Skip to content
2000
image of Influenza Virus Genomic Mutations, Host Barrier and Cross-Species Transmission

Abstract

Influenza is a global epidemic infectious disease that causes a significant number of illnesses and deaths annually. Influenza exhibits high variability and infectivity, constantly jumping from birds to mammals. Genomic mutations of the influenza virus are a central mechanism leading to viral variation and antigenic evolution. These are crucial in facilitating the virus to cross species barriers and cause human infection. This review summarizes the types of genomic mutations in the influenza virus, their roles and mechanisms in crossing species barriers, and analyzes the impact of these mutations on human health.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029316603240926051325
2024-10-11
2025-01-22
Loading full text...

Full text loading...

References

  1. Subbarao K. The Critical Interspecies Transmission Barrier at the Animal–Human Interface. Trop. Med. Infect. Dis. 2019 4 2 72 10.3390/tropicalmed4020072 31027299
    [Google Scholar]
  2. Lill M. Kõks S. Soomets U. Schalkwyk L.C. Fernandes C. Lutsar I. Taba P. Peripheral blood RNA gene expression profiling in patients with bacterial meningitis. Front. Neurosci. 2013 7 33 10.3389/fnins.2013.00033 23515576
    [Google Scholar]
  3. Cheung P.H.H. Lee T.W.T. Chan C.P. Jin D.Y. Influenza A virus PB1-F2 protein: An ambivalent innate immune modulator and virulence factor. J. Leukoc. Biol. 2020 107 5 763 771 10.1002/JLB.4MR0320‑206R 32323899
    [Google Scholar]
  4. Varga Z.T. Grant A. Manicassamy B. Palese P. Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. J. Virol. 2012 86 16 8359 8366 10.1128/JVI.01122‑12 22674996
    [Google Scholar]
  5. Varga Z.T. Ramos I. Hai R. Schmolke M. García-Sastre A. Fernandez-Sesma A. Palese P. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog. 2011 7 6 e1002067 10.1371/journal.ppat.1002067 21695240
    [Google Scholar]
  6. Conenello G.M. Zamarin D. Perrone L.A. Tumpey T. Palese P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 2007 3 10 e141 10.1371/journal.ppat.0030141 17922571
    [Google Scholar]
  7. Webby R. Hoffmann E. Webster R. Molecular constraints to interspecies transmission of viral pathogens. Nat Med 2004 10 S77 81 10.1038/nm1151.
    [Google Scholar]
  8. Conenello G.M. Tisoncik J.R. Rosenzweig E. Varga Z.T. Palese P. Katze M.G. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo . J. Virol. 2011 85 2 652 662 10.1128/JVI.01987‑10 21084483
    [Google Scholar]
  9. Su W. Harfoot R. Su Y.C.F. DeBeauchamp J. Joseph U. Jayakumar J. Crumpton J.C. Jeevan T. Rubrum A. Franks J. Pascua P.N.Q. Kackos C. Zhang Y. Zhang M. Ji Y. Bui H.T. Jones J.C. Kercher L. Krauss S. Pleschka S. Chan M.C.W. Webster R.G. Wu C.Y. Van Reeth K. Peiris M. Webby R.J. Smith G.J.D. Yen H.L. Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nat. Microbiol. 2021 6 11 1455 1465 10.1038/s41564‑021‑00976‑y 34702977
    [Google Scholar]
  10. Santos L.A. Almeida F. Gíria M. Trigueiro-Louro J. Rebelo-de-Andrade H. Adaptive evolution of PB1 from influenza A(H1N1)pdm09 virus towards an enhanced fitness. Virology 2023 578 1 6 10.1016/j.virol.2022.11.003 36423573
    [Google Scholar]
  11. Liu D. Liu X. Yan J. Liu W.J. Gao G.F. Interspecies transmission and host restriction of avian H5N1 influenza virus. Sci. China C Life Sci. 2009 52 5 428 438 10.1007/s11427‑009‑0062‑z 19471865
    [Google Scholar]
  12. Sun H. Li H. Tong Q. Han Q. Liu J. Yu H. Song H. Qi J. Li J. Yang J. Lan R. Deng G. Chang H. Qu Y. Pu J. Sun Y. Lan Y. Wang D. Shi Y. Liu W.J. Chang K.C. Gao G.F. Liu J. Airborne transmission of human-isolated avian H3N8 influenza virus between ferrets. Cell 2023 186 19 4074 4084.e11 10.1016/j.cell.2023.08.011 37669665
    [Google Scholar]
  13. Taft A.S. Ozawa M. Fitch A. Depasse J.V. Halfmann P.J. Hill-Batorski L. Hatta M. Friedrich T.C. Lopes T.J.S. Maher E.A. Ghedin E. Macken C.A. Neumann G. Kawaoka Y. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat. Commun. 2015 6 1 7491 10.1038/ncomms8491 26082035
    [Google Scholar]
  14. Arai Y. Kawashita N. Ibrahim M.S. Elgendy E.M. Daidoji T. Ono T. Takagi T. Nakaya T. Matsumoto K. Watanabe Y. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathog. 2019 15 7 e1007919 10.1371/journal.ppat.1007919 31265471
    [Google Scholar]
  15. Luk G.S.M. Leung C.Y.H. Sia S.F. Choy K.T. Zhou J. Ho C.C.K. Cheung P.P.H. Lee E.F. Wai C.K.L. Li P.C.H. Ip S.M. Poon L.L.M. Lindsley W.G. Peiris M. Yen H.L. Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets. J. Virol. 2015 89 19 9939 9951 10.1128/JVI.01444‑15 26202239
    [Google Scholar]
  16. Yang L. Zhu W. Li X. Chen M. Wu J. Yu P. Qi S. Huang Y. Shi W. Dong J. Zhao X. Huang W. Li Z. Zeng X. Bo H. Chen T. Chen W. Liu J. Zhang Y. Liang Z. Shi W. Shu Y. Wang D. Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China. J. Virol. 2017 91 23 e01277-17 10.1128/JVI.01277‑17 28956760
    [Google Scholar]
  17. Li B. Su G. Xiao C. Zhang J. Li H. Sun N. Lao G. Yu Y. Ren X. Qi W. Wang X. Liao M. The PB2 co‐adaptation of H10N8 avian influenza virus increases the pathogenicity to chickens and mice. Transbound. Emerg. Dis. 2022 69 4 1794 1803 10.1111/tbed.14157 34008327
    [Google Scholar]
  18. Wang Y. Niu S. Zhang B. Yang C. Zhou Z. WITHDRAWN: The whole genome analysis for the first human infection with H10N3 influenza virus in China. J. Infect. 2021 S0163-4453(21)00318-2 10.1016/j.jinf.2021.06.021 34192524
    [Google Scholar]
  19. Sang X. Wang A. Ding J. Kong H. Gao X. Li L. Chai T. Li Y. Zhang K. Wang C. Wan Z. Huang G. Wang T. Feng N. Zheng X. Wang H. Zhao Y. Yang S. Qian J. Hu G. Gao Y. Xia X. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets. Sci. Rep. 2015 5 1 15928 10.1038/srep15928 26552719
    [Google Scholar]
  20. Si Y.J. Park Y.R. Baek Y.G. Park M.J. Lee E.K. Lee K.N. Kim H.R. Lee Y.J. Lee Y.N. Pathogenesis and genetic characteristics of low pathogenic avian influenza H10 viruses isolated from migratory birds in South Korea during 2010–2019. Transbound. Emerg. Dis. 2022 69 5 2588 2599 10.1111/tbed.14409 34863022
    [Google Scholar]
  21. Arai Y. Kawashita N. Daidoji T. Ibrahim M.S. El-Gendy E.M. Takagi T. Takahashi K. Suzuki Y. Ikuta K. Nakaya T. Shioda T. Watanabe Y. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses. PLoS Pathog. 2016 12 4 e1005583 10.1371/journal.ppat.1005583 27097026
    [Google Scholar]
  22. Hayashi T. Wills S. Bussey K.A. Takimoto T. Identification of Influenza A Virus PB2 Residues Involved in Enhanced Polymerase Activity and Virus Growth in Mammalian Cells at Low Temperatures. J. Virol. 2015 89 15 8042 8049 10.1128/JVI.00901‑15 26018156
    [Google Scholar]
  23. Liu Q. Qiao C. Marjuki H. Bawa B. Ma J. Guillossou S. Webby R.J. Richt J.A. Ma W. Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral replication and virulence of swine influenza virus in cultured cells and in vivo . J. Virol. 2012 86 2 1233 1237 10.1128/JVI.05699‑11 22072752
    [Google Scholar]
  24. Sun X. Pulit-Penaloza J.A. Belser J.A. Pappas C. Pearce M.B. Brock N. Zeng H. Creager H.M. Zanders N. Jang Y. Tumpey T.M. Davis C.T. Maines T.R. Pathogenesis and Transmission of Genetically Diverse Swine-Origin H3N2 Variant Influenza A Viruses from Multiple Lineages Isolated in the United States, 2011–2016. J. Virol. 2018 92 16 e00665-18 10.1128/JVI.00665‑18 29848587
    [Google Scholar]
  25. Zhou W. Fong M.Y. Min Y. Somlo G. Liu L. Palomares M.R. Yu Y. Chow A. O’Connor S.T.F. Chin A.R. Yen Y. Wang Y. Marcusson E.G. Chu P. Wu J. Wu X. Li A.X. Li Z. Gao H. Ren X. Boldin M.P. Lin P.C. Wang S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014 25 4 501 515 10.1016/j.ccr.2014.03.007 24735924
    [Google Scholar]
  26. Wang Z. Yang H. Chen Y. Tao S. Liu L. Kong H. Ma S. Meng F. Suzuki Y. Qiao C. Chen H. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs. J. Virol. 2017 91 21 e00800-17 10.1128/JVI.00800‑17 28814518
    [Google Scholar]
  27. Tumpey T.M. Maines T.R. Van Hoeven N. Glaser L. Solórzano A. Pappas C. Cox N.J. Swayne D.E. Palese P. Katz J.M. García-Sastre A. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 2007 315 5812 655 659 10.1126/science.1136212 17272724
    [Google Scholar]
  28. Zhang Y. Zhang Q. Gao Y. He X. Kong H. Jiang Y. Guan Y. Xia X. Shu Y. Kawaoka Y. Bu Z. Chen H. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J. Virol. 2012 86 18 9666 9674 10.1128/JVI.00958‑12 22740390
    [Google Scholar]
  29. Lakdawala S.S. Jayaraman A. Halpin R.A. Lamirande E.W. Shih A.R. Stockwell T.B. Lin X. Simenauer A. Hanson C.T. Vogel L. Paskel M. Minai M. Moore I. Orandle M. Das S.R. Wentworth D.E. Sasisekharan R. Subbarao K. The soft palate is an important site of adaptation for transmissible influenza viruses. Nature 2015 526 7571 122 125 10.1038/nature15379 26416728
    [Google Scholar]
  30. Tundup S. Kandasamy M. Perez J.T. Mena N. Steel J. Nagy T. Albrecht R.A. Manicassamy B. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species. PLoS Pathog. 2017 13 3 e1006270 10.1371/journal.ppat.1006270 28282445
    [Google Scholar]
  31. Wang D. Zhu W. Yang L. Shu Y. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses. Cold Spring Harb. Perspect. Med. 2021 11 4 a038620 10.1101/cshperspect.a038620 31964651
    [Google Scholar]
  32. Linster M. van Boheemen S. de Graaf M. Schrauwen E.J.A. Lexmond P. Mänz B. Bestebroer T.M. Baumann J. van Riel D. Rimmelzwaan G.F. Osterhaus A.D.M.E. Matrosovich M. Fouchier R.A.M. Herfst S. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 2014 157 2 329 339 10.1016/j.cell.2014.02.040 24725402
    [Google Scholar]
  33. Russell C.J. Hu M. Okda F.A. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol. 2018 26 10 841 853 10.1016/j.tim.2018.03.005 29681430
    [Google Scholar]
  34. Russier M. Yang G. Briard B. Meliopoulos V. Cherry S. Kanneganti T.D. Schultz-Cherry S. Vogel P. Russell C.J. Hemagglutinin Stability Regulates H1N1 Influenza Virus Replication and Pathogenicity in Mice by Modulating Type I Interferon Responses in Dendritic Cells. J. Virol. 2020 94 3 e01423-19 10.1128/JVI.01423‑19 31694942
    [Google Scholar]
  35. Chang P. Sealy J.E. Sadeyen J.R. Bhat S. Lukosaityte D. Sun Y. Iqbal M. Immune Escape Adaptive Mutations in the H7N9 Avian Influenza Hemagglutinin Protein Increase Virus Replication Fitness and Decrease Pandemic Potential. J. Virol. 2020 94 19 e00216-20 10.1128/JVI.00216‑20 32699084
    [Google Scholar]
  36. Ma N. Li X. Jiang H. Dai Y. Xu G. Zhang Z. Influenza Virus Neuraminidase Engages CD83 and Promotes Pulmonary Injury. J. Virol. 2021 95 3 e01753 20 10.1128/JVI.01753‑20.
    [Google Scholar]
  37. Diederich S. Berhane Y. Embury-Hyatt C. Hisanaga T. Handel K. Cottam-Birt C. Ranadheera C. Kobasa D. Pasick J. Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA 0 Cleavage Site. J. Virol. 2015 89 21 10724 10734 10.1128/JVI.01238‑15 26246579
    [Google Scholar]
  38. Mitnaul L.J. Matrosovich M.N. Castrucci M.R. Tuzikov A.B. Bovin N.V. Kobasa D. Kawaoka Y. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J. Virol. 2000 74 13 6015 6020 10.1128/JVI.74.13.6015‑6020.2000 10846083
    [Google Scholar]
  39. Arai Y. Elgendy E.M. Daidoji T. Ibrahim M.S. Ono T. Sriwilaijaroen N. Suzuki Y. Nakaya T. Matsumoto K. Watanabe Y. H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity. J. Virol. 2020 94 18 e01210-20 10.1128/JVI.01210‑20 32641475
    [Google Scholar]
  40. Lai J.C.C. Karunarathna H.M.T.K. Wong H.H. Peiris J.S.M. Nicholls J.M. Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding. Emerg. Microbes Infect. 2019 8 1 327 338 10.1080/22221751.2019.1581034 30866786
    [Google Scholar]
  41. Takada K. Kawakami C. Fan S. Chiba S. Zhong G. Gu C. Shimizu K. Takasaki S. Sakai-Tagawa Y. Lopes T.J.S. Dutta J. Khan Z. Kriti D. van Bakel H. Yamada S. Watanabe T. Imai M. Kawaoka Y. A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses. Nat. Microbiol. 2019 4 8 1268 1273 10.1038/s41564‑019‑0433‑6 31036910
    [Google Scholar]
  42. Feldmann F. Kobasa D. Embury-Hyatt C. Grolla A. Taylor T. Kiso M. Kakugawa S. Gren J. Jones S.M. Kawaoka Y. Feldmann H. Oseltamivir Is Effective against 1918 Influenza Virus Infection of Macaques but Vulnerable to Escape. MBio 2019 10 5 e02059-19 10.1128/mBio.02059‑19 31641086
    [Google Scholar]
  43. Das S.R. Hensley S.E. Ince W.L. Brooke C.B. Subba A. Delboy M.G. Russ G. Gibbs J.S. Bennink J.R. Yewdell J.W. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection. Cell Host Microbe 2013 13 3 314 323 10.1016/j.chom.2013.02.008 23498956
    [Google Scholar]
  44. Wang F. Wan Z. Wang Y. Wu J. Fu H. Gao W. Shao H. Qian K. Ye J. Qin A. Identification of Hemagglutinin Mutations Caused by Neuraminidase Antibody Pressure. Microbiol Spectr 2021 9 3 e0143921 10.1128/spectrum.01439‑21.
    [Google Scholar]
  45. Kode S.S. Pawar S.D. Tare D.S. Keng S.S. Hurt A.C. Mullick J. A novel I117T substitution in neuraminidase of highly pathogenic avian influenza H5N1 virus conferring reduced susceptibility to oseltamivir and zanamivir. Vet. Microbiol. 2019 235 21 24 10.1016/j.vetmic.2019.06.005 31282375
    [Google Scholar]
  46. Blaurock C. Blohm U. Luttermann C. Holzerland J. Scheibner D. Schäfer A. Groseth A. Mettenleiter T.C. Abdelwhab E.M. The C-terminus of non-structural protein 1 (NS1) in H5N8 clade 2.3.4.4 avian influenza virus affects virus fitness in human cells and virulence in mice. Emerg. Microbes Infect. 2021 10 1 1760 1776 10.1080/22221751.2021.1971568 34420477
    [Google Scholar]
  47. Li Z. Jiang Y. Jiao P. Wang A. Zhao F. Tian G. Wang X. Yu K. Bu Z. Chen H. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol. 2006 80 22 11115 11123 10.1128/JVI.00993‑06 16971424
    [Google Scholar]
  48. Jiao P. Tian G. Li Y. Deng G. Jiang Y. Liu C. Liu W. Bu Z. Kawaoka Y. Chen H. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J. Virol. 2008 82 3 1146 1154 10.1128/JVI.01698‑07 18032512
    [Google Scholar]
  49. Flores R.A. Cammayo-Fletcher P.L.T. Nguyen B.T. Villavicencio A.G.M. Lee S.Y. Son Y. Kim J.H. Park K.I. Yoo W.G. Jin Y.B. Min W. Kim W.H. Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. Viruses 2024 16 2 285 10.3390/v16020285 38400060
    [Google Scholar]
  50. Naguib M.M. Eriksson P. Jax E. Wille M. Lindskog C. Bröjer C. Krambrich J. Waldenström J. Kraus R.H.S. Larson G. A Comparison of Host Responses to Infection with Wild-Type Avian Influenza Viruses in Chickens and Tufted Ducks. Microbiol. Spectr. 2023 11 4 e0258622 10.1128/spectrum.02586‑22.
    [Google Scholar]
  51. Gabriel G. Dauber B. Wolff T. Planz O. Klenk H.D. Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl. Acad. Sci. USA 2005 102 51 18590 18595 10.1073/pnas.0507415102 16339318
    [Google Scholar]
  52. Lazniewski M. Dawson W.K. Szczepinska T. Plewczynski D. The structural variability of the influenza A hemagglutinin receptor-binding site. Brief. Funct. Genomics 2018 17 6 415 427 29253080
    [Google Scholar]
  53. Bradley K.C. Galloway S.E. Lasanajak Y. Song X. Heimburg-Molinaro J. Yu H. Chen X. Talekar G.R. Smith D.F. Cummings R.D. Steinhauer D.A. Analysis of influenza virus hemagglutinin receptor binding mutants with limited receptor recognition properties and conditional replication characteristics. J. Virol. 2011 85 23 12387 12398 10.1128/JVI.05570‑11 21917953
    [Google Scholar]
  54. Wasilenko J.L. Sarmento L. Pantin-Jackwood M.J. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Arch. Virol. 2009 154 6 969 979 10.1007/s00705‑009‑0399‑4 19475480
    [Google Scholar]
  55. Tada T. Suzuki K. Sakurai Y. Kubo M. Okada H. Itoh T. Tsukamoto K. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. J. Virol. 2011 85 4 1834 1846 10.1128/JVI.01648‑10 21123376
    [Google Scholar]
  56. Fan S. Deng G. Song J. Tian G. Suo Y. Jiang Y. Guan Y. Bu Z. Kawaoka Y. Chen H. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 2009 384 1 28 32 10.1016/j.virol.2008.11.044 19117585
    [Google Scholar]
  57. Souza C.K. Kimble J.B. Anderson T.K. Arendsee Z.W. Hufnagel D.E. Young K.M. Gauger P.C. Lewis N.S. Davis C.T. Thor S. Vincent Baker A.L. Swine-to-Ferret Transmission of Antigenically Drifted Contemporary Swine H3N2 Influenza A Virus Is an Indicator of Zoonotic Risk to Humans. Viruses 2023 15 2 331 10.3390/v15020331 36851547
    [Google Scholar]
  58. Shi Y. Wu Y. Zhang W. Qi J. Gao G.F. Enabling the ‘host jump’: Structural determinants of receptor-binding specificity in influenza A viruses. Nat. Rev. Microbiol. 2014 12 12 822 831 10.1038/nrmicro3362 25383601
    [Google Scholar]
  59. Sun W. Zhao M. Yu Z. Li Y. Zhang X. Feng N. Wang T. Wang H. He H. Zhao Y. Yang S. Xia X. Gao Y. Cross-species infection potential of avian influenza H13 viruses isolated from wild aquatic birds to poultry and mammals. Emerg. Microbes Infect. 2023 12 1 e2184177 10.1080/22221751.2023.2184177 36877121
    [Google Scholar]
  60. Brookes S.M. Núñez A. Choudhury B. Matrosovich M. Essen S.C. Clifford D. Slomka M.J. Kuntz-Simon G. Garcon F. Nash B. Hanna A. Heegaard P.M.H. Quéguiner S. Chiapponi C. Bublot M. Garcia J.M. Gardner R. Foni E. Loeffen W. Larsen L. Van Reeth K. Banks J. Irvine R.M. Brown I.H. Replication, pathogenesis and transmission of pandemic (H1N1) 2009 virus in non-immune pigs. PLoS One 2010 5 2 e9068 10.1371/journal.pone.0009068 20140096
    [Google Scholar]
  61. Janke B.H. Influenza A virus infections in swine: pathogenesis and diagnosis. Vet. Pathol. 2014 51 2 410 426 10.1177/0300985813513043 24363301
    [Google Scholar]
  62. Everett H.E. Nash B. Londt B.Z. Kelly M.D. Coward V. Nunez A. van Diemen P.M. Brown I.H. Brookes S.M. Interspecies Transmission of Reassortant Swine Influenza A Virus Containing Genes from Swine Influenza A(H1N1)pdm09 and A(H1N2) Viruses. Emerg Infect Dis 2020 26 2 273 281 10.3201/eid2602.190486.
    [Google Scholar]
  63. Imai M. Watanabe T. Hatta M. Das S.C. Ozawa M. Shinya K. Zhong G. Hanson A. Katsura H. Watanabe S. Li C. Kawakami E. Yamada S. Kiso M. Suzuki Y. Maher E.A. Neumann G. Kawaoka Y. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012 486 7403 420 428 10.1038/nature10831 22722205
    [Google Scholar]
  64. Xie R. Edwards K.M. Wille M. Wei X. Wong S.S. Zanin M. El-Shesheny R. Ducatez M. Poon L.L.M. Kayali G. Webby R.J. Dhanasekaran V. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 2023 622 7984 810 817 10.1038/s41586‑023‑06631‑2 37853121
    [Google Scholar]
  65. Cai J. Ruan J. Lin Q. Ren T. Chen L. China faces the challenge of influenza A virus, including H3N8, in the post-COVID-19 era. J. Infect. 2023 87 2 e39 e41 10.1016/j.jinf.2023.06.004 37295511
    [Google Scholar]
  66. Yang R. Sun H. Gao F. Luo K. Huang Z. Tong Q. Song H. Han Q. Liu J. Lan Y. Qi J. Li H. Chen S. Xu M. Qiu J. Zeng G. Zhang X. Huang C. Pei R. Zhan Z. Ye B. Guo Y. Zhou Y. Ye W. Yao D. Ren M. Li B. Yang J. Wang Y. Pu J. Sun Y. Shi Y. Liu W.J. Ou X. Gao G.F. Gao L. Liu J. Human infection of avian influenza A H3N8 virus and the viral origins: A descriptive study. Lancet Microbe 2022 3 11 e824 e834 10.1016/S2666‑5247(22)00192‑6 36115379
    [Google Scholar]
  67. Anderson T.K. Chang J. Arendsee Z.W. Venkatesh D. Souza C.K. Kimble J.B. Lewis N.S. Davis C.T. Vincent A.L. Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harb. Perspect. Med. 2021 11 3 a038737 10.1101/cshperspect.a038737 31988203
    [Google Scholar]
  68. Markin A. Ciacci Zanella G. Arendsee Z.W. Zhang J. Krueger K.M. Gauger P.C. Vincent Baker A.L. Anderson T.K. Reverse-zoonoses of 2009 H1N1 pandemic influenza A viruses and evolution in United States swine results in viruses with zoonotic potential. PLoS Pathog. 2023 19 7 e1011476 10.1371/journal.ppat.1011476 37498825
    [Google Scholar]
  69. Guan M. Hall J.S. Zhang X. Dusek R.J. Oliver A.K. Liu L. Li L. Krauss S. Danner A. Li T. Aerosol Transmission of Gull-Origin Iceland Subtype H10N7 Influenza A Virus in Ferrets. J. Virol. 2019 93 13 e00282 19 10.1128/JVI.00282‑19.
    [Google Scholar]
  70. Herfst S. Zhang J. Richard M. McBride R. Lexmond P. Bestebroer T.M. Spronken M.I.J. de Meulder D. van den Brand J.M. Rosu M.E. Martin S.R. Gamblin S.J. Xiong X. Peng W. Bodewes R. van der Vries E. Osterhaus A.D.M.E. Paulson J.C. Skehel J.J. Fouchier R.A.M. Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Cell Host Microbe 2020 28 4 602 613.e7 10.1016/j.chom.2020.08.011 33031770
    [Google Scholar]
  71. Kim E.H. Kim Y. Kim S.M. Yu K.M. Casel M.A.B. Jang S.G. Pascua P.N.Q. Webby R.J. Choi Y.K. Pathogenic assessment of avian influenza viruses in migratory birds. Emerg. Microbes Infect. 2021 10 1 565 577 10.1080/22221751.2021.1899769 33666526
    [Google Scholar]
  72. Chambers T.M. Equine Influenza. Cold Spring Harb. Perspect. Med. 2022 12 1 a038331 10.1101/cshperspect.a038331 32152243
    [Google Scholar]
  73. Liu M. Huang L.Z.X. Smits A.A. Büll C. Narimatsu Y. van Kuppeveld F.J.M. Clausen H. de Haan C.A.M. de Vries E. Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Nat. Commun. 2022 13 1 4054 10.1038/s41467‑022‑31840‑0 35831293
    [Google Scholar]
  74. Bosch F.X. Garten W. Klenk H.D. Rott R. Proteolytic cleavage of influenza virus hemagglutinins: Primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 1981 113 2 725 735 10.1016/0042‑6822(81)90201‑4 7023022
    [Google Scholar]
  75. Webster R.G. Rott R. Influenza virus a pathogenicity: The pivotal role of hemagglutinin. Cell 1987 50 5 665 666 10.1016/0092‑8674(87)90321‑7 3304656
    [Google Scholar]
  76. Krammer F. Schultz-Cherry S. We need to keep an eye on avian influenza. Nat. Rev. Immunol. 2023 23 5 267 268 10.1038/s41577‑023‑00868‑8 36944755
    [Google Scholar]
  77. Song J. Sun H. Sun H. Jiang Z. Zhu J. Wang C. Gao W. Wang T. Pu J. Sun Y. Yuan H-Y. Liu J. Swine MicroRNAs ssc-miR-221-3p and ssc-miR-222 Restrict the Cross-Species Infection of Avian Influenza Virus. J. Virol. 2020 94 23 e01700-20 10.1128/JVI.01700‑20
    [Google Scholar]
  78. Song L. Liu H. Gao S. Jiang W. Huang W. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J. Virol. 2010 84 17 8849 8860 10.1128/JVI.00456‑10 20554777
    [Google Scholar]
  79. Kumar A. Kumar A. Ingle H. Kumar S. Mishra R. Verma M.K. Biswas D. Kumar N.S. Mishra A. Raut A.A. Takaoka A. Kumar H. MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by Targeting the Viral PB1 and Host CUEDC2. J. Virol. 2018 92 19 e01057-18 10.1128/JVI.01057‑18 30045983
    [Google Scholar]
  80. Wang R. Zhang Y.Y. Lu J.S. Xia B.H. Yang Z.X. Zhu X.D. Zhou X.W. Huang P.T. The highly pathogenic H5N1 influenza A virus down‐regulated several cellular MicroRNAs which target viral genome. J. Cell. Mol. Med. 2017 21 11 3076 3086 10.1111/jcmm.13219 28609011
    [Google Scholar]
  81. Chen Y. Wang S.X. Mu R. Luo X. Liu Z.S. Liang B. Zhuo H.L. Hao X.P. Wang Q. Fang D.F. Bai Z.F. Wang Q.Y. Wang H.M. Jin B.F. Gong W.L. Zhou T. Zhang X.M. Xia Q. Li T. Dysregulation of the miR-324-5p-CUEDC2 axis leads to macrophage dysfunction and is associated with colon cancer. Cell Rep. 2014 7 6 1982 1993 10.1016/j.celrep.2014.05.007 24882011
    [Google Scholar]
  82. Rosenberger C.M. Podyminogin R.L. Diercks A.H. Treuting P.M. Peschon J.J. Rodriguez D. Gundapuneni M. Weiss M.J. Aderem A. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog. 2017 13 4 e1006305 10.1371/journal.ppat.1006305 28380049
    [Google Scholar]
  83. Zhang Z. Hu S. Li Z. Wang X. Liu M. Guo Z. Li S. Xiao Y. Bi D. Jin H. Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infect. Genet. Evol. 2011 11 7 1790 1797 10.1016/j.meegid.2011.07.025 21896338
    [Google Scholar]
  84. Ingle H. Kumar S. Raut A.A. Mishra A. Kulkarni D.D. Kameyama T. Takaoka A. Akira S. Kumar H. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci. Signal. 2015 8 406 ra126 10.1126/scisignal.aab3183.
    [Google Scholar]
  85. Ojha C.R. Rodriguez M. Dever S.M. Mukhopadhyay R. El-Hage N. Mammalian microRNA: An important modulator of host-pathogen interactions in human viral infections. J. Biomed. Sci. 2016 23 1 74 10.1186/s12929‑016‑0292‑x 27784307
    [Google Scholar]
  86. Man D.K.W. Chow M.Y.T. Casettari L. Gonzalez-Juarrero M. Lam J.K.W. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis. Adv. Drug Deliv. Rev. 2016 102 21 32 10.1016/j.addr.2016.04.013 27108702
    [Google Scholar]
  87. Datta N. Johnson C. Kao D. Gurnani P. Alexander C. Polytarchou C. Monaghan T.M. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol. Res. 2023 194 106870 10.1016/j.phrs.2023.106870 37499702
    [Google Scholar]
  88. Teng Y. Ren Y. Sayed M. Hu X. Lei C. Kumar A. Hutchins E. Mu J. Deng Z. Luo C. Sundaram K. Sriwastva M.K. Zhang L. Hsieh M. Reiman R. Haribabu B. Yan J. Jala V.R. Miller D.M. Van Keuren-Jensen K. Merchant M.L. McClain C.J. Park J.W. Egilmez N.K. Zhang H.G. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host Microbe 2018 24 5 637 652.e8 10.1016/j.chom.2018.10.001 30449315
    [Google Scholar]
  89. Shen Q. Huang Z. Ma L. Yao J. Luo T. Zhao Y. Xiao Y. Jin Y. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Gut Microbes 2022 14 1 2128604 10.1080/19490976.2022.2128604 36176029
    [Google Scholar]
  90. Ichinohe T. Pang I.K. Kumamoto Y. Peaper D.R. Ho J.H. Murray T.S. Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 2011 108 13 5354 5359 10.1073/pnas.1019378108 21402903
    [Google Scholar]
  91. Alles J. Fehlmann T. Fischer U. Backes C. Galata V. Minet M. Hart M. Abu-Halima M. Grässer F.A. Lenhof H.P. Keller A. Meese E. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019 47 7 3353 3364 10.1093/nar/gkz097 30820533
    [Google Scholar]
  92. Duarte I. Carraco G. de Azevedo N.T.D. Benes V. Andrade R.P. gga-miRNOME, a microRNA-sequencing dataset from chick embryonic tissues. Sci. Data 2022 9 1 29 10.1038/s41597‑022‑01126‑7 35102184
    [Google Scholar]
  93. Tangwangvivat R. Chaiyawong S. Nonthabenjawan N. Charoenkul K. Janethanakit T. Udom K. Kesdangsakonwut S. Tantilertcharoen R. Thontiravong A. Amonsin A. Transmission and pathogenicity of canine H3N2 influenza virus in dog and guinea pig models. Virol. J. 2022 19 1 162 10.1186/s12985‑022‑01888‑x 36224594
    [Google Scholar]
  94. Borland S. Gracieux P. Jones M. Mallet F. Yugueros-Marcos J. Influenza A Virus Infection in Cats and Dogs: A Literature Review in the Light of the “One Health” Concept. Front. Public Health 2020 8 83 10.3389/fpubh.2020.00083 32266198
    [Google Scholar]
  95. de Seixas M.M.M. de Araújo J. Krauss S. Fabrizio T. Walker D. Ometto T. Matsumiya Thomazelli L. Vanstreels R.E.T. Hurtado R.F. Krüger L. Piuco R. Petry M.V. Webster R.G. Webby R.J. Lee D.H. Chung D.H. Ferreira H.L. Durigon E.L. H6N8 avian influenza virus in Antarctic seabirds demonstrates connectivity between South America and Antarctica. Transbound. Emerg. Dis. 2022 69 6 e3436 e3446 10.1111/tbed.14728 36217218
    [Google Scholar]
  96. McCormick K. Jiang Z. Zhu L. Lawson S.R. Langenhorst R. Ransburgh R. Brunick C. Tracy M.C. Hurtig H.R. Mabee L.M. Mingo M. Li Y. Webby R.J. Huber V.C. Fang Y. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses. PLoS One 2015 10 6 e0127649 10.1371/journal.pone.0127649 26061265
    [Google Scholar]
  97. Li Z. Zaiser S.A. Shang P. Heiden D.L. Hajovsky H. Katwal P. DeVries B. Baker J. Richt J.A. Li Y. He B. Fang Y. Huber V.C. A chimeric influenza hemagglutinin delivered by parainfluenza virus 5 vector induces broadly protective immunity against genetically divergent influenza a H1 viruses in swine. Vet. Microbiol. 2020 250 108859 10.1016/j.vetmic.2020.108859 33039727
    [Google Scholar]
  98. Holzer B. Rijal P. McNee A. Paudyal B. Martini V. Clark B. Manjegowda T. Salguero F.J. Bessell E. Schwartz J.C. Moffat K. Pedrera M. Graham S.P. Noble A. Bonnet-Di Placido M. La Ragione R.M. Mwangi W. Beverley P. McCauley J.W. Daniels R.S. Hammond J.A. Townsend A.R. Tchilian E. Protective porcine influenza virus-specific monoclonal antibodies recognize similar haemagglutinin epitopes as humans. PLoS Pathog. 2021 17 3 e1009330 10.1371/journal.ppat.1009330 33662023
    [Google Scholar]
  99. Ortiz L. Geiger G. Ferreri L. Moran D. Alvarez D. Gonzalez-Reiche A.S. Mendez D. Rajao D. Cordon-Rosales C. Perez D.R. Evolution and Introductions of Influenza A Virus H1N1 in a Farrow-to-Finish Farm in Guatemala. Microbiol Spectr. 2023 11 1 e0287822 10.1128/spectrum.02878‑22.
    [Google Scholar]
  100. Su A. Yan M. Pavasutthipaisit S. Wicke K.D. Grassl G.A. Beineke A. Felmy F. Schmidt S. Esser K.H. Becher P. Herrler G. Infection Studies with Airway Organoids from Carollia perspicillata Indicate That the Respiratory Epithelium Is Not a Barrier for Interspecies Transmission of Influenza Viruses. Microbiol Spectr 2023 11 2 e0309822 10.1128/spectrum.03098‑22.
    [Google Scholar]
  101. Dewhurst R.E. Heinrich T. Watt P. Ostergaard P. Marimon J.M. Moreira M. Houldsworth P.E. Rudrum J.D. Wood D. Kõks S. Validation of a rapid, saliva-based, and ultra-sensitive SARS-CoV-2 screening system for pandemic-scale infection surveillance. Sci. Rep. 2022 12 1 5936 10.1038/s41598‑022‑08263‑4 35395856
    [Google Scholar]
  102. Lee Y.N. Lee D.H. Shin J.I. Si Y.J. Lee J.H. Baek Y.G. Hong S.Y. Bunnary S. Tum S. Park M. Kye S.J. Lee M.H. Lee Y.J. Pathogenesis and genetic characteristics of a novel reassortant low pathogenic avian influenza A(H7N6) virus isolated in Cambodia in 2019. Transbound. Emerg. Dis. 2021 68 6 3180 3186 10.1111/tbed.14256 34347386
    [Google Scholar]
  103. Chang P. Sadeyen J.R. Bhat S. Daines R. Hussain A. Yilmaz H. Iqbal M. Risk assessment of the newly emerged H7N9 avian influenza viruses. Emerg. Microbes Infect. 2023 12 1 2172965 10.1080/22221751.2023.2172965 36714929
    [Google Scholar]
  104. van Diemen P.M. Byrne A.M.P. Ramsay A.M. Watson S. Nunez A. v Moreno A. Chiapponi C. Foni E. Brown I.H. Brookes S.M. Everett H.E. Interspecies Transmission of Swine Influenza A Viruses and Human Seasonal Vaccine-Mediated Protection Investigated in Ferret Model. Emerg. Infect. Dis. 2023 29 9 1798 1807 10.3201/eid2909.230066 37610158
    [Google Scholar]
  105. Hill N.J. Bishop M.A. Trovão N.S. Ineson K.M. Schaefer A.L. Puryear W.B. Zhou K. Foss A.D. Clark D.E. MacKenzie K.G. Gass J.D. Jr Borkenhagen L.K. Hall J.S. Runstadler J.A. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog. 2022 18 5 e1010062 10.1371/journal.ppat.1010062 35588106
    [Google Scholar]
  106. Lopez-Moreno G. Davies P. Yang M. Culhane M.R. Corzo C.A. Li C. Rendahl A. Torremorell M. Evidence of influenza A infection and risk of transmission between pigs and farmworkers. Zoonoses Public Health 2022 69 5 560 571 10.1111/zph.12948 35445551
    [Google Scholar]
  107. Tian J. Sun J. Li D. Wang N. Wang L. Zhang C. Meng X. Ji X. Suchard M.A. Zhang X. Lai A. Su S. Veit M. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep. 2022 39 11 110969 10.1016/j.celrep.2022.110969 35679864
    [Google Scholar]
/content/journals/cg/10.2174/0113892029316603240926051325
Loading
/content/journals/cg/10.2174/0113892029316603240926051325
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cross-species transmission ; sialic acid ; host barrier ; Influenza ; microRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test