Skip to content
2000
image of DNMT3A Deficiency Reduces DNMT3B Gene Methylation and Contributes to Whole-Genome Transcription Alterations in HEK293 Cells

Abstract

Introduction

DNA methylation is an important epigenetic modification associated with transcriptional repression and plays key roles in normal cell growth as well as oncogenesis. Among the three main DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), DNMT3A mediates DNA methylation. However, the general effect of DNMT3A on cell proliferation, metabolism, and downstream gene regulation is still to be unveiled.

Method

In this study, we successfully created -deficient HEK293 cells with frameshift mutations in the catalytic domain using CRISPR/Cas9 technology. The deficient cells showed a 21.5% reduction in global DNA methylation levels, leading to impaired cell proliferation as well as a blockage of MAPK and PI3K-Akt pathways in comparison with wild-type cells.

Result

RNA-seq analysis demonstrated that knockout resulted in the up-regulation of genes and pathways related to cell metabolism but down-regulation of those involved in ribosome function, potentially explaining the growth and signaling pathways inhibition. Furthermore, DNMT3A ablation reduced gene methylation, explaining the down-regulated profiles of genes.

Conclusion

Our findings suggest a complex epigenetic regulatory role for , and the compensatory upregulation of in response to deficiency warrants further investigation to be validated in future studies.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029351729250217113313
2025-02-24
2025-05-05
Loading full text...

Full text loading...

References

  1. You J.S. Jones P.A. Cancer genetics and epigenetics: Two sides of the same coin? Cancer Cell 2012 22 1 9 20 10.1016/j.ccr.2012.06.008 22789535
    [Google Scholar]
  2. Banaszak L.G. Giudice V. Zhao X. Wu Z. Gao S. Hosokawa K. Keyvanfar K. Townsley D.M. Gutierrez-Rodrigues F. Fernandez Ibanez M.P. Kajigaya S. Young N.S. Abnormal RNA splicing and genomic instability after induction of DNMT3A mutations by CRISPR/Cas9 gene editing. Blood Cells Mol. Dis. 2018 69 10 22 10.1016/j.bcmd.2017.12.002 29324392
    [Google Scholar]
  3. Chen F. Zhang Y. Shen L. Creighton C.J. The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival. Nat. Commun. 2024 15 1 6775 10.1038/s41467‑024‑51276‑y 39117669
    [Google Scholar]
  4. Zhong F. Lin Y. Zhao L. Yang C. Ye Y. Shen Z. Reshaping the tumour immune microenvironment in solid tumours via tumour cell and immune cell DNA methylation: From mechanisms to therapeutics. Br. J. Cancer 2023 129 1 24 37 10.1038/s41416‑023‑02292‑0 37117649
    [Google Scholar]
  5. Bestor T.H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992 11 7 2611 2617 10.1002/j.1460‑2075.1992.tb05326.x 1628623
    [Google Scholar]
  6. Laranjeira A.B.A. Hollingshead M.G. Nguyen D. Kinders R.J. Doroshow J.H. Yang S.X. DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors. Sci. Rep. 2023 13 1 5964 10.1038/s41598‑023‑32509‑4 37045940
    [Google Scholar]
  7. Okano M. Bell D.W. Haber D.A. Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999 99 3 247 257 10.1016/S0092‑8674(00)81656‑6 10555141
    [Google Scholar]
  8. Okano M. Xie S. Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 1998 19 3 219 220 10.1038/890 9662389
    [Google Scholar]
  9. Huang Y.H. Su J. Lei Y. Brunetti L. Gundry M.C. Zhang X. Jeong M. Li W. Goodell M.A. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol. 2017 18 1 176 10.1186/s13059‑017‑1306‑z 28923089
    [Google Scholar]
  10. Riggs A.D. Xiong Z. Methylation and epigenetic fidelity. Proc. Natl. Acad. Sci. USA 2004 101 1 4 5 10.1073/pnas.0307781100 14695893
    [Google Scholar]
  11. Liao J. Karnik R. Gu H. Ziller M.J. Clement K. Tsankov A.M. Akopian V. Gifford C.A. Donaghey J. Galonska C. Pop R. Reyon D. Tsai S.Q. Mallard W. Joung J.K. Rinn J.L. Gnirke A. Meissner A. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 2015 47 5 469 478 10.1038/ng.3258 25822089
    [Google Scholar]
  12. Challen G.A. Sun D. Jeong M. Luo M. Jelinek J. Berg J.S. Bock C. Vasanthakumar A. Gu H. Xi Y. Liang S. Lu Y. Darlington G.J. Meissner A. Issa J.P.J. Godley L.A. Li W. Goodell M.A. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 2012 44 1 23 31 10.1038/ng.1009 22138693
    [Google Scholar]
  13. Ghoshal B. Picard C.L. Vong B. Feng S. Jacobsen S.E. CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc. Natl. Acad. Sci. USA 2021 118 23 e2125016118 10.1073/pnas.2125016118 34074795
    [Google Scholar]
  14. Villiger L. Joung J. Koblan L. Weissman J. Abudayyeh O.O. Gootenberg J.S. CRISPR technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 2024 25 6 464 487 10.1038/s41580‑023‑00697‑6 38308006
    [Google Scholar]
  15. Cong L. Ran F.A. Cox D. Lin S. Barretto R. Habib N. Hsu P.D. Wu X. Jiang W. Marraffini L.A. Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 339 6121 819 823 10.1126/science.1231143 23287718
    [Google Scholar]
  16. Mali P. Yang L. Esvelt K.M. Aach J. Guell M. DiCarlo J.E. Norville J.E. Church G.M. RNA-guided human genome engineering via Cas9. Science 2013 339 6121 823 826 10.1126/science.1232033 23287722
    [Google Scholar]
  17. Zheng Q. Cai X. Tan M.H. Schaffert S. Arnold C.P. Gong X. Chen C.Z. Huang S. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques 2014 57 3 115 124 10.2144/000114196 25209046
    [Google Scholar]
  18. Dwi Putra S.E. Neuber C. Reichetzeder C. Hocher B. Kleuser B. Analysis of genomic DNA methylation levels in human placenta using liquid chromatography-electrospray ionization tandem mass spectrometry. Cell. Physiol. Biochem. 2014 33 4 945 952 10.1159/000358666 24713853
    [Google Scholar]
  19. Trapnell C. Pachter L. Salzberg S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009 25 9 1105 1111 10.1093/bioinformatics/btp120 19289445
    [Google Scholar]
  20. Trapnell C. Roberts A. Goff L. Pertea G. Kim D. Kelley D.R. Pimentel H. Salzberg S.L. Rinn J.L. Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012 7 3 562 578 10.1038/nprot.2012.016 22383036
    [Google Scholar]
  21. Stengel A. Kern W. Meggendorfer M. Nadarajah N. Perglerovà K. Haferlach T. Haferlach C. Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Leukemia 2018 32 2 295 302 10.1038/leu.2017.239 28751771
    [Google Scholar]
  22. Lin M. Liu Y. Ding X. Ke Q. Shi J. Ma Z. Gu H. Wang H. Zhang C. Yang C. Fang Z. Zhou L. Ye M. E2F1 transactivates IQGAP3 and promotes proliferation of hepatocellular carcinoma cells through IQGAP3-mediated PKC-alpha activation. Am. J. Cancer Res. 2019 9 2 285 299 30906629
    [Google Scholar]
  23. Gao X.N. Yan F. Lin J. Gao L. Lu X.L. Wei S.C. Shen N. Pang J.X. Ning Q.Y. Komeno Y. Deng A.L. Xu Y.H. Shi J.L. Li Y.H. Zhang D.E. Nervi C. Liu S.J. Yu L. AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation. Leukemia 2015 29 8 1730 1740 10.1038/leu.2015.56 25727291
    [Google Scholar]
  24. Yang S.M. Huang C.Y. Shiue H.S. Pu Y.S. Hsieh Y.H. Chen W.J. Lin Y.C. Hsueh Y.M. Combined effects of DNA methyltransferase 1 and 3A polymorphisms and urinary total arsenic levels on the risk for clear cell renal cell carcinoma. Toxicol. Appl. Pharmacol. 2016 305 103 110 10.1016/j.taap.2016.06.011 27292127
    [Google Scholar]
  25. Jeong M. Park H.J. Celik H. Ostrander E.L. Reyes J.M. Guzman A. Rodriguez B. Lei Y. Lee Y. Ding L. Guryanova O.A. Li W. Goodell M.A. Challen G.A. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell Rep. 2018 23 1 1 10 10.1016/j.celrep.2018.03.025 29617651
    [Google Scholar]
  26. Hatazawa Y. Ono Y. Hirose Y. Kanai S. Fujii N.L. Machida S. Nishino I. Shimizu T. Okano M. Kamei Y. Ogawa Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration. FASEB J. 2018 32 3 1452 1467 10.1096/fj.201700573R 29146735
    [Google Scholar]
  27. Ritt D.A. Abreu-Blanco M.T. Bindu L. Durrant D.E. Zhou M. Specht S.I. Stephen A.G. Holderfield M. Morrison D.K. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Mol. Cell 2016 64 5 875 887 10.1016/j.molcel.2016.10.029 27889448
    [Google Scholar]
  28. Hu T. Chen F. Chen D. Liang H. DNMT3a negatively regulates PTEN to activate the PI3K/AKT pathway to aggravate renal fibrosis. Cell. Signal. 2022 96 110352 10.1016/j.cellsig.2022.110352 35523401
    [Google Scholar]
  29. Loaeza-Loaeza J. Beltran A.S. Hernández-Sotelo D. DNMTs and impact of CpG content, transcription factors, consensus motifs, lncRNAs, and histone marks on DNA methylation. Genes (Basel) 2020 11 11 1336 10.3390/genes11111336 33198240
    [Google Scholar]
  30. Du J. Johnson L.M. Groth M. Feng S. Hale C.J. Li S. Vashisht A.A. Gallego-Bartolome J. Wohlschlegel J.A. Patel D.J. Jacobsen S.E. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol. Cell 2014 55 3 495 504 10.1016/j.molcel.2014.06.009 25018018
    [Google Scholar]
  31. Harris C.J. Scheibe M. Wongpalee S.P. Liu W. Cornett E.M. Vaughan R.M. Li X. Chen W. Xue Y. Zhong Z. Yen L. Barshop W.D. Rayatpisheh S. Gallego-Bartolome J. Groth M. Wang Z. Wohlschlegel J.A. Du J. Rothbart S.B. Butter F. Jacobsen S.E. A DNA methylation reader complex that enhances gene transcription. Science 2018 362 6419 1182 1186 10.1126/science.aar7854 30523112
    [Google Scholar]
  32. Büttner P. Ueberham L. Shoemaker M.B. Roden D.M. Dinov B. Hindricks G. Bollmann A. Husser D. Identification of central regulators of calcium signaling and ECM–receptor interaction genetically associated with the progression and recurrence of atrial fibrillation. Front. Genet. 2018 9 162 10.3389/fgene.2018.00162 29868113
    [Google Scholar]
  33. Zhang H.J. Tao J. Sheng L. Hu X. Rong R.M. Xu M. Zhu T.Y. Twist2 promotes kidney cancer cell proliferation and invasion by regulating ITGA6 and CD44 expression in the ECM-receptor interaction pathway. OncoTargets Ther. 2016 9 1801 1812 27099513
    [Google Scholar]
  34. Meng Z. Moroishi T. Guan K.L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016 30 1 1 17 10.1101/gad.274027.115 26728553
    [Google Scholar]
  35. Castellano R. Perruchot M.H. Tesseraud S. Métayer-Coustard S. Baeza E. Mercier Y. Gondret F. Methionine and cysteine deficiencies altered proliferation rate and time-course differentiation of porcine preadipose cells. Amino Acids 2017 49 2 355 366 10.1007/s00726‑016‑2369‑y 27888346
    [Google Scholar]
/content/journals/cg/10.2174/0113892029351729250217113313
Loading
/content/journals/cg/10.2174/0113892029351729250217113313
Loading

Data & Media loading...

Supplements

The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Fig. : Promoter region sequences and CpG islands of representative genes for bisulfite DNA analysis.; Table : Standard curves of dG and m5dC for the determination of genomic DNA methylation using UPLC-MS.


  • Article Type:
    Research Article
Keywords: methylation ; RNA-seq ; CRISPR/Cas9 ; DNMT3A ; HEK293
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test