Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background

Acetylresveratrol (AC-Res), to date, is a powerful stilbene phytoalexin generated organically or as a component of a plant's defensive system, is a significant plant phenolic chemical portion and is investigated as a therapy option for a number of disorders. Owing to its inadequate stabilisation and considerable conformation rigidity, the utility of AC-Res as a medication is limited.

Objective

The current review article outlined the structure of AC-Res, their methods of activity, and the latest technological progress in the administration of these molecules. It is conceivable to deduce that AC-Res has a variety of consequences for the cellular functions of infected cells.

Methods

The literature survey for the present article was gathered from the authentic data published by various peer-reviewed publishers employing Google Scholar and PubMedprioritizing Scopus and Web of Science indexed journals as the search platform focusing on AC-Res pharmacological actions, particularly in the English language.

Results

Despite its extensive spectrum of biological and therapeutic applications, AC-Res has become a source of increasing concern. Depending on the researchers, AC-Res possesses radioprotective, cardioprotective, neurological, anti-inflammatory, and anti-microbial potential. It also has anti-cancer and antioxidant properties.

Conclusion

To avoid non-specific cytotoxicity, optimization efforts are presently emphasizing the possible usage of AC-Res based on nanocrystals, nanoparticles and dendrimers, and nanocrystals. Finally, while using AC-Res in biology is still a way off, researchers agree that if they continue to explore it, AC-Res and similar parts will be recognized as actual possibilities for a variety of things in the next years.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232291487240603093218
2024-06-10
2025-06-23
Loading full text...

Full text loading...

References

  1. BaxterR.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation.J. Cosmet. Dermatol.2008712710.1111/j.1473‑2165.2008.00354.x18254804
    [Google Scholar]
  2. KalaR. TollefsbolT.O. LiY. Potential of resveratrol in inhibiting cancer and slowing aging.J. Nutr. Food Sci.2012201521910.4172/2155‑9600.S5‑001
    [Google Scholar]
  3. MenjogeAR KannanRM TomaliaDA Dendrimer-based drug and imaging conjugates: Design considerations for nanomedical applications.Drug Discov Today.2010155-617117510.1016/j.drudis.2010.01.009
    [Google Scholar]
  4. LiB. LiuH. AminM. WegielL.A. TaylorL.S. EdgarK.J. Enhancement of naringenin solution concentration by solid dispersion in cellulose derivative matrices.Cellulose20132042137214910.1007/s10570‑013‑9970‑y
    [Google Scholar]
  5. LiX. WuB. WangL. LiS. Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level.J. Agric. Food Chem.200654238804881110.1021/jf061722y17090126
    [Google Scholar]
  6. WangW. TangK. YangH.R. WenP.F. ZhangP. WangH.L. HuangW.D. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation.Plant Physiol. Biochem.2010482-314215210.1016/j.plaphy.2009.12.00220060310
    [Google Scholar]
  7. SchmidlinL. PoutaraudA. ClaudelP. MestreP. PradoE. Santos-RosaM. Wiedemann-MerdinogluS. KarstF. MerdinogluD. HugueneyP. A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine.Plant Physiol.200814831630163910.1104/pp.108.12600318799660
    [Google Scholar]
  8. GambiniJ. InglésM. OlasoG. Lopez-GruesoR. Bonet-CostaV. Gimeno-MallenchL. Mas-BarguesC. AbdelazizK.M. Gomez-CabreraM.C. VinaJ. BorrasC. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans.Oxid. Med. Cell. Longev.2015201511310.1155/2015/83704226221416
    [Google Scholar]
  9. KeylorM.H. MatsuuraB.S. StephensonC.R.J. Chemistry and biology of resveratrol-derived natural products.Chem. Rev.2015115178976902710.1021/cr500689b25835567
    [Google Scholar]
  10. CvejicJ.M. DjekicS.V. PetrovicA.V. AtanackovicM.T. JovicS.M. BrceskiI.D. Gojkovic-BukaricaL.C. Determination of trans- and cis-resveratrol in Serbian commercial wines.J. Chromatogr. Sci.201048322923410.1093/chromsci/48.3.22920223091
    [Google Scholar]
  11. MerinoE. RibagordaM. Control over molecular motion using the cistrans photoisomerization of the azo group.Beilstein J. Org. Chem.2012811071109010.3762/bjoc.8.11923019434
    [Google Scholar]
  12. BernardE. Britz-McKibbinP. GernigonN. Resveratrol photoisomerization: An integrative guided-inquiry experiment.J. Chem. Educ.2007847115910.1021/ed084p1159
    [Google Scholar]
  13. WangF. GanesanA. Fragment based electronic structural analysis of l -phenylalanine using calculated ionization spectroscopy and dual space analysis.RSC Advances20144105605976060810.1039/C4RA09146A
    [Google Scholar]
  14. JeandetP. Sobarzo-SánchezE. SilvaA.S. ClémentC. NabaviS.F. BattinoM. RasekhianM. BelwalT. HabtemariamS. KoffasM. NabaviS.M. Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives.Biotechnol. Adv.20203910746110.1016/j.biotechadv.2019.10746131678221
    [Google Scholar]
  15. YangZ. WangF. Differentiation of alkane isomers through binding energy spectra and total momentum cross sections.RSC Advances201438310311039
    [Google Scholar]
  16. ChatterjeeS. WangF. Electronic structures of hexane isomers studied using quantum mechanics and graph theory.J. Theor. Comput. Chem.2015142155001410.1142/S0219633615500145
    [Google Scholar]
  17. ChatterjeeS. WangF. How different is pyrimidine as a core component of DNA base from its diazine isomers: A DFT study?Int. J. Quantum Chem.2016116241836184510.1002/qua.25229
    [Google Scholar]
  18. IslamS. WangF. The d-electrons of Fe in ferrocene: The excess orbital energy spectrum (EOES).RSC Advances2015516119331194110.1039/C4RA14506B
    [Google Scholar]
  19. KhattabM. ChatterjeeS. ClaytonA.H.A. WangF. Two conformers of a tyrosine kinase inhibitor (AG-1478) disclosed using simulated UV-Vis absorption spectroscopy.New J. Chem.201640108296830410.1039/C6NJ01909A
    [Google Scholar]
  20. KulkarniS.S. CantóC. The molecular targets of resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261114112310.1016/j.bbadis.2014.10.00525315298
    [Google Scholar]
  21. BrittonR.G. KovoorC. BrownK. Direct molecular targets of resveratrol: Identifying key interactions to unlock complex mechanisms.Ann. N. Y. Acad. Sci.20151348112413310.1111/nyas.1279626099829
    [Google Scholar]
  22. FarghaliH. Kutinová CanováN. LekićN. Resveratrol and related compounds as antioxidants with an allosteric mechanism of action in epigenetic drug targets.Physiol. Res.201362111310.33549/physiolres.93243423173686
    [Google Scholar]
  23. MartinS. HardyT. TollefsbolT. Medicinal chemistry of the epigenetic diet and caloric restriction.Curr. Med. Chem.201320324050405910.2174/0929867311320999018923895687
    [Google Scholar]
  24. CardoneL. CastronuovoD. PerniolaM. CiccoN. MolinaR.V. Renau-MorataB. NebauerS.G. CandidoV. Crocus sativus L. Ecotypes from Mediterranean countries: Phenological, morpho-productive, qualitative and genetic traits.Agronomy202111355110.3390/agronomy11030551
    [Google Scholar]
  25. PaydarP. AsadikaramG. NejadH.Z. AkbariH. AbolhassaniM. MoazedV. NematollahiM.H. EbrahimiG. FallahH. Epigenetic modulation of BRCA-1 and MGMT genes, and histones H4 and H3 are associated with breast tumors.J. Cell. Biochem.20191208137261373610.1002/jcb.2864530938887
    [Google Scholar]
  26. Castillo-OrdoñezW.O. Cajas-SalazarN. Velasco-ReyesM.A. Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer’s agents.Neural Regen. Res.202419484685410.4103/1673‑5374.38223237843220
    [Google Scholar]
  27. FarhanM. UllahM. FaisalM. FarooqiA. SabitaliyevichU. BiersackB. AhmadA. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity.Medicines2019612410.3390/medicines601002430781847
    [Google Scholar]
  28. FernandesG. SilvaG. PavanA. ChibaD. ChinC. Dos SantosJ. Epigenetic regulatory mechanisms induced by resveratrol.Nutrients2017911120110.3390/nu911120129104258
    [Google Scholar]
  29. ParkL.K. FrisoS. ChoiS.W. Nutritional influences on epigenetics and age-related disease.Proc. Nutr. Soc.2012711758310.1017/S002966511100330222051144
    [Google Scholar]
  30. Carlos-ReyesÁ. López-GonzálezJ.S. Meneses-FloresM. Gallardo-RincónD. Ruíz-GarcíaE. MarchatL.A. Astudillo-de la VegaH. Hernández de la CruzO.N. López-CamarilloC. al. Dietary compounds as epigenetic modulating agents in cancer.Front. Genet.2019107910.3389/fgene.2019.0007930881375
    [Google Scholar]
  31. PalS. TylerJ.K. Epigenetics and aging.Sci. Adv.201627e160058410.1126/sciadv.160058427482540
    [Google Scholar]
  32. EseberriI. LasaA. MirandaJ. GraciaA. PortilloM.P. Potential miRNA involvement in the anti-adipogenic effect of resveratrol and its metabolites.PLoS One2017129e018487510.1371/journal.pone.018487528953910
    [Google Scholar]
  33. OtsukaK. YamamotoY. OchiyaT. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer.Oncotarget2018937247182473010.18632/oncotarget.2533929872500
    [Google Scholar]
  34. WangZ.A. HsuW. LiuW.R. Role of SIRT1 in epigenetics. Handb Nutr Diet.Epigenetics20191311329
    [Google Scholar]
  35. SolomonJ.M. PasupuletiR. XuL. McDonaghT. CurtisR. DiStefanoP.S. HuberL.J. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage.Mol. Cell. Biol.2006261283810.1128/MCB.26.1.28‑38.200616354677
    [Google Scholar]
  36. MaS FengJ ZhangR SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice.Oxid Med Cell Longev.20172017460271510.1155/2017/4602715
    [Google Scholar]
  37. KimJ. ChaY.N. SurhY.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders.Mutat. Res.20106901-2122310.1016/j.mrfmmm.2009.09.00719799917
    [Google Scholar]
  38. FarkhondehT. FolgadoS.L. Pourbagher-ShahriA.M. AshrafizadehM. SamarghandianS. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway.Biomed. Pharmacother.202012711023410.1016/j.biopha.2020.11023432559855
    [Google Scholar]
  39. XuL. BotchwayB.O.A. ZhangS. ZhouJ. LiuX. Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury.Front. Neurosci.20181269010.3389/fnins.2018.0069030337851
    [Google Scholar]
  40. TinoA.B. ChitcholtanK. SykesP.H. GarrillA. Resveratrol and acetyl-resveratrol modulate activity of VEGF and IL-8 in ovarian cancer cell aggregates via attenuation of the NF-κB protein.J. Ovarian Res.2016918410.1186/s13048‑016‑0293‑027906095
    [Google Scholar]
  41. O’NeillH.M. HollowayG.P. SteinbergG.R. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity.Mol. Cell. Endocrinol.2013366213515110.1016/j.mce.2012.06.01922750049
    [Google Scholar]
  42. HoggS.J. ChitcholtanK. HassanW. SykesP.H. GarrillA. Resveratrol, acetyl-resveratrol, and polydatin exhibit antigrowth activity against 3d cell aggregates of the skov-3 and ovcar-8 ovarian cancer cell lines.Obstet. Gynecol. Int.2015201511410.1155/2015/27959126617640
    [Google Scholar]
  43. WangF. IslamS. VasilyevV. Ferrocene orientation determined intramolecular interactions using energy decomposition analysis.Materials20158117723773710.3390/ma811541928793673
    [Google Scholar]
  44. LauferSD DetzerA Selected strategies for the delivery of siRNA in vitro and in vivo.RNA technologies and their applicationsSpringer, Berlin, Heidelberg2010142958
    [Google Scholar]
  45. WahabA. GaoK. JiaC. ZhangF. TianG. MurtazaG. ChenJ. Significance of resveratrol in clinical management of chronic diseases.Molecules2017228132910.3390/molecules2208132928820474
    [Google Scholar]
  46. FanP. MarstonA. HayA.E. HostettmannK. Rapid separation of three glucosylated resveratrol analogues from the invasive plant Polygonum cuspidatum by high-speed countercurrent chromatography.J. Sep. Sci.200932172979298410.1002/jssc.20090005719639547
    [Google Scholar]
  47. DuarteA. MartinhoA. LuísÂ. FigueirasA. OleastroM. DominguesF.C. SilvaF. Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications.Lebensm. Wiss. Technol.20156321254126010.1016/j.lwt.2015.04.004
    [Google Scholar]
  48. IugaC. Alvarez-IdaboyJ.R. RussoN. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: A quantum chemical and computational kinetics study.J. Org. Chem.20127783868387710.1021/jo300213422475027
    [Google Scholar]
  49. YangT. WangL. ZhuM. ZhangL. YanL. Properties and molecular mechanisms of resveratrol: A review.Pharmazie201570850150626380517
    [Google Scholar]
  50. FanY. LiuY. GaoL. ZhangY. YiJ. Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate.Food Chem.201826128329110.1016/j.foodchem.2018.04.05529739595
    [Google Scholar]
  51. TabibiazarM. MohammadifarM.A. RoufegarinejadL. GhorbaniM. HashemiM. HamishehkarH. Improvement in dispersibility, stability and antioxidant activity of resveratrol using a colloidal nanodispersion of BSA-resveratrol.Food Biosci.201927465310.1016/j.fbio.2018.10.015
    [Google Scholar]
  52. ZykovaTA ZhuF ZhaiX Resveratrol directly targets COX-2 to inhibit carcinogenesis.Molecular Carcinogenesis20084710797805
    [Google Scholar]
  53. VaroniE.M. Lo FaroA.F. Sharifi-RadJ. IritiM. Anticancer molecular mechanisms of resveratrol.Front. Nutr.20163810.3389/fnut.2016.0000827148534
    [Google Scholar]
  54. FarooqiA. KhalidS. AhmadA. Regulation of cell signaling pathways and mirnas by resveratrol in different cancers.Int. J. Mol. Sci.201819365210.3390/ijms1903065229495357
    [Google Scholar]
  55. BaleaŞ.S. PârvuA.E. PârvuM. VlaseL. DeheleanC.A. PopT.I. Antioxidant, anti-inflammatory and antiproliferative effects of the Vitis vinifera L. var. Fetească Neagră and pinot noir pomace extracts.Front. Pharmacol.20201199010.3389/fphar.2020.0099032719600
    [Google Scholar]
  56. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.126359728001084
    [Google Scholar]
  57. BastinA. SadeghiA. NematollahiM.H. AbolhassaniM. MohammadiA. AkbariH. The effects of malvidin on oxidative stress parameters and inflammatory cytokines in LPS-induced human THP-1 cells.J. Cell. Physiol.202123642790279910.1002/jcp.3004932914418
    [Google Scholar]
  58. RoccaroA.M. LeleuX. SaccoA. MoreauA.S. HatjiharissiE. JiaX. XuL. CiccarelliB. PattersonC.J. NgoH.T. RussoD. VaccaA. DammaccoF. AndersonK.C. GhobrialI.M. TreonS.P. Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenström’s macroglobulinemia.Clin. Cancer Res.20081461849185810.1158/1078‑0432.CCR‑07‑175018347188
    [Google Scholar]
  59. MengT. XiaoD. MuhammedA. DengJ. ChenL. HeJ. Anti-inflammatory action and mechanisms of resveratrol.Molecules202126122910.3390/molecules2601022933466247
    [Google Scholar]
  60. UdenigweC.C. RamprasathV.R. AlukoR.E. JonesP.J.H. Potential of resveratrol in anticancer and anti-inflammatory therapy.Nutr. Rev.200866844545410.1111/j.1753‑4887.2008.00076.x18667005
    [Google Scholar]
  61. RibaA. DeresL. SumegiB. TothK. SzabadosE. HalmosiR. Cardioprotective effect of resveratrol in a postinfarction heart failure model.Oxid. Med. Cell. Longev.2017201711010.1155/2017/681928129109832
    [Google Scholar]
  62. WuJ.M. HsiehT. Resveratrol: A cardioprotective substance.Ann. N. Y. Acad. Sci.201112151162110.1111/j.1749‑6632.2010.05854.x21261637
    [Google Scholar]
  63. SinghJ.P. SinghB. KaurA. Nutraceuticals and functional foods in aging and aging-associated diseases.Nutrition, Food and Diet in Ageing and LongevitySpringer, Cham.20211422123810.1007/978‑3‑030‑83017‑5_12
    [Google Scholar]
  64. SalehiB. MishraA. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines603009130205595
    [Google Scholar]
  65. PengY. AoM. DongB. JiangY. YuL. ChenZ. HuC. XuR. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures.Drug Des. Devel. Ther.2021154503452510.2147/DDDT.S32737834754179
    [Google Scholar]
  66. RaufA. ImranM. SuleriaH.A.R. AhmadB. PetersD.G. MubarakM.S. A comprehensive review of the health perspectives of resveratrol.Food Funct.20178124284430510.1039/C7FO01300K29044265
    [Google Scholar]
  67. RazickD.I. AkhtarM. WenJ. AlamM. DeanN. KarabalaM. AnsariU. AnsariZ. TabaieE. SiddiquiS. The role of sirtuin 1 (SIRT1) in neurodegeneration.Cureus2023156e4046310.7759/cureus.4046337456463
    [Google Scholar]
  68. CaiJ.C. LiuW. LuF. KongW.B. ZhouX.X. MiaoP. LeiC.X. WangY. Resveratrol attenuates neurological deficit and neuroinflammation following intracerebral hemorrhage.Exp. Ther. Med.20181554131413810.3892/etm.2018.593829725362
    [Google Scholar]
  69. GomesB.A.Q. SilvaJ.P.B. RomeiroC.F.R. dos SantosS.M. RodriguesC.A. GonçalvesP.R. SakaiJ.T. MendesP.F.S. VarelaE.L.P. MonteiroM.C. Neuroprotective mechanisms of resveratrol in alzheimer’s disease: Role of SIRT1.Oxid. Med. Cell. Longev.2018201811510.1155/2018/815237330510627
    [Google Scholar]
  70. MoraesD.S. MoreiraD.C. AndradeJ.M.O. SantosS.H.S. Sirtuins, brain and cognition: A review of resveratrol effects.IBRO Rep.20209465110.1016/j.ibror.2020.06.00433336103
    [Google Scholar]
  71. ArgirovaM.A. GeorgievaM.K. Hristova-AvakumovaN.G. VuchevD.I. Popova-DaskalovaG.V. AnichinaK.K. YanchevaD.Y. New 1 H -benzimidazole-2-yl hydrazones with combined antiparasitic and antioxidant activity.RSC Advances20211163398483986810.1039/D1RA07419A35494105
    [Google Scholar]
  72. HouilléB. PaponN. BoudesocqueL. BourdeaudE. BesseauS. CourdavaultV. Enguehard-GueiffierC. DelanoueG. GuérinL. BoucharaJ.P. ClastreM. Giglioli-Guivarc’hN. GuillardJ. LanoueA. Antifungal activity of resveratrol derivatives against Candida species.J. Nat. Prod.20147771658166210.1021/np500257625014026
    [Google Scholar]
  73. SunA.Y. WangQ. SimonyiA. SunG.Y. Resveratrol as a therapeutic agent for neurodegenerative diseases.Mol. Neurobiol.2010412-337538310.1007/s12035‑010‑8111‑y20306310
    [Google Scholar]
  74. TelloneE. GaltieriA. RussoA. GiardinaB. FicarraS. Resveratrol: A focus on several neurodegenerative diseases.Oxid. Med. Cell. Longev.2015201511410.1155/2015/39216926180587
    [Google Scholar]
  75. SadeghiA. Seyyed EbrahimiS.S. GolestaniA. MeshkaniR. Resveratrol ameliorates palmitate-induced inflammation in skeletal muscle cells by attenuating oxidative stress and JNK/NF-κB pathway in a SIRT1-independent mechanism.J. Cell. Biochem.201711892654266310.1002/jcb.2586828059488
    [Google Scholar]
  76. BastianettoS. MénardC. QuirionR. Neuroprotective action of resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261195120110.1016/j.bbadis.2014.09.01125281824
    [Google Scholar]
  77. RegeS.D. GeethaT. GriffinG.D. BroderickT.L. BabuJ.R. Neuroprotective effects of resveratrol in Alzheimer disease pathology.Front. Aging Neurosci.2014621810.3389/fnagi.2014.0021825309423
    [Google Scholar]
  78. SinghN. BansalY. BhandariR. MarwahaL. SinghR. ChopraK. KuhadA. Resveratrol protects against ICV collagenase-induced neurobehavioral and biochemical deficits.J. Inflamm.20171411410.1186/s12950‑017‑0158‑328615993
    [Google Scholar]
  79. AlbaniD. PolitoL. SignoriniA. ForloniG. Neuroprotective properties of resveratrol in different neurodegenerative disorders.Biofactors201036537037610.1002/biof.11820848560
    [Google Scholar]
  80. DvorakovaM. LandaP. Anti-inflammatory activity of natural stilbenoids: A review.Pharmacol. Res.201712412614510.1016/j.phrs.2017.08.00228803136
    [Google Scholar]
  81. KongF. ZhangR. ZhaoX. ZhengG. WangZ. WangP. Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression.Korean J. Physiol. Pharmacol.201721546547410.4196/kjpp.2017.21.5.46528883751
    [Google Scholar]
  82. MattioL.M. DallavalleS. MussoL. FilardiR. FranzettiL. PellegrinoL. D’InceccoP. MoraD. PintoA. ArioliS. Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens.Sci. Rep.2019911952510.1038/s41598‑019‑55975‑131862939
    [Google Scholar]
  83. AbediniE. KhodadadiE. ZeinalzadehE. MoaddabS.R. AsgharzadehM. MehramouzB. DaoS. Samadi KafilH. A comprehensive study on the antimicrobial properties of resveratrol as an alternative therapy.Evid. Based Complement. Alternat. Med.2021202111510.1155/2021/886631133815561
    [Google Scholar]
  84. ZhangF. LiuJ. ShiJ.S. Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation.Eur. J. Pharmacol.20106361-31710.1016/j.ejphar.2010.03.04320361959
    [Google Scholar]
  85. NunesS. DanesiF. Del RioD. SilvaP. Resveratrol and inflammatory bowel disease: The evidence so far.Nutr. Res. Rev.2018311859710.1017/S095442241700021X29191255
    [Google Scholar]
  86. PatelK.R. BrownV.A. JonesD.J.L. BrittonR.G. HemingwayD. MillerA.S. WestK.P. BoothT.D. PerloffM. CrowellJ.A. BrennerD.E. StewardW.P. GescherA.J. BrownK. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients.Cancer Res.201070197392739910.1158/0008‑5472.CAN‑10‑202720841478
    [Google Scholar]
  87. CarstenR.E. BachandA.M. BaileyS.M. UllrichR.L. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells.Radiat. Res.2008169663363810.1667/RR1190.118494544
    [Google Scholar]
  88. SebastiàN. MontoroA. MontoroA. AlmonacidM. VillaescusaJ.I. CerveraJ. SuchE. SillaM.A. SorianoJ.M. Assessment in vitro of radioprotective efficacy of curcumin and resveratrol.Radiat. Meas.201146996296610.1016/j.radmeas.2011.05.009
    [Google Scholar]
  89. SebastiàN. AlmonacidM. VillaescusaJ.I. CerveraJ. SuchE. SillaM.A. SorianoJ.M. MontoroA. Radioprotective activity and cytogenetic effect of resveratrol in human lymphocytes: An in vitro evaluation.Food Chem. Toxicol.20135139139510.1016/j.fct.2012.10.01323099504
    [Google Scholar]
  90. AhmadI. AnwarM. AkhterS. ThakurP. ChawlaR. SharmaR.K. AliA. AhmadF.J. Supercritical fluid technology-based trans-resveratrol sln for long circulation and improved radioprotection.J. Pharm. Innov.201611430832210.1007/s12247‑016‑9254‑9
    [Google Scholar]
  91. Manzari-TavakoliA. BabajaniA. TavakoliM.M. SafaeinejadF. JafariA. Integrating natural compounds and nanoparticle‐based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy.Cancer Med.2024135e701010.1002/cam4.701038491817
    [Google Scholar]
  92. AnnajiM. PoudelI. BodduS.H.S. ArnoldR.D. TiwariA.K. BabuR.J. Resveratrol-loaded nanomedicines for cancer applications.Cancer Rep.202143e135310.1002/cnr2.135333655717
    [Google Scholar]
  93. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  94. Sharifi-RadJ. QuispeC. MukazhanovaZ. KnutE. TurgumbayevaA. KipchakbayevaA. SeitimovaG. MahomoodallyM.F. LobineD. KoayA. WangJ. SheridanH. Leyva-GómezG. Prado-AudeloM.L.D. CortesH. RescignoA. ZuccaP. SytarO. ImranM. RodriguesC.F. Cruz-MartinsN. EkiertH. KumarM. Abdull RazisA.F. SunusiU. KamalR.M. SzopaA. Resveratrol-based nanoformulations as an emerging therapeutic strategy for cancer.Front. Mol. Biosci.2021864939510.3389/fmolb.2021.64939534540888
    [Google Scholar]
  95. ChisA.A. DobreaC. MorgovanC. ArseniuA.M. RusL.L. ButucaA. JuncanA.M. TotanM. Vonica-TincuA.L. CormosG. MunteanA.C. MuresanM.L. GligorF.G. FrumA. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  96. GligorijevićN. Stanić-VučinićD. RadomirovićM. StojadinovićM. KhulalU. NedićO. Ćirković VeličkovićT. Role of resveratrol in prevention and control of cardiovascular disorders and cardiovascular complications related to covid-19 disease: Mode of action and approaches explored to increase its bioavailability.Molecules20212610283410.3390/molecules2610283434064568
    [Google Scholar]
  97. SmoligaJ. BlanchardO. Enhancing the delivery of resveratrol in humans: If low bioavailability is the problem, what is the solution?Molecules20141911171541717210.3390/molecules19111715425347459
    [Google Scholar]
  98. MukherjeeS. DudleyJ.I. DasD.K. Dose-dependency of resveratrol in providing health benefits.Dose Response20108447850010.2203/dose‑response.09‑015.Mukherjee21191486
    [Google Scholar]
  99. BrownV.A. PatelK.R. ViskadurakiM. CrowellJ.A. PerloffM. BoothT.D. VasilininG. SenA. SchinasA.M. PiccirilliG. BrownK. StewardW.P. GescherA.J. BrennerD.E. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis.Cancer Res.201070229003901110.1158/0008‑5472.CAN‑10‑236420935227
    [Google Scholar]
  100. Tomé-CarneiroJ. GonzálvezM. LarrosaM. Yáñez-GascónM.J. García-AlmagroF.J. Ruiz-RosJ.A. Tomás-BarberánF.A. García-ConesaM.T. EspínJ.C. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease.Cardiovasc. Drugs Ther.2013271374810.1007/s10557‑012‑6427‑823224687
    [Google Scholar]
  101. PatelK.R. ScottE. BrownV.A. GescherA.J. StewardW.P. BrownK. Clinical trials of resveratrol.Ann. N. Y. Acad. Sci.20111215116116910.1111/j.1749‑6632.2010.05853.x21261655
    [Google Scholar]
  102. BodeL.M. BunzelD. HuchM. ChoG.S. RuhlandD. BunzelM. BubA. FranzC.M.A.P. KullingS.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota.Am. J. Clin. Nutr.201397229530910.3945/ajcn.112.04937923283496
    [Google Scholar]
  103. la PorteC. VoducN. ZhangG. SeguinI. TardiffD. SinghalN. CameronD.W. Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects.Clin. Pharmacokinet.201049744945410.2165/11531820‑000000000‑0000020528005
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232291487240603093218
Loading
/content/journals/cgt/10.2174/0115665232291487240603093218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test