iranian children and determination of the transmitted drug resistance in treatment-naïve children.Curr. HIV Res.202017639740710.2174/1570162X1766619110611121131702525
    [Google Scholar]
  16. Arrieta-MartínezJ.A. Estrada-AcevedoJ.I. GómezC.A. Madrigal-CadavidJ. SernaJ.A. GiraldoP.A. Quirós-GómezÓ. Related factors to non-adherence to antiretroviral therapy in HIV/AIDS patients.Farm. Hosp.202246631932636520570
    [Google Scholar]
  17. KimS.H. GerverS.M. FidlerS. WardH. Adherence to antiretroviral therapy in adolescents living with HIV.AIDS201428131945195610.1097/QAD.000000000000031624845154
    [Google Scholar]
  18. Bokharaei-SalimF. EsghaeiM. KhanalihaK. KalantariS. MarjaniA. FakhimA. KeyvaniH. HIV-1 reverse transcriptase and protease mutations for drug-resistance detection among treatment-experienced and naïve HIV-infected individuals.PLoS One2020153e022927510.1371/journal.pone.022927532119691
    [Google Scholar]
  19. VahabpourR. Bokharaei-SalimF. KalantariS. GarshasbiS. MonavariS.H. EsghaeiM. MemarnejadianA. FakhimA. KeyvaniH. HIV-1 genetic diversity and transmitted drug resistance frequency among Iranian treatment-naive, sexually infected individuals.Arch. Virol.201716261477148510.1007/s00705‑017‑3228‑128181034
    [Google Scholar]
  20. Nasiri-TajabadiZ. Bokharaei SalimF. NajafzadehM.J. KalantariS. GarshasbiS. Amel JamehdarS. FarsianiH. MazaheriZ. SankianM. YoussefiM. A surveillance on protease inhibitor resistance-associated mutations among iranian hiv-1 patients.Arch. Clin. Infect. Dis.201813610.5812/archcid.69153
    [Google Scholar]
  21. WensingA.M. CalvezV. Ceccherini-SilbersteinF. CharpentierC. GünthardH.F. ParedesR. ShaferR.W. RichmanD.D. 2022 update of the drug resistance mutations in HIV-1.Top. Antivir. Med.202230455957436375130
    [Google Scholar]
  22. BakhouchK. Oulad-LahcenA. BensghirR. BlaghenM. ElfilaliK.M. EzzikouriS. AbidiO. HassarM. WakrimL. The prevalence of resistance-associated mutations to protease and reverse transcriptase inhibitors in treatment-naïve (HIV1)-infected individuals in Casablanca, Morocco.J. Infect. Dev. Ctries.20093538039110.3855/jidc.24719759509
    [Google Scholar]
  23. BaesiK. AbbasianL. FarrokhiM. GholamiM. MohrazM. McFarlandW. HIV drug resistance among naïve HIV-infected patients in Iran.J. Res. Med. Sci.20192413110.4103/jrms.JRMS_689_1831143232
    [Google Scholar]
  24. GhafariS. MemarnejadianA. Samarbaf-zadehA. MostafaviE. MakvandiM. SalmanzadehS. GhadiriA. JordanM.R. MousaviE. JahanbakhshF. AzadmaneshK. Prevalence of HIV-1 transmitted drug resistance in recently infected, treatment-naïve persons in the Southwest of Iran, 2014-2015.Arch. Virol.201716292737274510.1007/s00705‑017‑3431‑028589513
    [Google Scholar]
  25. BennettD.E. CamachoR.J. OteleaD. KuritzkesD.R. FleuryH. KiuchiM. HeneineW. KantorR. JordanM.R. SchapiroJ.M. VandammeA.M. SandstromP. BoucherC.A.B. van de VijverD. RheeS.Y. LiuT.F. PillayD. ShaferR.W. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update.PLoS One200943e472410.1371/journal.pone.000472419266092
    [Google Scholar]
  26. HabibZ. Bokharaei-SalimF. KianiS.J. GarshasbiS. KalantariS. KhanalihaK. Taghinezhad-SS. MonavariS.H. AtaeiP.A. EsghaeiM. Non detection of HIV-1 proviral DNA in PBMCs of the neonates born to Iranian HIV-infected mothers in PMTCT program.Arch. Pediatr. Infect. Dis.20219210.5812/pedinfect.105098
    [Google Scholar]
  27. MarjaniA. Bokharaei-SalimF. JahanbakhshiF. MonavariS.H. EsghaeiM. KalantariS. KianiS.J. Ataei-PirkoohA. FakhimA. KeyvaniH. HIV-1 integrase drug-resistance mutations in Iranian treatment-experienced HIV-1-infected patients.Arch. Virol.2020165111512510.1007/s00705‑019‑04463‑y31741096
    [Google Scholar]
  28. ZaccarelliM. PernoC.F. ForbiciF. CingolaniA. LiuzziG. BertoliA. TrottaM.P. BellocchiM.C. Di GiambenedettoS. TozziV. GoriC. D’ArrigoR. De LongisP. NotoP. GirardiE. De LucaA. AntinoriA. Using a database of HIV patients undergoing genotypic resistance test after HAART failure to understand the dynamics of M184V mutation.Antivir. Ther.200381515610.1177/13596535030080010712713064
    [Google Scholar]
  29. HungM. TokarskyE.J. LagpacanL. ZhangL. SuoZ. LansdonE.B. Elucidating molecular interactions of L-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance.Commun. Biol.20192146910.1038/s42003‑019‑0706‑x31872074
    [Google Scholar]
  30. BrehmJ.H. MellorsJ.W. Sluis-CremerN. Mechanism by which a glutamine to leucine substitution at residue 509 in the ribonuclease H domain of HIV-1 reverse transcriptase confers zidovudine resistance.Biochemistry20084752140201402710.1021/bi801477819067547
    [Google Scholar]
  31. Menéndez-AriasL. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase.Virus Res.20081341-212414610.1016/j.virusres.2007.12.01518272247
    [Google Scholar]
  32. OlearoF. NguyenH. BonnetF. YerlyS. WandelerG. StoeckleM. CavassiniM. ScherrerA. CostagiolaD. SchmidP. GünthardH.F. BernasconiE. BoeniJ. D’arminio MonforteA. ZazziM. RossettiB. NeauD. BellecaveP. RijndersB. ReissP. WitF. KouyosR. CalmyA. Impact of the M184V/I mutation on the efficacy of abacavir/lamivudine/dolutegravir therapy in HIV treatment-experienced patients.Open Forum Infect. Dis.2019610ofz33010.1093/ofid/ofz33031660328
    [Google Scholar]
  33. Bokharaei-SalimF. JamshidiS. NahandJ.S. MonavariS.H. MoghoofeiM. GarshasbiS. KalantariS. EsghaeiM. MirzaeiH. Evaluation of the expression pattern of 4 microRNAs and their correlation with cellular/viral factors in PBMCs of long term non-progressors and HIV infected naïve individuals.Curr. HIV Res.2022201425310.2174/1570162X1966621090614313634493187
    [Google Scholar]
  34. HullM.W. MontanerJ.S.G. Ritonavir-boosted protease inhibitors in HIV therapy.Ann. Med.201143537538810.3109/07853890.2011.57290521501034
    [Google Scholar]
  35. PasquauJ. de JesusS.E. ArazoP. CrusellsM.J. RíosM.J. LozanoF. de la TorreJ. GalindoM.J. CarmenaJ. SantosJ. TorneroC. VerdejoG. SamperizG. PalaciosZ. Hidalgo-TenorioC. Effectiveness and safety of dual therapy with rilpivirine and boosted darunavir in treatment-experienced patients with advanced HIV infection: A preliminary 24 week analysis (RIDAR study).BMC Infect. Dis.201919120710.1186/s12879‑019‑3817‑630819101
    [Google Scholar]
  36. ParedesR. PuertasM.C. BannisterW. KisicM. Cozzi-LepriA. PouC. BellidoR. BetancorG. BognerJ. GargalianosP. BánhegyiD. ClotetB. LundgrenJ. Menéndez-AriasL. Martinez-PicadoJ. A376S in the connection subdomain of HIV-1 reverse transcriptase confers increased risk of virological failure to nevirapine therapy.J. Infect. Dis.2011204574175210.1093/infdis/jir38521844300
    [Google Scholar]
  37. SasadeuszJ. AudsleyJ. MijchA. BadenR. CaroJ. HunterH. MatthewsG. McMahonM.A. OlenderS.A. SilicianoR.F. LewinS.R. ThioC.L. The anti-HIV activity of entecavir: A multicentre evaluation of lamivudine-experienced and lamivudine-naive patients.AIDS200822894795510.1097/QAD.0b013e3282ffde9118453854
    [Google Scholar]
  38. JiangD. WangJ. ZhaoX. LiY. ZhangQ. SongC. ZengH. WangX. Entecavir resistance mutations rtL180M/T184L/M204V combined with rtA200V lead to tenofovir resistance.Liver Int.2020401839110.1111/liv.1424131498528
    [Google Scholar]
  39. GuoJ.J. LiQ.L. ShiX.F. ZhangD.Z. ZengA.Z. FengT. HuangA.L. Dynamics of hepatitis B virus resistance to entecavir in a nucleoside/nucleotide-naïve patient.Antiviral Res.200981218018310.1016/j.antiviral.2008.09.00418948142
    [Google Scholar]
  40. MetznerK.J. BonhoefferS. FischerM. KaranicolasR. AllersK. JoosB. WeberR. HirschelB. KostrikisL.G. GünthardH.F. Emergence of minor populations of human immunodeficiency virus type 1 carrying the M184V and L90M mutations in subjects undergoing structured treatment interruptions.J. Infect. Dis.2003188101433144310.1086/37921514624368
    [Google Scholar]
  41. LangeC.M. HuéS. ViolariA. CottonM. GibbD. BabikerA. OtwombeK. PanchiaR. DobbelsE. Jean-PhilippeP. McIntyreJ.A. PillayD. GuptaR.K. Single genome analysis for the detection of linked multiclass drug resistance mutations in HIV-1-infected children after failure of protease inhibitor-based first-line therapy.J. Acquir. Immune Defic. Syndr.201569213814410.1097/QAI.000000000000056825923117
    [Google Scholar]
  42. MascoliniM. BoucherC. LarderB. MellorsJ. RichmanD. Key reports from the XV international HIV drug resistance workshop 2006.Antivir. Ther.200712113114610.1177/13596535070120011817503758
    [Google Scholar]
  43. BachelerL.T. AntonE.D. KudishP. BakerD. BunvilleJ. KrakowskiK. BollingL. AujayM. WangX.V. EllisD. BeckerM.F. LasutA.L. GeorgeH.J. SpaldingD.R. HollisG. AbremskiK. Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy.Antimicrob. Agents Chemother.20004492475248410.1128/AAC.44.9.2475‑2484.200010952598
    [Google Scholar]
  44. RheeS-Y SchapiroJM SaladiniF ZazziM KhooS ShaferRW Potential role of doravirine for the treatment of HIV-1-infected persons with transmitted drug resistance.AIDS Res Ther2022201810.21203/rs.3.rs‑1976150/v1
    [Google Scholar]
  45. PhamH.T. XiaoM.A. PrincipeM.A.V. WongA. MesplèdeT. Pharmaceutical, clinical, and resistance information on doravirine, a novel non-nucleoside reverse transcriptase inhibitor for the treatment of HIV-1 infection.Drugs Context2020911110.7573/dic.2019‑11‑432180823
    [Google Scholar]
  46. BlevinsS.R. HesterE.K. ChastainD.B. CluckD.B. Doravirine: A return of the NNRTI class?Ann. Pharmacother.2020541647410.1177/106002801986964131416335
    [Google Scholar]
  47. MillarJ.R. BenguN. FillisR. SprengerK. NtlantsanaV. VieiraV.A. KhambatiN. ArcharyM. MuenchhoffM. GrollA. GraysonN. AdamsonJ. GovenderK. DongK. KiepielaP. WalkerB.D. BonsallD. ConnorT. BullM.J. NxeleN. RoiderJ. IsmailN. AdlandE. PuertasM.C. Martinez-PicadoJ. MatthewsP.C. Ndung’uT. GoulderP. HIGH-FREQUENCY failure of combination antiretroviral therapy in paediatric HIV infection is associated with unmet maternal needs causing maternal NON-ADHERENCE.EClinicalMedicine20202210034410.1016/j.eclinm.2020.10034432510047
    [Google Scholar]
  48. KuriakoseS. GeorgeJ. DeeN. StollP. AganB.K. DewarR.L. High level resistance to dolutegravir (DTG) after emergence of T97A mutation.Conference on Retroviruses and Opportunistic Infections (CROI)2018
    [Google Scholar]
  49. StellbrinkH.J. Le FevreE. CarrA. SaagM.S. MukwayaG. NozzaS. ValluriS.R. VourvahisM. RinehartA.R. McFadyenL. FichtenbaumC. ClarkA. CraigC. FangA.F. HeeraJ. Once-daily maraviroc versus tenofovir/emtricitabine each combined with darunavir/ritonavir for initial HIV-1 treatment.AIDS20163081229123810.1097/QAD.000000000000105826854810
    [Google Scholar]
  50. DeutschmannE. BucherH.C. JaeckelS. GibbonsS. McAllisterK. ScherrerA.U. BraunD.L. CavassiniM. HachfeldA. CalmyA. BattegayM. CiprianiM. ElziL. YoungJ. Lopez-CentenoB. BerenguerJ. KhooS. MoffaG. MarzoliniC. Prevalence of potential drug–drug interactions in patients of the Swiss HIV Cohort Study in the era of HIV integrase inhibitors.Clin. Infect. Dis.2021737e2145e215210.1093/cid/ciaa91832634832
    [Google Scholar]
  51. CattaneoD. CapettiA. RizzardiniG. Drug–drug interactions of a two-drug regimen of dolutegravir and lamivudine for HIV treatment.Expert Opin. Drug Metab. Toxicol.201915324525210.1080/17425255.2019.157782130704313
    [Google Scholar]
  52. HodgeD. HodelE.M. HughesE. HazenbergP. CastilloS.G. GibbonsS. Prevalence of potentially clinically significant drug-drug interactions with antiretrovirals against HIV over three decades: A systematic review of the literature.J. Acquir. Immune Defic. Syndr..202210109736625857
    [Google Scholar]
  53. MondlekiE. MaartensG. Dolutegravir drug-drug interactions.S. Afr. Med. J.2022112319419510.7196/SAMJ.2021.v112i3.16316
    [Google Scholar]
  54. LewisJ.M. StottK.E. MonneryD. SedenK. BeechingN.J. ChapondaM. KhooS. BeadsworthM.B.J. Managing potential drug-drug interactions between gastric acid-reducing agents and antiretroviral therapy: Experience from a large HIV-positive cohort.Int. J. STD AIDS201627210510910.1177/095646241557463225721922
    [Google Scholar]
  55. SajadiM.M. PulijalaR. RedfieldR.R. TalwaniR. Chronic immune activation and decreased CD4 cell counts associated with hepatitis C infection in HIV-1 natural viral suppressors.AIDS201226151879188410.1097/QAD.0b013e328357f5d122824629
    [Google Scholar]
  56. GrønborgH.L. JespersenS. HøngeB.L. Jensen-FangelS. WejseC. Review of cytomegalovirus coinfection in HIV-infected individuals in Africa.Rev. Med. Virol.2017271e190710.1002/rmv.190727714898
    [Google Scholar]
  57. LindosoJAL MoreiraCHV CunhaMA QueirozIT Visceral leishmaniasis and HIV coinfection: Current perspectives.HIV/AIDS - Res. Palliat. Care20181019320110.2147/HIV.S143929
    [Google Scholar]
  58. de CastroS. CamarasaM.J. Polypharmacology in HIV inhibition: Can a drug with simultaneous action against two relevant targets be an alternative to combination therapy?Eur. J. Med. Chem.201815020622710.1016/j.ejmech.2018.03.00729529501
    [Google Scholar]
  59. HuR. YanH. LiuM. TangL. KongW. ZhuZ. LiuP. BaiW. HuX. DingJ. WangX. XieN. Brief report: Virologic and immunologic outcomes for HIV patients with coronavirus disease 2019.J. Acquir. Immune Defic. Syndr.202186221321810.1097/QAI.000000000000254033079905
    [Google Scholar]
  60. CongB. DengS. WangX. LiY. The role of respiratory co-infection with influenza or respiratory syncytial virus in the clinical severity of COVID-19 patients: A systematic review and meta-analysis.J. Glob. Health2022120504010.7189/jogh.12.0504036112521
    [Google Scholar]
  61. DonyaviT. Bokharaei-SalimF. BaghiH.B. KhanalihaK. Alaei Janat-MakanM. KarimiB. Sadri NahandJ. MirzaeiH. KhatamiA. GarshasbiS. KhoshmirsafaM. Jalal KianiS. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC.Int. Immunopharmacol.20219710764110.1016/j.intimp.2021.10764133895478
    [Google Scholar]
  62. GarshasbiS. Bokharaei-SalimF. KhanalihaK. KianiS.J. KalantariS. Jamshidi MakianiM. MarjaniA. Dehghani-DehejF. BabaeiR. SadeghiM. Abbasi-KolliM. SARS-CoV-2 infection in Iranian people living with human immunodeficiency virus-1 infection.Jundishapur J. Microbiol.202215110.5812/jjm.121929
    [Google Scholar]
  63. AmbrosioniJ. BlancoJ.L. Reyes-UrueñaJ.M. DaviesM.A. SuedO. MarcosM.A. MartínezE. BertagnolioS. AlcamíJ. MiroJ.M. AmbrosioniJ. BlancoJ.L. de la MoraL. Garcia-AlcaideF. González-CordónA. InciarteA. LagunoM. LealL. Martínez-ChamorroE. Martínez-RebollarM. MiróJ.M. RojasJ.F. TorresB. MallolasJ. AlbiacL. AgöeroD.L. BodroM. CardozoC. ChumbitaM. GarcíaN. García-VidalC. Hernández-MenesesM.M. HerreraS. LinaresL. MorenoA. MorataL. Martínez-MartínezJ.A. PuertaP. RicoV. SorianoA. MartínezM. MosqueraM.M. MarcosM.A. VilaJ. TusetM. SoyD. VilellaA. AlmuedoA. PinazoM.J. MuñozJ. Overview of SARS-CoV-2 infection in adults living with HIV.Lancet HIV202185e294e30510.1016/S2352‑3018(21)00070‑933915101
    [Google Scholar]
  64. NoeS. OchanaN. WieseC. SchabazF. Von KrosigkA. HeldweinS. RasshoferR. WolfE. Jonsson-OldenbuettelC. Humoral response to SARS-CoV-2 vaccines in people living with HIV.Infection202250361762310.1007/s15010‑021‑01721‑734694595
    [Google Scholar]
  65. AoL. LuT. CaoY. ChenZ. WangY. LiZ. RenX. XuP. PengM. ChenM. ZhangG. XiangD. CaiD. HuP. ShiX. ZhangD. RenH. Safety and immunogenicity of inactivated SARS-CoV-2 vaccines in people living with HIV.Emerg. Microbes Infect.20221111126113410.1080/22221751.2022.205940135369854
    [Google Scholar]
  66. RockA.E. DeMaraisP.L. Vergara-RodriguezP.T. MaxB.E. HIV-1 virologic rebound due to coadministration of divalent cations and bictegravir.Infect. Dis. Ther.20209369169610.1007/s40121‑020‑00307‑432623580
    [Google Scholar]
  67. EasterbrookP.J. IvesN. WatersA. MullenJ. O’SheaS. PetersB. GazzardB.G. The natural history and clinical significance of intermittent viraemia in patients with initial viral suppression to < 400 copies/ml.AIDS200216111521152710.1097/00002030‑200207260‑0000912131190
    [Google Scholar]
  68. ZamoraF.J. DowersE. YasinF. OgbuaguO. Dolutegravir and lamivudine combination for the treatment of HIV-1 infection.HIV AIDS201911255263
    [Google Scholar]
  69. LuC.H. BednarczykE.M. CatanzaroL.M. ShonA. XuJ.C. MaQ. Pharmacokinetic drug interactions of integrase strand transfer inhibitors.Curr. Res. Pharmacol. Drug Discov.2021210004410.1016/j.crphar.2021.10004434909672
    [Google Scholar]
  70. CapettiA.F. AstutiN. CattaneoD. RizzardiniG. Pharmacokinetic drug evaluation of dolutegravir plus rilpivirine for the treatment of HIV.Expert Opin. Drug Metab. Toxicol.201713111183119210.1080/17425255.2017.136192928854832
    [Google Scholar]
  71. HeX. Integration of physical, chemical, mechanical, and biopharmaceutical properties in solid oral dosage form development.Developing solid oral dosage formsElsevier2009407441
    [Google Scholar]
  72. MorsicaG. GalliL. MessinaE. CastagnaA. BagaglioS. SalpietroS. LivianaD.T. Uberti-FoppaC. HassonH. Risk of HIV viral rebound in HIV infected patients on direct acting antivirals (DAAs) treatment for HCV.PLoS One2022172e026291710.1371/journal.pone.026291735113890
    [Google Scholar]
  73. HavlirD.V. HellmannN.S. PetropoulosC.J. WhitcombJ.M. CollierA.C. HirschM.S. TebasP. SommadossiJ.P. RichmanD.D. Drug susceptibility in HIV infection after viral rebound in patients receiving indinavir-containing regimens.JAMA2000283222923410.1001/jama.283.2.22910634339
    [Google Scholar]
/content/journals/chr/10.2174/011570162X273321240105081444
Loading
/content/journals/chr/10.2174/011570162X273321240105081444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test