Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Background

The study was conducted to analyze HIV dynamics across blood–retinal barrier (BRB) and the relevant risk factors for HIV-associated ocular complications.

Methods

This study included a case series of 40 HIV-positive patients with ocular lesions, which were studied retrospectively. Clinical and laboratory examinations included plasma and intraocular viral load (VL).

Results

HIV VL on paired aqueous/plasma samples was available for 40 patients. Aqueous VL was negatively associated with antiretroviral treatment (ART) duration ( = 0.02 and < 0.05), and plasma VL was independent of ART duration ( = 0.53). An aqueous/plasma discordance was found in 19/40 (47.5%) patients, eight of whom (20%) had detectable aqueous VL despite a suppressed plasma VL (escape). There were significant differences in CD4+ T-lymphocyte levels ( = 0.011 and < 0.05) and ART duration ( = 0.007 and < 0.05) between the patients with HIV-associated ocular complications and the patients without.

Conclusion

This study provides a rationale for initiating ART early in the course of infection to reduce HIV VL in the aqueous humor, and raises the possibility of the ocular sanctuary where HIV replicates. Meanwhile, early and standard ART would be an optimal option to protect against ocular opportunistic infection.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X268730231212112119
2023-12-27
2025-01-27
Loading full text...

Full text loading...

References

  1. MalikS. ValdebenitoS. D’AmicoD. PrideauxB. EugeninE.A. HIV infection of astrocytes compromises inter-organelle interactions and inositol phosphate metabolism: A potential mechanism of bystander damage and viral reservoir survival.Prog. Neurobiol.202120610215710.1016/j.pneurobio.2021.10215734455020
    [Google Scholar]
  2. PathanapitoonK. RiemensA. KongyaiN. SirirungsiW. LeechanachaiP. AusayakhunS. AyusoV.K. KunavisarutP. de Groot-MijnesJ.D.F. RothovaA. Intraocular and plasma HIV-1 RNA loads and HIV uveitis.AIDS2011251818610.1097/QAD.0b013e328340fe9121099669
    [Google Scholar]
  3. Williams-WietzikoskiC.A. SoI.D. BullM.E. SamleeratT. PathanapitoonK. KunavisarutP. KongyaiN. Ngo-Giang-HuongN. FrenkelL.M. SirirungsiW. Genetic analyses of HIV env associated with uveitis in antiretroviral-naive individuals.AIDS201731131825183010.1097/QAD.000000000000155028591079
    [Google Scholar]
  4. SainiN. HasijaS. KaurP. KaurM. PathaniaV. SinghA. Study of prevalence of ocular manifestations in HIV positive patients.Nepal. J. Ophthalmol.2019111111810.3126/nepjoph.v11i1.2541131523061
    [Google Scholar]
  5. GanekalS. JhanjiV. DorairajS. NagarajappaA. Evaluation of ocular manifestations and blindness in HIV/AIDS patients in a tertiary care hospital in South India.Ocul. Immunol. Inflamm.201220533634110.3109/09273948.2012.69913322775065
    [Google Scholar]
  6. WangZ. JiaR. GeS. HeT. ZhangY. YangY. WangY. ShiW. JiY. YeF. ChenP. LuJ. SunJ. XuX. ZhouY. GuP. LuoM. LuH. FanX. Ocular complications of human immunodeficiency virus infection in eastern china.Am. J. Ophthalmol.20121532363369.e110.1016/j.ajo.2011.07.01821982101
    [Google Scholar]
  7. FujikawaL. SalahuddinS.Z. PalestineA.G. MasurH. NussenblattR.B. GalloR.C. Isolation of human T-lymphotropic virus type III from the tears of a patient with the acquired immunodeficiency syndrome.Lancet1985326845452953010.1016/S0140‑6736(85)90464‑72412078
    [Google Scholar]
  8. TervoT. LähdevirtaJ. VaheriA. ValleS.L. SuniJ. Recovery of HTLV-III from contact lenses.Lancet1986327847737938010.1016/S0140‑6736(86)92339‑12868313
    [Google Scholar]
  9. HanY. WuN. ZhuW. LiY. ZuoL. YeJ. QiuZ. XieJ. LiT. Detection of HIV-1 viruses in tears of patients even under long-term HAART.AIDS201125151925192710.1097/QAD.0b013e32834b357821811142
    [Google Scholar]
  10. QianY.W. LiC. JiangA.P. GeS. GuP. FanX. LiT.S. JinX. WangJ.H. WangZ.L. HIV-1 gp120 glycoprotein interacting with dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) down-regulates tight junction proteins to disrupt the blood retinal barrier and increase its permeability.J. Biol. Chem.201629144229772298710.1074/jbc.M116.74461527605665
    [Google Scholar]
  11. CheX. HeF. DengY. XuS. FanX. GuP. WangZ. HIV-1 Tat-mediated apoptosis in human blood-retinal barrier-associated cells.PLoS One201494e9542010.1371/journal.pone.009542024739951
    [Google Scholar]
  12. HsuW.M. ChiouS.H. ChenS.S.L. ShyongM.P. HoC.K. ChenS.J. WuC.C. KungS.H. ChiC.W. The HIV RNA levels of plasma and ocular fluids in AIDS patients with ophthalmic infections.Ophthalmologica2004218532833210.1159/00007947515334014
    [Google Scholar]
  13. Díaz-CoránguezM. RamosC. AntonettiD.A. The inner blood-retinal barrier: Cellular basis and development.Vision Res.201713912313710.1016/j.visres.2017.05.00928619516
    [Google Scholar]
  14. Romero-VázquezS. AdánA. Figueras-RocaM. LlorençV. SlevinM. VilahurG. BadimonL. DickA.D. MolinsB. Activation of C-reactive protein proinflammatory phenotype in the blood retinal barrier in vitro: Implications for age-related macular degeneration.Aging20201214139051392310.18632/aging.10365532673285
    [Google Scholar]
  15. Pascual-PastoG. OlacireguiN.G. OpezzoJ.A.W. Castillo-EcijaH. Cuadrado-VilanovaM. PacoS. RiveroE.M. Vila-UbachM. Restrepo-PerdomoC.A. TorrebadellM. SuñolM. SchaiquevichP. MoraJ. BramugliaG.F. ChantadaG.L. CarcabosoA.M. Increased delivery of chemotherapy to the vitreous by inhibition of the blood-retinal barrier.J. Control. Release2017264344410.1016/j.jconrel.2017.08.01828830790
    [Google Scholar]
  16. LivelliA. VaidaF. EllisR.J. MaQ. FerraraM. CliffordD.B. CollierA.C. GelmanB.B. MarraC.M. McArthurJ.C. McCutchanJ.A. MorgelloS. SacktorN. SimpsonD.M. GrantI. LetendreS.L. AbramsonI. Al-LoziM.T. ArchibaldS.L. AtkinsonJ.H. BestB.M. CliffordD.B. CollierA.C. CushmanC. DawsonM.S. EllisR.J. Fennema-NotestineC. FranklinD.R. GelmanB.B. GrantI. HeadE. HeatonR.K. JonesT. LetendreS. MaravillaK.R. MarcotteT.D. MarraC.M. McArthurJ.C. McCutchanJ.A. MintzL. MorgelloS. NaidichT.P. SacktorN. SimpsonD.M. SmithD.M. StegbauerK.C. TangC.Y. TeshomeM. Correlates of HIV RNA concentrations in cerebrospinal fluid during antiretroviral therapy: A longitudinal cohort study.Lancet HIV201967e456e46210.1016/S2352‑3018(19)30143‑231208949
    [Google Scholar]
  17. Van de WijerL. van der HeijdenW.A. HorstR. JaegerM. TrypsteenW. RutsaertS. van CranenbroekB. van RijssenE. JoostenI. JoostenL. VandekerckhoveL. SchoofsT. van LunzenJ. NeteaM.G. KoenenH.J.P.M. van der VenA.J.A.M. de MastQ. The architecture of circulating immune cells is dysregulated in people living with hiv on long term antiretroviral treatment and relates with markers of the hiv-1 reservoir, cytomegalovirus, and microbial translocation.Front. Immunol.20211266199010.3389/fimmu.2021.66199033953724
    [Google Scholar]
  18. TortajadaC. GarciaF. PlanaM. GallartT. MalenoM.J. MiróJ.M. GatellJ.M. Comparison of T-cell subsets’ reconstitution after 12 months of highly active antiretroviral therapy initiated during early versus advanced states of HIV disease.J. Acquir. Immune Defic. Syndr.200025429630510.1097/00126334‑200012010‑0000211114829
    [Google Scholar]
/content/journals/chr/10.2174/011570162X268730231212112119
Loading
/content/journals/chr/10.2174/011570162X268730231212112119
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test