Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Background

Hypertension is a major risk factor for cardiovascular diseases. (PB) is used for the treatment of hypertension, painful sprains, skin diseases, tuberculosis, acute bronchitis, anti-inflammatory conditions, hepatitis, and diabetes. Its antihypertensive potential has been investigated and documented. This study investigated the antihypertensive mechanism of aqueous extract of PB leaf (APB) on L-NAME-induced hypertension.

Methods

Thirty male wistar rats (150-170 g) were grouped into five (n=5). Group 1 received 10 mL/kg of distilled water (control), while groups 2-5 were administered 60 mg/k of L-NAME (L-NAME60) orally for eight weeks to induce hypertension. After eight weeks, groups 2-5 received L-NAME60+distilled water (HNT), distilled water (HRE), L-NAME60+APB (200 mg/kg, [HAPB]), and L-NAME60+ramipril (10 mg/kg, [HRA]), respectively, for five weeks. The BP was measured by the tail-cuff method. The blood sample was obtained under anesthesia, and tissue samples were obtained after euthanasia. Serum renin, ACE, angiotensin-II, endothelin-1, and cyclic guanosine monophosphate (cGMP) levels were measured using ELISA techniques. Malondialdehyde, superoxide dismutase (SOD), and reduced glutathione (GSH) levels were measured by spectrophotometry. Data were analyzed using ANOVA at α0.05.

Results

The BP significantly decreased in HAPB compared to HNT. Renin, ACE, and angiotensin-II levels significantly decreased while cGMP levels increased in the HAPB group compared to HNT. Malondialdehyde levels significantly decreased, and SOD and GSH levels increased compared to HNT.

Conclusion

aqueous leaf extract reduced blood pressure in hypertensive rats by modulating the cGMP signalling pathway and the renin-angiotensin system.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X301799240715091918
2024-07-19
2025-01-31
Loading full text...

Full text loading...

References

  1. ChopraS. BabyC. JacobJ. J. Neuro-endocrine regulation of blood pressure.Indian J. Endocrinol. Metab.201115Suppl 4S281S288
    [Google Scholar]
  2. GordanR. GwathmeyJ.K. XieL.H. Autonomic and endocrine control of cardiovascular function.World J. Cardiol.20157420421410.4330/wjc.v7.i4.20425914789
    [Google Scholar]
  3. DampneyR.A.L. Central neural control of the cardiovascular system: Current perspectives.Adv. Physiol. Educ.201640328329610.1152/advan.00027.201627445275
    [Google Scholar]
  4. MillerA. J. ArnoldA. C. The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications.Clin. Auton. Res.201929223124310.1007/s10286‑018‑0572‑5
    [Google Scholar]
  5. CarlsonS.H. WyssJ.M. Neurohormonal regulation of the sympathetic nervous system: New insights into central mechanisms of action.Curr. Hypertens. Rep.200810323324010.1007/s11906‑008‑0044‑818765096
    [Google Scholar]
  6. ThomasG.D. Neural control of the circulation.Adv. Physiol. Educ.2011351283210.1152/advan.00114.201021385998
    [Google Scholar]
  7. RuffinazziM. DusiV. Central nervous system management of autonomic cardiovascular control.Brain and Heart Dynamics. GovoniS. PolitiP. VanoliE. ChamSpringer202110.1007/978‑3‑319‑90305‑7_65‑1
    [Google Scholar]
  8. CarraraM. FerrarioM. Bollen PintoB. HerpainA. The autonomic nervous system in septic shock and its role as a future therapeutic target: A narrative review.Ann. Intensive Care20211118010.1186/s13613‑021‑00869‑733999297
    [Google Scholar]
  9. ShahoudJ.S. SanvictoresT. AeddulaN.R. Physiology, arterial pressure regulation.StatPearlsStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  10. VishaP. SejianV. Cardiovascular system.Textbook of Veterinary Physiology. DasP.K. SejianV. MukherjeeJ. BanerjeeD. SingaporeSpringer202310.1007/978‑981‑19‑9410‑4_6
    [Google Scholar]
  11. YoungD.B. Control of Cardiac Output.San Rafael (CA)Morgan & Clay pool Life Sciences201010.4199/C00008ED1V01Y201002ISP006
    [Google Scholar]
  12. PersichiniR. LaiC. TeboulJ.L. AddaI. GuérinL. MonnetX. Venous return and mean systemic filling pressure: Physiology and clinical applications.Crit. Care202226115010.1186/s13054‑022‑04024‑x35610620
    [Google Scholar]
  13. DelongC. SharmaS. Pysiology, Peripheral Vascular Resistance.StatPearlsStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  14. RobinsonW.F. RobinsonN.A. Cardiovascular system.Jubb, Kennedy & Palmer’s Pathology of Domestic Animals201631101.e1
    [Google Scholar]
  15. GintyA.T. KraynakT.E. FisherJ.P. GianarosP.J. Cardiovascular and autonomic reactivity to psychological stress: Neurophysiological substrates and links to cardiovascular disease.Auton. Neurosci.20172072910.1016/j.autneu.2017.03.00328391987
    [Google Scholar]
  16. ThirietM. Cardiac pump: An introduction.PanVascular Medicine. LanzerP. Berlin, HeidelbergSpringer201510.1007/978‑3‑642‑37078‑6_25
    [Google Scholar]
  17. KjeldsenS.E. Hypertension and cardiovascular risk: General aspects.Pharmacol. Res.2018129959910.1016/j.phrs.2017.11.00329127059
    [Google Scholar]
  18. FuchsF. D. WheltonP. K. High blood pressure and cardiovascular disease.Hypertension202075228529210.1161/HYPERTENSIONAHA.119.14240
    [Google Scholar]
  19. MayetJ. HughesA. Cardiac and vascular pathophysiology in hypertension.Br. Heart J.20038991104110910.1136/heart.89.9.110412923045
    [Google Scholar]
  20. SicaD.A. The kidney and hypertension: Causes and treatment.J. Clin. Hypertens.200810754154810.1111/j.1751‑7176.2008.08189.x18607140
    [Google Scholar]
  21. OngY. T. WongT. Y. KleinR. KleinB. E. MitchellP. SharrettA. R. CouperD. J. IkramM. K. Hypertensive retinopathy and risk of stroke.Hypertension201362470671110.1161/HYPERTENSIONAHA.113.01414
    [Google Scholar]
  22. KabediN.N. MwanzaJ.C. LepiraF.B. KayembeT.K. KayembeD.L. Hypertensive retinopathy and its association with cardiovascular, renal and cerebrovascular morbidity in Congolese patients : Cardiovascular topic.Cardiovasc. J. Afr.201425522823210.5830/CVJA‑2014‑04525629539
    [Google Scholar]
  23. LiftonR.P. GharaviA.G. GellerD.S. Molecular mechanisms of human hypertension.Cell2001104454555610.1016/S0092‑8674(01)00241‑011239411
    [Google Scholar]
  24. PatelPA AliN Mechanisms involved in regulation of systemic blood pressure.Arch Clin Hypertens 201731162010.17352/ach.000014
    [Google Scholar]
  25. MaJ. LiY. YangX. LiuK. ZhangX. ZuoX. YeR. WangZ. ShiR. MengQ. ChenX. Signaling pathways in vascular function and hypertension: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.20238116810.1038/s41392‑023‑01430‑737080965
    [Google Scholar]
  26. OparilS. ZamanM.A. CalhounD.A. Pathogenesis of hypertension.Ann. Intern. Med.2003139976177610.7326/0003‑4819‑139‑9‑200311040‑0001114597461
    [Google Scholar]
  27. BadyalD.K. LataH. DadhichA.P. Animal models of hypertension and effect of drugs.Indian J. Pharmacol.200335349362
    [Google Scholar]
  28. JiajuZ. GuirongX. XinjianY. Encyclopedia of Traditional Chinese Medicines molecular structures, pharmacological activities, natural sources and application isolated compounds T-Z References, TCM plants and congeners.New YorkSpringer-Verlag Berlin Heidelberg201156061
    [Google Scholar]
  29. DangB.K. DamS.M. PhamM.T. DangT.B.O. LeT.H.V. Peristrophe roxburghiana - A review.AFST20141519
    [Google Scholar]
  30. ZhuangX. LüJ. YangW. YangM. Effects of Peristrophe roxburghiana on blood pressure. NO and ET in renal hypertensive rats.Zhong Yao Cai200326426626814528693
    [Google Scholar]
  31. AlukoE.O. AdejumobiO.A. FasanmadeA.A. Peristrophe roxburghiana leaf extracts exhibited anti-hypertensive and anti-lipidemic properties in L-NAME hypertensive rats.Life Sci.201923411675310.1016/j.lfs.2019.11675331419445
    [Google Scholar]
  32. World Health Organization (WHO) Hypertension.Available from: https://www.who.int/news-room/-fact-sheets/detail/hypertension Accessed September 23, 2023.
  33. EdeogaH.O. OkwuD.E. MbaebieB.O. Phytochemical constituents of some Nigerian medicinal plants.Afr. J. Biotechnol.20054768568810.5897/AJB2005.000‑3127
    [Google Scholar]
  34. BrunnerJ.H. Direct Spectrophotometric determination of Saponins.Anal. Chem.19843413141326
    [Google Scholar]
  35. HarborneJ.B. Phytochemical methods - A guide to modern techniques of plant analysis.2nd edLondonChapman and Hall1984416
    [Google Scholar]
  36. BloisM.S. Antioxidant determinations by the use of a stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  37. PrietoP. PinedaM. AguilarM. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E.Anal. Biochem.1999269233734110.1006/abio.1999.401910222007
    [Google Scholar]
  38. HattoriM. YangX.W. MiyashiroH. NambaT. Inhibitory effects of monomeric and dimeric phenylpropanoids from mace on lipid peroxidation in vivo and in vitro.Phytother. Res.19937639540110.1002/ptr.2650070603
    [Google Scholar]
  39. RajeswariG. MuruganM.V.R. MohanV.R. GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae).RJPBCS201234301308
    [Google Scholar]
  40. QadirA. SinghS.P. AkhtarJ. AliA. ArifM. Phytochemical and GC-MS analysis of Saudi Arabian Ajwa variety of date seed oil and extracts obtained by the slow pyrolysis method.Orient. Pharm. Exp. Med.2017171818710.1007/s13596‑017‑0257‑y
    [Google Scholar]
  41. MoinuddinG. InamdarM.N. KulkarniK.S. KulkarniC. Modulation of hemodynamics, endogenous antioxidant enzymes, and pathophysiological changes by angiotensin-converting enzyme inhibitors in pressure-overload rats.Hellenic J. Cardiol.201152321622621642070
    [Google Scholar]
  42. OhkawaH. OhishiN. YagiK. Assay for lipid peroxidation and lipid peroxides in animal tissues by thiobarbituric. acid reaction.Anal. Biochem.19799535135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  43. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.19636188288813967893
    [Google Scholar]
  44. MingoranceC. AndriantsitohainaR. Alvarez de SotomayorM. Cedrelopsis grevei improves endothelial vasodilatation in aged rats through an increase of NO participation.J. Ethnopharmacol.20081171768310.1016/j.jep.2008.01.01918325702
    [Google Scholar]
  45. LequinR.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA).Clin. Chem.200551122415241810.1373/clinchem.2005.05153216179424
    [Google Scholar]
  46. MayerB. SchmidM. KlattP. SchmidtK. Reversible inactivation of endothelial nitric oxide synthase by N G-nitro- l-arginine.FEBS Lett.19933331-220320610.1016/0014‑5793(93)80405‑J7693510
    [Google Scholar]
  47. ChengZ. LüJ. LiuJ. Effects of Peritrophe roxburghiana on blood pressure in renal hypertensive and hyperlipidemic rats.Zhong Yao Cai2004271292793015807245
    [Google Scholar]
  48. FountainJ.H. Physiology, renin angiotens in system.Stat-PearlsStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  49. de SouzaA.M.A. WestC.A. de AbreuA.R.R. PaiA.V. MesquitaL.B.T. JiH. ChiancaD.Jr de MenezesR.C.A. SandbergK. Role of the renin angiotensin system in blood pressure allostasis-induced by severe food restriction in female fischer rats.Sci. Rep.2018811032710.1038/s41598‑018‑28593‑629985423
    [Google Scholar]
  50. TsilosaniA. GaoC. ZhangW. Aldosterone-regulated sodium transport and blood pressure.Front. Physiol.20221377037510.3389/fphys.2022.77037535197862
    [Google Scholar]
  51. TriebelH. CastropH. The renin angiotensin aldosterone system.Pflugers Arch.2024476570571310.1007/s00424‑024‑02908‑138233636
    [Google Scholar]
  52. CrowleyS.D. GurleyS.B. HerreraM.J. RuizP. GriffithsR. KumarA.P. KimH.S. SmithiesO. LeT.H. CoffmanT.M. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney.Proc. Natl. Acad. Sci. USA200610347179851799010.1073/pnas.060554510317090678
    [Google Scholar]
  53. NakagawaP GomezJ GrobeJL SigmundCD The renin-angiotensin system in the central nervous system and its role in blood pressure regulation.Curr. Hypertens. Rep.20202217
    [Google Scholar]
  54. MehtaJ.K. KaurG. ButtarH.S. BagabirH.A. BagabirR.A. BagabirS.A. HaqueS. TuliH.S. TelessyI.G. Role of the renin–angiotensin system in the pathophysiology of coronary heart disease and heart failure: Diagnostic biomarkers and therapy with drugs and natural products.Front. Physiol.202314103417010.3389/fphys.2023.103417036909245
    [Google Scholar]
  55. BenigniA. CassisP. RemuzziG. Angiotensin II revisited: New roles in inflammation, immunology and aging.EMBO Mol. Med.20102724725710.1002/emmm.20100008020597104
    [Google Scholar]
  56. CareyR.M. SiragyH.M. Newly recognized components of the renin-angiotensin system: Potential roles in cardiovascular and renal regulation.Endocr. Rev.200324326127110.1210/er.2003‑000112788798
    [Google Scholar]
  57. BourqueS.L. DavidgeS.T. AdamsM.A. The interaction between endothelin-1 and nitric oxide in the vasculature: New perspectives.Am. J. Physiol. Regul. Integr. Comp. Physiol.20113006R1288R129510.1152/ajpregu.00397.201021368267
    [Google Scholar]
  58. KhimjiA. RockeyD.C. Endothelin—Biology and disease.Cell. Signal.201022111615162510.1016/j.cellsig.2010.05.00220466059
    [Google Scholar]
  59. CokićV. SubotickiT. Beleslin-CokićB. DiklićM. MilenkovićP. JovcićG. Bradykinin stimulation of nitric oxide production is not sufficient for gamma-globin induction.Srp. Arh. Celok. Lek.20141423-418919610.2298/SARH1404189C24839774
    [Google Scholar]
  60. BogleR.G. CoadeS.B. MoncadaS. PearsonJ.D. MannG.E. Bradykinin stimulates L-arginine transport and nitric oxide release in vascular endothelial cells.Vascular Endothelium. NATO ASI Series. CatravasJ.D. CallowA.D. RyanU.S. Boston, MASpringer1993Vol. 25710.1007/978‑1‑4615‑2437‑3_16
    [Google Scholar]
  61. HofmannF. BernhardD. LukowskiR. WeinmeisterP. cGMP regulated protein kinases (cGK).Handb. Exp. Pharmacol.200919119113716210.1007/978‑3‑540‑68964‑5_819089329
    [Google Scholar]
  62. FrancisS.H. BuschJ.L. CorbinJ.D. SibleyD. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action.Pharmacol. Rev.201062352556310.1124/pr.110.00290720716671
    [Google Scholar]
  63. WardN. HodgsonJ.M. PuddeyI.B. MoriT.A. BeilinL.J. CroftK.D. Oxidative stress in human hypertension: Association with antihypertensive treatment, gender, nutrition, and lifestyle.Free Radic. Biol. Med.200436222623210.1016/j.freeradbiomed.2003.10.02114744634
    [Google Scholar]
  64. MasiS. UlianaM. VirdisA. Angiotensin II and vascular damage in hypertension: Role of oxidative stress and sympathetic activation.Vascul. Pharmacol.2019115131710.1016/j.vph.2019.01.00430707954
    [Google Scholar]
  65. GracianoM.L. CavaglieriR.C. DellêH. DominguezW.V. CasariniD.E. MalheirosD.M. NoronhaI.L. Intrarenal renin-angiotensin system is upregulated in experimental model of progressive renal disease induced by chronic inhibition of nitric oxide synthesis.J. Am. Soc. Nephrol.20041571805181510.1097/01.ASN.0000131528.00773.A915213268
    [Google Scholar]
  66. Selamoglu TalasZ. Propolis reduces oxidative stress in l-NAME-induced hypertension rats.Cell Biochem. Funct.201432215015410.1002/cbf.298623788129
    [Google Scholar]
  67. ZuinM. CapattiE. BorghiC. ZulianiG. Serum malondialdehyde levels in hypertensive patients: A non-invasive marker of oxidative stress. A systematic review and meta-analysis.High Blood Press. Cardiovasc. Prev.202229326327310.1007/s40292‑022‑00514‑935347636
    [Google Scholar]
  68. ThuN.N. SakuraiC. UtoH. ChuyenN.V. LienD.T.K. YamamotoS. OhmoriR. KondoK. The polyphenol content and antioxidant activities of the main edible vegetables in northern Vietnam.J. Nutr. Sci. Vitaminol.200450320321010.3177/jnsv.50.20315386933
    [Google Scholar]
  69. HatanoT. YasuharaT. YoshiharaR. AgataI. NoroT. OkudaT. OkudaT. Effects of interaction of tannins with co-existing substances. VII. Inhibitory effects of tannins and related polyphenols on xanthine oxidase.Chem. Pharm. Bull.19903851224122910.1248/cpb.38.12242393948
    [Google Scholar]
  70. Gülçinİ. Antioxidant activity of food constituents: An overview.Arch. Toxicol.201286334539110.1007/s00204‑011‑0774‑222102161
    [Google Scholar]
  71. ShenasaM. ShenasaH. Hypertension, left ventricular hypertrophy, and sudden cardiac death.Int. J. Cardiol.2017237606310.1016/j.ijcard.2017.03.00228285801
    [Google Scholar]
  72. CaetanoE.R.S.P. ZatzR. SaldanhaL.B. PraxedesJ.N. Hypertensive nephrosclerosis as a relevant cause of chronic renal failure.Hypertension200138217117610.1161/01.HYP.38.2.17111509471
    [Google Scholar]
  73. SergeevaI.A. ChristoffelsV.M. Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease.Biochim. Biophys. Acta Mol. Basis Dis.20131832122403241310.1016/j.bbadis.2013.07.00323851052
    [Google Scholar]
  74. GrossV. ObstM. KissE. JankeJ. MazakI. ShagdarsurenE. MüllerD.N. LangenickelT.H. GröneH.J. LuftF.C. Cardiac hypertrophy and fibrosis in chronic L-NAME-treated AT2 receptor-deficient mice.J. Hypertens.2004225997100510.1097/00004872‑200405000‑0002315097241
    [Google Scholar]
  75. SanadaS. KitakazeM. NodeK. TakashimaS. OgaiA. AsanumaH. SakataY. AsakuraM. OgitaH. LiaoY. FukushimaT. YamadaJ. MinaminoT. KuzuyaT. HoriM. Differential subcellular actions of ACE inhibitors and AT(1) receptor antagonists on cardiac remodeling induced by chronic inhibition of NO synthesis in rats.Hypertension200138340441110.1161/01.HYP.38.3.40411566913
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X301799240715091918
Loading
/content/journals/chddt/10.2174/011871529X301799240715091918
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test