Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Tumor cells achieve their adaptability through various metabolic reprogramming processes. Among them, ammonia, as a traditional metabolic waste, plays an increasingly important role in the tumor microenvironment along with its associated metabolites. Other cells in the microenvironment can also reshape the immune status of the microenvironment by regulating ammonia-related metabolism, and targeting this metabolic aspect has emerged as a potential strategy for tumor treatment.

In this study, we have systematically reviewed the source and destination of ammonia in tumor cells, as well as the links between ammonia and other biological processes. We have also analyzed the ammonia-related metabolic regulation of other cells (including T cells, macrophages, dendritic cells, natural killer cells, myeloid-derived suppressor cells, and stromal cells) in the tumor microenvironment, and summarized the tumor treatment methods that target this metabolism.

Through ammonia-related metabolic reprogramming, tumor cells obtain the energy they need for rapid growth and proliferation. Multiple immune cells and stromal cells in the microenvironment also interact with each other through this metabolic regulation, ultimately leading to immune suppression. Despite the heterogeneity of tumors and the complexity of cellular functions, further research into therapeutic interventions targeting ammonia-related metabolism is warranted.

This review has focused on the role and regulation of ammonia-related metabolism in tumor cells and other cells in the microenvironment, and highlighted the efficacy and prospects of targeted ammonia-related metabolism therapy.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232301222240603100840
2024-06-10
2025-07-05
Loading full text...

Full text loading...

References

  1. LiX. ZhuH. SunW. YangX. NieQ. FangX. Role of glutamine and its metabolite ammonia in crosstalk of cancer-associated fibroblasts and cancer cells.Cancer Cell Int.202121147910.1186/s12935‑021‑02121‑534503536
    [Google Scholar]
  2. BellH.N. HuberA.K. SinghalR. KorimerlaN. RebernickR.J. KumarR. El-deranyM.O. SajjakulnukitP. DasN.K. KerkS.A. SolankiS. JamesJ.G. KimD. ZhangL. ChenB. MehraR. FrankelT.L. GyőrffyB. FearonE.R. Pasca di MaglianoM. GonzalezF.J. BanerjeeR. WahlD.R. LyssiotisC.A. GreenM. ShahY.M. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer.Cell Metab.2023351134149.e610.1016/j.cmet.2022.11.01336528023
    [Google Scholar]
  3. HajajE. PozziS. ErezA. From the inside out: Exposing the roles of urea cycle enzymes in tumors and their micro and macro environments.Cold Spring Harb. Perspect. Med.2023144a04153837696657
    [Google Scholar]
  4. SpinelliJ.B. YoonH. RingelA.E. JeanfavreS. ClishC.B. HaigisM.C. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass.Science2017358636594194610.1126/science.aam930529025995
    [Google Scholar]
  5. Reina-CamposM. MoscatJ. Diaz-MecoM. Metabolism shapes the tumor microenvironment.Curr. Opin. Cell Biol.201748475310.1016/j.ceb.2017.05.00628605656
    [Google Scholar]
  6. WetzelT.J. ErfanS.C. FigueroaL.D. WheelerL.M. AnanievaE.A. Crosstalk between arginine, glutamine, and the branched chain amino acid metabolism in the tumor microenvironment.Front. Oncol.202313118653910.3389/fonc.2023.118653937274280
    [Google Scholar]
  7. WangHL GuoM WeiHD ChenYH Targeting p53 pathways: Mechanisms, structures, and advances in therapy.Signal Transduct Target Ther2023819210.1038/s41392‑023‑01347‑1
    [Google Scholar]
  8. PavlovaN.N. ZhuJ. ThompsonC.B. The hallmarks of cancer metabolism: Still emerging.Cell Metab.202234335537710.1016/j.cmet.2022.01.00735123658
    [Google Scholar]
  9. BhutiaY.D. BabuE. RamachandranS. GanapathyV. Amino Acid transporters in cancer and their relevance to “glutamine addiction”: Novel targets for the design of a new class of anticancer drugs.Cancer Res.20157591782178810.1158/0008‑5472.CAN‑14‑374525855379
    [Google Scholar]
  10. GuoC. YouZ. ShiH. SunY. DuX. PalaciosG. GuyC. YuanS. ChapmanN.M. LimS.A. SunX. SaraviaJ. RankinS. DhunganaY. ChiH. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity.Nature2023620797220020810.1038/s41586‑023‑06299‑837407815
    [Google Scholar]
  11. SchulteM.L. FuA. ZhaoP. LiJ. GengL. SmithS.T. KondoJ. CoffeyR.J. JohnsonM.O. RathmellJ.C. SharickJ.T. SkalaM.C. SmithJ.A. BerlinJ. WashingtonM.K. NickelsM.L. ManningH.C. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models.Nat. Med.201824219420210.1038/nm.446429334372
    [Google Scholar]
  12. TongY. GuoD. LinS.H. LiangJ. YangD. MaC. ShaoF. LiM. YuQ. JiangY. LiL. FangJ. YuR. LuZ. SUCLA2-coupled regulation of GLS succinylation and activity counteracts oxidative stress in tumor cells.Mol. Cell2021811123032316.e810.1016/j.molcel.2021.04.00233991485
    [Google Scholar]
  13. YunevaM.O. FanT.W.M. AllenT.D. HigashiR.M. FerrarisD.V. TsukamotoT. MatésJ.M. AlonsoF.J. WangC. SeoY. ChenX. BishopJ.M. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type.Cell Metab.201215215717010.1016/j.cmet.2011.12.01522326218
    [Google Scholar]
  14. Ramirez-PeñaE. ArnoldJ. ShivakumarV. JosephR. Vidhya VijayG. den HollanderP. BhangreN. AllegakoenP. PrasadR. ConleyZ. MatésJ.M. MárquezJ. ChangJ.T. VasaikarS. SoundararajanR. SreekumarA. ManiS.A. The epithelial to mesenchymal transition promotes glutamine independence by suppressing GLS2 expression.Cancers20191110161010.3390/cancers1110161031652551
    [Google Scholar]
  15. ZaytouniT. TsaiP.Y. HitchcockD.S. DuBoisC.D. FreinkmanE. LinL. Morales-OyarvideV. LenehanP.J. WolpinB.M. Mino-KenudsonM. TorresE.M. StylopoulosN. ClishC.B. KalaanyN.Y. Critical role for arginase 2 in obesity-associated pancreatic cancer.Nat. Commun.20178124210.1038/s41467‑017‑00331‑y28808255
    [Google Scholar]
  16. YangL. VennetiS. NagrathD. Glutaminolysis: A hallmark of cancer metabolism.Annu. Rev. Biomed. Eng.201719116319410.1146/annurev‑bioeng‑071516‑04454628301735
    [Google Scholar]
  17. WuY.J. HuZ.L. HuS.D. LiY.X. XingX.W. YangY. DuX.H. Glutamate dehydrogenase inhibits tumor growth in gastric cancer through the Notch signaling pathway.Cancer Biomark.201926330331210.3233/CBM‑19002231322543
    [Google Scholar]
  18. WangD. YeQ. GuH. ChenZ. The role of lipid metabolism in tumor immune microenvironment and potential therapeutic strategies.Front. Oncol.20221298456010.3389/fonc.2022.98456036172157
    [Google Scholar]
  19. ParkM.J. D’AlecyL.G. AndersonM.A. BasrurV. FengY. BradyG.F. KimD. WuJ. NesvizhskiiA.I. LahannJ. LukacsN.W. FontanaR.J. OmaryM.B. Constitutive release of CPS1 in bile and its role as a protective cytokine during acute liver injury.Proc. Natl. Acad. Sci. USA2019116189125913410.1073/pnas.182217311630979808
    [Google Scholar]
  20. KimJ. HuZ. CaiL. LiK. ChoiE. FaubertB. BezwadaD. Rodriguez-CanalesJ. VillalobosP. LinY.F. NiM. HuffmanK.E. GirardL. ByersL.A. Unsal-KacmazK. PeñaC.G. HeymachJ.V. WautersE. VansteenkisteJ. CastrillonD.H. ChenB.P.C. WistubaI. LambrechtsD. XuJ. MinnaJ.D. DeBerardinisR.J. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells.Nature2017546765616817210.1038/nature2235928538732
    [Google Scholar]
  21. YaoS.H. NguyenT.V. RolfeA. AgrawalA.A. KeJ.Y. PengS.Y. Discovery of selective inhibitors of carbamoyl phosphate synthetase I (CPS1) to modulate cancer relevant metabolic pathways.Cancer Res.202181132334
    [Google Scholar]
  22. WuT. LuoG. LianQ. SuiC. TangJ. ZhuY. ZhengB. LiZ. ZhangY. ZhangY. BaoJ. HuJ. ShenS. YangZ. WuJ. WangK. ZhaoY. YangS. WangS. QiuX. WangW. WuX. WangH. GuJ. ChenL. Discovery of a carbamoyl phosphate synthetase 1–deficient HCC subtype with therapeutic potential through integrative genomic and experimental analysis.Hepatology20217463249326810.1002/hep.3208834343359
    [Google Scholar]
  23. HeL. CaiX. ChengS. ZhouH. ZhangZ. RenJ. RenF. YangQ. TaoN. ChenJ. Ornithine transcarbamylase downregulation is associated with poor prognosis in hepatocellular carcinoma.Oncol. Lett.20191765030503810.3892/ol.2019.1017431186714
    [Google Scholar]
  24. AllenM.D. LuongP. HudsonC. LeytonJ. DelageB. GhazalyE. CuttsR. YuanM. SyedN. Lo NigroC. LattanzioL. Chmielewska-KassassirM. TomlinsonI. RoylanceR. WhitakerH.C. WarrenA.Y. NealD. FrezzaC. BeltranL. JonesL.J. ChelalaC. WuB.W. BomalaskiJ.S. JacksonR.C. LuY.J. CrookT. LemoineN.R. MatherS. FosterJ. SosabowskiJ. AvrilN. LiC.F. SzlosarekP.W. Prognostic and therapeutic impact of argininosuccinate synthetase 1 control in bladder cancer as monitored longitudinally by PET imaging.Cancer Res.201474389690710.1158/0008‑5472.CAN‑13‑170224285724
    [Google Scholar]
  25. RabinovichS. AdlerL. YizhakK. SarverA. SilbermanA. AgronS. StettnerN. SunQ. BrandisA. HelblingD. KormanS. ItzkovitzS. DimmockD. UlitskyI. NagamaniS.C.S. RuppinE. ErezA. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis.Nature2015527757837938310.1038/nature1552926560030
    [Google Scholar]
  26. ThongkumA. WuC. LiY.Y. WangpaichitrM. NavasumritP. ParnlobV. SricharunratT. BhudhisawasdiV. RuchirawatM. SavarajN. The combination of arginine deprivation and 5-fluorouracil improves therapeutic efficacy in argininosuccinate synthetase negative hepatocellular carcinoma.Int. J. Mol. Sci.2017186117510.3390/ijms1806117528587170
    [Google Scholar]
  27. PrudnerB.C. SunF. KremerJ.C. XuJ. HuangC. SaiK.K.S. MorganZ. LeedsH. McConathyJ. Van TineB.A. Amino acid uptake measured by [ 18 F]AFETP increases in response to arginine starvation in ass1-deficient sarcomas.Theranostics2018882107211610.7150/thno.2208329721066
    [Google Scholar]
  28. LoweryM.A. HardingJ.J. YuK.H. KelsenD.P. BomalaskiJ.S. GlassmanD.C. CovingtonC.M. BrennerR. HollywoodE. BarbaA. JohnstonA. LiuK.C-W. CapanuM. Abou-AlfaG.K. O’ReillyE.M. Phase IB trial of ADI-PEG 20 (A) plus nab-paclitaxel (nab-P) and gemcitabine (gem) in patients with advanced pancreatic cancer (PC).J. Clin. Oncol.2017354_suppl29510.1200/JCO.2017.35.4_suppl.295
    [Google Scholar]
  29. KurmiK. HaigisM.C. Nitrogen metabolism in cancer and immunity.Trends Cell Biol.202030540842410.1016/j.tcb.2020.02.00532302552
    [Google Scholar]
  30. MossmannD. MüllerC. ParkS. RybackB. ColombiM. RitterN. WeißenbergerD. DazertE. Coto-LlerenaM. NuciforoS. BlukaczL. ErcanC. JimenezV. PiscuoglioS. BoschF. TerraccianoL.M. SauerU. HeimM.H. HallM.N. Arginine reprograms metabolism in liver cancer via RBM39.Cell20231862350685083.e2310.1016/j.cell.2023.09.01137804830
    [Google Scholar]
  31. MingZ. ZouZ. CaiK. XuY. ChenX. YiW. LuoJ. LuoZ. ARG1 functions as a tumor suppressor in breast cancer.Acta Biochim. Biophys. Sin.202052111257126410.1093/abbs/gmaa11633128544
    [Google Scholar]
  32. BottA.J. ShenJ. TonelliC. ZhanL. SivaramN. JiangY.P. YuX. BhattV. ChilesE. ZhongH. MaimouniS. DaiW. VelasquezS. PanJ.A. MuthalaguN. MortonJ. AnthonyT.G. FengH. LamersW.H. MurphyD.J. GuoJ.Y. JinJ. CrawfordH.C. ZhangL. WhiteE. LinR.Z. SuX. TuvesonD.A. ZongW.X. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism.Cell Rep.201929512871298.e610.1016/j.celrep.2019.09.05631665640
    [Google Scholar]
  33. BottA.J. PengI.C. FanY. FaubertB. ZhaoL. LiJ. NeidlerS. SunY. JaberN. KrokowskiD. LuW. PanJ.A. PowersS. RabinowitzJ. HatzoglouM. MurphyD.J. JonesR. WuS. GirnunG. ZongW.X. Oncogenic Myc induces expression of glutamine synthetase through promoter demethylation.Cell Metab.20152261068107710.1016/j.cmet.2015.09.02526603296
    [Google Scholar]
  34. Adebayo MichaelA.O. KoS. TaoJ. MogheA. YangH. XuM. RussellJ.O. Pradhan-SunddT. LiuS. SinghS. PoddarM. MongaJ.S. LiuP. OertelM. RanganathanS. SinghiA. RebouissouS. Zucman-RossiJ. RibbackS. CalvisiD. QvartskhavaN. GörgB. HäussingerD. ChenX. MongaS.P. Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-Catenin mutations.Cell Metab.201929511351150.e610.1016/j.cmet.2019.01.00230713111
    [Google Scholar]
  35. TarditoS. OudinA. AhmedS.U. FackF. KeunenO. ZhengL. MileticH. SakariassenP.Ø. WeinstockA. WagnerA. LindsayS.L. HockA.K. BarnettS.C. RuppinE. MørkveS.H. Lund-JohansenM. ChalmersA.J. BjerkvigR. NiclouS.P. GottliebE. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.Nat. Cell Biol.201517121556156810.1038/ncb327226595383
    [Google Scholar]
  36. ZhaoJ.S. ShiS. QuH.Y. KeckesovaZ. CaoZ.J. YangL.X. YuX. FengL. ShiZ. KrakowiakJ. MaoR.Y. ShenY.T. FanY.M. FuT.M. YeC. XuD. GaoX. YouJ. LiW. LiangT. LuZ. FengY.X. Glutamine synthetase licenses APC/C-mediated mitotic progression to drive cell growth.Nat. Metab.20224223925310.1038/s42255‑021‑00524‑235145325
    [Google Scholar]
  37. LeoneR.D. PowellJ.D. Metabolism of immune cells in cancer.Nat. Rev. Cancer202020951653110.1038/s41568‑020‑0273‑y32632251
    [Google Scholar]
  38. WangR. GreenD.R. Metabolic reprogramming and metabolic dependency in T cells.Immunol. Rev.20122491142610.1111/j.1600‑065X.2012.01155.x22889212
    [Google Scholar]
  39. WangR. DillonC.P. ShiL.Z. MilastaS. CarterR. FinkelsteinD. McCormickL.L. FitzgeraldP. ChiH. MungerJ. GreenD.R. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation.Immunity201135687188210.1016/j.immuni.2011.09.02122195744
    [Google Scholar]
  40. BestS.A. GubserP.M. SethumadhavanS. KersbergenA. Negrón AbrilY.L. GoldfordJ. SellersK. AbeysekeraW. GarnhamA.L. McDonaldJ.A. WeedenC.E. AndersonD. PirmanD. RoddyT.P. CreekD.J. KalliesA. KingsburyG. SutherlandK.D. Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer.Cell Metab.2022346874887.e610.1016/j.cmet.2022.04.00335504291
    [Google Scholar]
  41. LeoneR.D. ZhaoL. EnglertJ.M. SunI.M. OhM.H. SunI.H. ArwoodM.L. BettencourtI.A. PatelC.H. WenJ. TamA. BlosserR.L. PrchalovaE. AltJ. RaisR. SlusherB.S. PowellJ.D. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion.Science201936664681013102110.1126/science.aav258831699883
    [Google Scholar]
  42. JohnsonM.O. WolfM.M. MaddenM.Z. AndrejevaG. SugiuraA. ContrerasD.C. MasedaD. LibertiM.V. PazK. KishtonR.J. JohnsonM.E. de CubasA.A. WuP. LiG. ZhangY. NewcombD.C. WellsA.D. RestifoN.P. RathmellW.K. LocasaleJ.W. DavilaM.L. BlazarB.R. RathmellJ.C. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism.Cell2018175717801795.e1910.1016/j.cell.2018.10.00130392958
    [Google Scholar]
  43. NabeS. YamadaT. SuzukiJ. ToriyamaK. YasuokaT. KuwaharaM. ShiraishiA. TakenakaK. YasukawaM. YamashitaM. Reinforce the antitumor activity of CD 8 + T cells via glutamine restriction.Cancer Sci.2018109123737375010.1111/cas.1382730302856
    [Google Scholar]
  44. GeigerR. RieckmannJ.C. WolfT. BassoC. FengY. FuhrerT. KogadeevaM. PicottiP. MeissnerF. MannM. ZamboniN. SallustoF. LanzavecchiaA. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity.Cell20161673829842.e1310.1016/j.cell.2016.09.03127745970
    [Google Scholar]
  45. SosnowskaA. Chlebowska-TuzJ. MatrybaP. PilchZ. GreigA. WolnyA. GrzywaT.M. RydzynskaZ. SokolowskaO. RygielT.P. GrzybowskiM. StanczakP. BlaszczykR. NowisD. GolabJ. Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma.OncoImmunology2021101195614310.1080/2162402X.2021.195614334367736
    [Google Scholar]
  46. BronteV. BrandauS. ChenS.H. ColomboM.P. FreyA.B. GretenT.F. MandruzzatoS. MurrayP.J. OchoaA. Ostrand-RosenbergS. RodriguezP.C. SicaA. UmanskyV. VonderheideR.H. GabrilovichD.I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards.Nat. Commun.2016711215010.1038/ncomms1215027381735
    [Google Scholar]
  47. RodriguezP.C. QuicenoD.G. ZabaletaJ. OrtizB. ZeaA.H. PiazueloM.B. DelgadoA. CorreaP. BrayerJ. SotomayorE.M. AntoniaS. OchoaJ.B. OchoaA.C. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses.Cancer Res.200464165839584910.1158/0008‑5472.CAN‑04‑046515313928
    [Google Scholar]
  48. RodriguezPC ZeaAH DeSalvoJ CulottaKS ZabaletaJ QuicenoDG L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes.J. Immunol2003171312321239
    [Google Scholar]
  49. MunderM. SchneiderH. LucknerC. GieseT. LanghansC.D. FuentesJ.M. KropfP. MuellerI. KolbA. ModolellM. HoA.D. Suppression of T-cell functions by human granulocyte arginase.Blood200610851627163410.1182/blood‑2006‑11‑01038916709924
    [Google Scholar]
  50. SerafiniP. MgebroffS. NoonanK. BorrelloI. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells.Cancer Res.200868135439544910.1158/0008‑5472.CAN‑07‑662118593947
    [Google Scholar]
  51. CobboldS.P. AdamsE. FarquharC.A. NolanK.F. HowieD. LuiK.O. FairchildP.J. MellorA.L. RonD. WaldmannH. Infectious tolerance via the consumption of essential amino acids and mTOR signaling.Proc. Natl. Acad. Sci. USA200910629120551206010.1073/pnas.090391910619567830
    [Google Scholar]
  52. KlyszD. TaiX. RobertP.A. CraveiroM. CretenetG. OburogluL. MongellazC. FloessS. FritzV. MatiasM.I. YongC. SurhN. MarieJ.C. HuehnJ. ZimmermannV. KinetS. DardalhonV. TaylorN. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation.Sci. Signal.20158396ra9710.1126/scisignal.aab261026420908
    [Google Scholar]
  53. TangK. ZhangH. DengJ. WangD. LiuS. LuS. CuiQ. ChenC. LiuJ. YangZ. LiY. ChenJ. LvJ. MaJ. HuangB. Ammonia detoxification promotes CD8+ T cell memory development by urea and citrulline cycles.Nat. Immunol.202324116217310.1038/s41590‑022‑01365‑136471170
    [Google Scholar]
  54. PanY. YuY. WangX. ZhangT. Tumor-Associated Macrophages in Tumor Immunity.Front. Immunol.20201158308410.3389/fimmu.2020.58308433365025
    [Google Scholar]
  55. BuscherK. EhingerE. GuptaP. PramodA.B. WolfD. TweetG. PanC. MillsC.D. LusisA.J. LeyK. Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival.Nat. Commun.2017811604110.1038/ncomms1604128737175
    [Google Scholar]
  56. LuheshiN. DaviesG. PoonE. WigginsK. McCourtM. LeggJ. T h1 cytokines are more effective than T h2 cytokines at licensing anti-tumour functions in CD 40-activated human macrophages in vitro.Eur. J. Immunol.201444116217210.1002/eji.20134335124114634
    [Google Scholar]
  57. WynnT.A. ChawlaA. PollardJ.W. Macrophage biology in development, homeostasis and disease.Nature2013496744644545510.1038/nature1203423619691
    [Google Scholar]
  58. LiuP.S. WangH. LiX. ChaoT. TeavT. ChristenS. Di ConzaG. ChengW.C. ChouC.H. VavakovaM. MuretC. DebackereK. MazzoneM. HuangH.D. FendtS.M. IvanisevicJ. HoP.C. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming.Nat. Immunol.201718998599410.1038/ni.379628714978
    [Google Scholar]
  59. OhM.H. SunI.H. ZhaoL. LeoneR.D. SunI.M. XuW. CollinsS.L. TamA.J. BlosserR.L. PatelC.H. EnglertJ.M. ArwoodM.L. WenJ. Chan-LiY. TenoraL. MajerP. RaisR. SlusherB.S. HortonM.R. PowellJ.D. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells.J. Clin. Invest.202013073865388410.1172/JCI13185932324593
    [Google Scholar]
  60. ChenS. CuiW. ChiZ. XiaoQ. HuT. YeQ. ZhuK. YuW. WangZ. YuC. PanX. DaiS. YangQ. JinJ. ZhangJ. LiM. YangD. YuQ. WangQ. YuX. YangW. ZhangX. QianJ. DingK. WangD. Tumor-associated macrophages are shaped by intratumoral high potassium via Kir2.1.Cell Metab.2022341118431859.e1110.1016/j.cmet.2022.08.01636103895
    [Google Scholar]
  61. ChoiJ. Stradmann-BellinghausenB. YakubovE. SavaskanN.E. Régnier-VigourouxA. Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages.Cancer Biol. Ther.20151681205121310.1080/15384047.2015.105640626047211
    [Google Scholar]
  62. PalmieriE.M. MengaA. Martín-PérezR. QuintoA. Riera-DomingoC. De TullioG. HooperD.C. LamersW.H. GhesquièreB. McVicarD.W. GuariniA. MazzoneM. CastegnaA. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis.Cell Rep.20172071654166610.1016/j.celrep.2017.07.05428813676
    [Google Scholar]
  63. KellyB. O’NeillL.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity.Cell Res.201525777178410.1038/cr.2015.6826045163
    [Google Scholar]
  64. HardbowerD.M. AsimM. LuisP.B. SinghK. BarryD.P. YangC. SteevesM.A. ClevelandJ.L. SchneiderC. PiazueloM.B. GobertA.P. WilsonK.T. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications.Proc. Natl. Acad. Sci. USA20171145E751E76010.1073/pnas.161495811428096401
    [Google Scholar]
  65. Van den BosscheJ. LamersW.H. KoehlerE.S. GeunsJ.M.C. AlhonenL. UimariA. Pirnes-KarhuS. Van OvermeireE. MoriasY. BrysL. VereeckeL. De BaetselierP. Van GinderachterJ.A. Pivotal Advance: Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes.J. Leukoc. Biol.201291568569910.1189/jlb.091145322416259
    [Google Scholar]
  66. GabrilovichD. Mechanisms and functional significance of tumour-induced dendritic-cell defects.Nat. Rev. Immunol.200441294195210.1038/nri149815573129
    [Google Scholar]
  67. NorianL.A. RodriguezP.C. O’MaraL.A. ZabaletaJ. OchoaA.C. CellaM. AllenP.M. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism.Cancer Res.20096973086309410.1158/0008‑5472.CAN‑08‑282619293186
    [Google Scholar]
  68. GiovanelliP. SandovalT.A. Cubillos-RuizJ.R. Dendritic cell metabolism and function in tumors.Trends Immunol.201940869971810.1016/j.it.2019.06.00431301952
    [Google Scholar]
  69. LuoC ShenG LiuN GongF WeiX YaoS Ammonia drives dendritic cells into dysfunction.J Immunol201419331080108910.4049/jimmunol.1303218
    [Google Scholar]
  70. FahrM.J. KornbluthJ. BlossomS. SchaefferR. KumbergV.S. HarryM. Harry M. Vars Research Award. Glutamine enhances immunoregulation of tumor growth.JPEN J. Parenter. Enteral Nutr.199418647147610.1177/01486071940180064717602720
    [Google Scholar]
  71. LoftusR.M. AssmannN. Kedia-MehtaN. O’BrienK.L. GarciaA. GillespieC. HukelmannJ.L. OefnerP.J. LamondA.I. GardinerC.M. DettmerK. CantrellD.A. SinclairL.V. FinlayD.K. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice.Nat. Commun.201891234110.1038/s41467‑018‑04719‑229904050
    [Google Scholar]
  72. JoannaD. TomaszM.G. IwonaB. Ammonia inhibits antitumor activity of NK cells by decreasing mature perforin.bioRxiv20232023.11.20.567708
    [Google Scholar]
  73. TcyganovE. MastioJ. ChenE. GabrilovichD.I. Plasticity of myeloid-derived suppressor cells in cancer.Curr. Opin. Immunol.201851768210.1016/j.coi.2018.03.00929547768
    [Google Scholar]
  74. MorikawaN. TachibanaM. AgoY. GodaH. SakuraiF. MizuguchiH. LY341495, an mGluR2/3 antagonist, regulates the immunosuppressive function of myeloid-derived suppressor cells and inhibits melanoma tumor growth.Biol. Pharm. Bull.201841121866186910.1248/bpb.b18‑0005530504687
    [Google Scholar]
  75. ShaoZ. JiangH. FuR. Increased population of myeloid-derived suppressor cells in patients with myelodysplastic syndromes overexpress ARG1 and mediate CD8+ T cell inhibition.Blood201312221521210.1182/blood.V122.21.5212.5212
    [Google Scholar]
  76. LiQ. XiangM. Metabolic reprograming of MDSCs within tumor microenvironment and targeting for cancer immunotherapy.Acta Pharmacol. Sin.20224361337134810.1038/s41401‑021‑00776‑434561553
    [Google Scholar]
  77. LowV. LiZ. BlenisJ. Metabolite activation of tumorigenic signaling pathways in the tumor microenvironment.Sci. Signal.202215759eabj422010.1126/scisignal.abj422036346837
    [Google Scholar]
  78. YangL. AchrejaA. YeungT.L. MangalaL.S. JiangD. HanC. BaddourJ. MariniJ.C. NiJ. NakaharaR. WahligS. ChibaL. KimS.H. MorseJ. PradeepS. NagarajaA.S. HaemmerleM. KyungheeN. DerichsweilerM. PlackemeierT. Mercado-UribeI. Lopez-BeresteinG. MossT. RamP.T. LiuJ. LuX. MokS.C. SoodA.K. NagrathD. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth.Cell Metab.201624568570010.1016/j.cmet.2016.10.01127829138
    [Google Scholar]
  79. HsuK.S. DunleaveyJ.M. SzotC. YangL. HiltonM.B. MorrisK. SeamanS. FengY. LutzE.M. KoogleR. Tomassoni-ArdoriF. SahaS. ZhangX.M. ZudaireE. BajgainP. RoseJ. ZhuZ. DimitrovD.S. CuttittaF. EmenakerN.J. TessarolloL. St CroixB. Cancer cell survival depends on collagen uptake into tumor-associated stroma.Nat. Commun.2022131707810.1038/s41467‑022‑34643‑536400786
    [Google Scholar]
  80. SousaC.M. BiancurD.E. WangX. HalbrookC.J. ShermanM.H. ZhangL. KremerD. HwangR.F. WitkiewiczA.K. YingH. AsaraJ.M. EvansR.M. CantleyL.C. LyssiotisC.A. KimmelmanA.C. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.Nature2016536761747948310.1038/nature1908427509858
    [Google Scholar]
  81. ZhanH. ZhouB. ChengY. XuJ. WangL. ZhangG. HuS. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology.Cancer Lett.2017392839310.1016/j.canlet.2017.01.04128189533
    [Google Scholar]
  82. InoY. Yamazaki-ItohR. OguroS. ShimadaK. KosugeT. ZavadaJ. KanaiY. HiraokaN. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer.PLoS One201382e5514610.1371/journal.pone.005514623424623
    [Google Scholar]
  83. ÉrsekB. SillóP. CakirU. MolnárV. BencsikA. MayerB. MezeyE. KárpátiS. PósZ. NémethK. Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity.Cell. Mol. Life Sci.202178266167310.1007/s00018‑020‑03517‑832328671
    [Google Scholar]
  84. XuX. MengY. LiL. XuP. WangJ. LiZ. BianJ. Overview of the development of glutaminase inhibitors: Achievements and future directions.J. Med. Chem.20196231096111510.1021/acs.jmedchem.8b0096130148361
    [Google Scholar]
  85. CaiT. LorenziP.L. RakhejaD. PontikosM.A. LodiA. HanL. ZhangQ. MaH. RahmaniM. BhagatT.D. HorvathT.D. DiNardoC.D. GrantS. TizianiS. VermaA. KonoplevaM. Gls inhibitor CB-839 modulates cellular metabolism in AML and potently suppresses AML cell growth when combined with 5-azacitidine.Blood201612822406410.1182/blood.V128.22.4064.4064
    [Google Scholar]
  86. ZhaoY. FengX. ChenY. SelfridgeJ.E. GorityalaS. DuZ. WangJ.M. HaoY. CioffiG. ConlonR.A. Barnholtz-SloanJ.S. SaltzmanJ. KrishnamurthiS.S. VinayakS. VeiglM. XuY. BajorD.L. MarkowitzS.D. MeropolN.J. EadsJ.R. WangZ. 5-Fluorouracil enhances the antitumor activity of the glutaminase inhibitor CB-839 against PIK3CA -mutant colorectal cancers.Cancer Res.202080214815482710.1158/0008‑5472.CAN‑20‑060032907836
    [Google Scholar]
  87. GrzybowskiM.M. Pęczkowicz-SzyszkaJ. WolskaP. StańczakP.S. WelzerM. NikolaevE. SiwińskaA.M. BłaszczykR. BorekB. DzięgielewskiM. GzikA. NowickaJ. BrzezińskaJ. JędrzejczakK. ChrzanowskiJ. GołębiowskiA. OlczakJ. DzwonekK. DobrzańskiP. Targeting ARG2 as a novel therapeutic approach for cancer.Ann. Oncol.201930v793v79410.1093/annonc/mdz268.100
    [Google Scholar]
  88. KoyamaT. ShimizuT. MatsubaraN. IwasaS. NaitoY. KondoS. HaranoK. YonemoriK. KotaniD. YohK. YaoY. MitaT. UedaE. DoiT. YamamotoN. KubokiY. MO10-6 Phase 1 study of retifanlimab (anti-PD-1) and INCB001158 (arginase inhibitor), alone or in combination, in solid tumors.Ann. Oncol.202132S30210.1016/j.annonc.2021.05.587
    [Google Scholar]
  89. LorentzenC.L. MartinenaiteE. KjeldsenJ.W. HolmstroemR.B. MørkS.K. PedersenA.W. EhrnroothE. AndersenM.H. SvaneI.M. Arginase-1 targeting peptide vaccine in patients with metastatic solid tumors – A phase I trial.Front. Immunol.202213102302310.3389/fimmu.2022.102302336330525
    [Google Scholar]
  90. HoJ.C-M. LamS-K. Combination of Arginine Depletion and Chemotherapy in Thoracic Malignancies.2017351617581759
    [Google Scholar]
  91. ChangK.Y. ChiangN.J. WuS.Y. YenC.J. ChenS.H. YehY.M. LiC.F. FengX. WuK. JohnstonA. BomalaskiJ.S. WuB.W. GaoJ. SubudhiS.K. KasebA.O. BlandoJ.M. YadavS.S. SzlosarekP.W. ChenL.T. Phase 1b study of pegylated arginine deiminase (ADI-PEG 20) plus Pembrolizumab in advanced solid cancers.OncoImmunology2021101194325310.1080/2162402X.2021.194325334290906
    [Google Scholar]
  92. YangT-S. LuS-N. ChaoY. SheenI-S. LinC-C. WangT-E. ChenS-C. WangJ-H. LiaoL-Y. ThomsonJ.A. Wang-PengJ. ChenP-J. ChenL-T. A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients.Br. J. Cancer2010103795496010.1038/sj.bjc.660585620808309
    [Google Scholar]
  93. HoJCM LamSK Inhibition of ornithine decarboxylase to facilitate pegylated arginase treatment in lung adenocarcinoma xenograft model.J. Clin. Oncol.20163415_supple23184e
    [Google Scholar]
  94. LamS.K. LiY.Y. XuS. LeungL.L. UK.P. ZhengY.F. ChengP.N.M. HoJ.C.M. Growth suppressive effect of pegylated arginase in malignant pleural mesothelioma xenografts.Respir. Res.20171818010.1186/s12931‑017‑0564‑328464918
    [Google Scholar]
  95. ChanS.L. ChengP.N.M. LiuA.M. ChanL.L. LiL. ChuC.M. ChongC.C.N. LauY.M. YeoW. NgK.K.C. YuS.C.H. MokT.S.K. ChanA.W.H. A phase II clinical study on the efficacy and predictive biomarker of pegylated recombinant arginase on hepatocellular carcinoma.Invest. New Drugs20213951375138210.1007/s10637‑021‑01111‑833856599
    [Google Scholar]
  96. YauT. ChengP.N.M. ChiuJ. KwokG.G.W. LeungR. LiuA.M. CheungT.T. NgC.T. A phase 1 study of pegylated recombinant arginase (PEG-BCT-100) in combination with systemic chemotherapy (capecitabine and oxaliplatin)[PACOX] in advanced hepatocellular carcinoma patients.Invest. New Drugs202240231432110.1007/s10637‑021‑01178‑334735674
    [Google Scholar]
  97. GambleL.D. PurgatoS. MurrayJ. XiaoL. YuD.M.T. HanssenK.M. GiorgiF.M. CarterD.R. GiffordA.J. ValliE. MilazzoG. KamiliA. MayohC. LiuB. EdenG. SarrafS. AllanS. Di GiacomoS. FlemmingC.L. RussellA.J. CheungB.B. OberthuerA. LondonW.B. FischerM. TrahairT.N. FletcherJ.I. MarshallG.M. ZieglerD.S. HogartyM.D. BurnsM.R. PeriniG. NorrisM.D. HaberM. Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma.Sci. Transl. Med.201911477eaau109910.1126/scitranslmed.aau109930700572
    [Google Scholar]
  98. ZhuY. JianX. ChenS. AnG. JiangD. YangQ. Targeting gut microbial nitrogen recycling and cellular uptake of ammonium to improve bortezomib resistance in multiple myeloma.Cell Metab.202336115917538113887
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232301222240603100840
Loading
/content/journals/cgt/10.2174/0115665232301222240603100840
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test