Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Introduction

Colorectal mucinous adenocarcinoma (MC) differs from adenocarcinoma (AD) in clinical features and molecular characteristics. The current treatment of colorectal MC is not precise enough, and the molecular characteristics remain unclear. The study aims to explore the difference between colorectal MC and AD on the transcriptome level for the possibility of treating colorectal MC precisely.

Methods

The data of colorectal cancer (CRC) patients from The Cancer Genome Atlas (TCGA) database was assessed, and then differential analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify the differential hub RNAs between colorectal MC and AD. Differential hub lncRNAs and hub RNA of significant modules were validated by quantitative real-time PCR (qRT-PCR) among different colon cancer cell lines.

Results

In total, 1680 differential expressed RNAs (DERs) were found by comparing colorectal MC (52, 13.3%) with AD (340, 86.7%). Through the WGCNA, a mucin-associated RNA module was identified, while some others might be associated with unique immune progress. Finally, 6 differential hub RNAs in the mucin-associated RNA module ( and ) were validated by qRT-PCR and showed higher expression levels in mucin-producing colorectal cell lines (Ls174T and HT-29).

Conclusion

This study suggests that clinical treatments for colorectal MC should be differentiated from AD. Further exploration of enterocyte (goblet cell) differentiation with tumor genesis and the distinct immune progression of MC may help to identify key therapeutic targets for colorectal MC. Further research on the application of immunotherapy to colorectal MC is needed.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029312303240821080358
2024-09-02
2025-03-07
Loading full text...

Full text loading...

/deliver/fulltext/cg/26/2/CG-26-2-02.html?itemId=/content/journals/cg/10.2174/0113892029312303240821080358&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. LuoC. CenS. DingG. WuW. Mucinous colorectal adenocarcinoma: Clinical pathology and treatment options.Cancer Commun.201939111310.1186/s40880‑019‑0361‑030922401
    [Google Scholar]
  3. HugenN. van BeekJ.J.P. de WiltJ.H.W. NagtegaalI.D. Insight into mucinous colorectal carcinoma: Clues from etiology.Ann. Surg. Oncol.20142192963297010.1245/s10434‑014‑3706‑624728741
    [Google Scholar]
  4. BeneschM.G.K. MathiesonA. Epidemiology of mucinous adenocarcinomas.Cancers20201211319310.3390/cancers1211319333143115
    [Google Scholar]
  5. HyngstromJ.R. HuC.Y. XingY. YouY.N. FeigB.W. SkibberJ.M. Rodriguez-BigasM.A. CormierJ.N. ChangG.J. Clinicopathology and outcomes for mucinous and signet ring colorectal adenocarcinoma: Analysis from the National Cancer Data Base.Ann. Surg. Oncol.20121992814282110.1245/s10434‑012‑2321‑722476818
    [Google Scholar]
  6. NegriF.V. WotherspoonA. CunninghamD. NormanA.R. ChongG. RossP.J. Mucinous histology predicts for reduced fluorouracil responsiveness and survival in advanced colorectal cancer.Ann. Oncol.20051681305131010.1093/annonc/mdi24415857840
    [Google Scholar]
  7. KimS.H. ShinS.J. LeeK.Y. KimH. KimT.I. KangD.R. HurH. MinB.S. KimN.K. ChungH.C. RohJ.K. AhnJ.B. Prognostic value of mucinous histology depends on microsatellite instability status in patients with stage III colon cancer treated with adjuvant FOLFOX chemotherapy: A retrospective cohort study.Ann. Surg. Oncol.201320113407341310.1245/s10434‑013‑3169‑123943026
    [Google Scholar]
  8. LeopoldoS. LorenaB. CinziaA. GabriellaD.C. Angela LucianaB. RenatoC. AntonioM. CarloS. CristinaP. StefanoC. MaurizioT. LuigiR. CesareB. Two subtypes of mucinous adenocarcinoma of the colorectum: Clinicopathological and genetic features.Ann. Surg. Oncol.20081551429143910.1245/s10434‑007‑9757‑118301950
    [Google Scholar]
  9. HugenN. SimonsM. HalilovićA. van der PostR.S. BogersA.J. Marijnissen-van ZantenM.A.J. de WiltJ.H.W. NagtegaalI.D. The molecular background of mucinous carcinoma beyond MUC2.J. Pathol. Clin. Res.20151131710.1002/cjp2.127499889
    [Google Scholar]
  10. HuangL. LuoS. ZhangX. CaiY. XueF. HuH. ZengZ. LinT. WangF. WangW. ZhangS. KangL. Distinct genomic landscape of colorectal mucinous carcinoma determined via comprehensive genomic profiling: Steps to a new treatment strategy.Front. Oncol.20211160356410.3389/fonc.2021.60356434026601
    [Google Scholar]
  11. StarkR. GrzelakM. HadfieldJ. RNA sequencing: The teenage years.Nat. Rev. Genet.2019201163165610.1038/s41576‑019‑0150‑231341269
    [Google Scholar]
  12. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  13. LongJ. HuangS. BaiY. MaoJ. WangA. LinY. YangX. WangD. LinJ. BianJ. YangX. SangX. WangX. ZhaoH. Transcriptional landscape of cholangiocarcinoma revealed by weighted gene coexpression network analysis.Brief. Bioinform.2021224bbaa22410.1093/bib/bbaa22433051665
    [Google Scholar]
  14. MercerT.R. DingerM.E. MattickJ.S. Long non-coding RNAs: Insights into functions.Nat. Rev. Genet.200910315515910.1038/nrg252119188922
    [Google Scholar]
  15. IsodaT. MooreA.J. HeZ. ChandraV. AidaM. DenholtzM. Piet van HamburgJ. FischK.M. ChangA.N. FahlS.P. WiestD.L. MurreC. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate.Cell20171711103119.e1810.1016/j.cell.2017.09.00128938112
    [Google Scholar]
  16. SchmittA.M. ChangH.Y. Long noncoding RNAs in cancer pathways.Cancer Cell201629445246310.1016/j.ccell.2016.03.01027070700
    [Google Scholar]
  17. WinkleM. El-DalyS.M. FabbriM. CalinG.A. Noncoding RNA therapeutics — Challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z34145432
    [Google Scholar]
  18. BensonA.B. VenookA.P. Al-HawaryM.M. ArainM.A. ChenY.J. CiomborK.K. CohenS. CooperH.S. DemingD. FarkasL. Garrido-LagunaI. GremJ.L. GunnA. HechtJ.R. HoffeS. HubbardJ. HuntS. JohungK.L. KirilcukN. KrishnamurthiS. MessersmithW.A. MeyerhardtJ. MillerE.D. MulcahyM.F. NurkinS. OvermanM.J. ParikhA. PatelH. PedersenK. SaltzL. SchneiderC. ShibataD. SkibberJ.M. SofocleousC.T. StoffelE.M. Stotsky-HimelfarbE. WillettC.G. GregoryK.M. GurskiL.A. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202119332935910.6004/jnccn.2021.001233724754
    [Google Scholar]
  19. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑825516281
    [Google Scholar]
  20. ReimandJ. IsserlinR. VoisinV. KuceraM. Tannus-LopesC. RostamianfarA. WadiL. MeyerM. WongJ. XuC. MericoD. BaderG.D. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap.Nat. Protoc.201914248251710.1038/s41596‑018‑0103‑930664679
    [Google Scholar]
  21. ReimandJ KullM PetersonH HansenJ ViloJ. g:Profiler-a web-based toolset for functional profiling of gene lists from large-scale experiments.Nucleic Acids Res.200735W193W200
    [Google Scholar]
  22. FriedmanJ. HastieT. TibshiraniR. Regularization paths for generalized linear models via coordinate descent.J. Stat. Softw.201033112210.18637/jss.v033.i0120808728
    [Google Scholar]
  23. NivY. ByrdJ.C. HoS.B. DahiyaR. KimY.S. Mucin synthesis and secretion in relation to spontaneous differentiation of colon cancer cells in vitro.Int. J. Cancer199250114715210.1002/ijc.29105001291728605
    [Google Scholar]
  24. GuY. ZhangL. YangH. ZhuangJ. SunZ. GuoJ. GuanM. Nanosecond pulsed electric fields impair viability and mucin expression in mucinous colorectal carcinoma cell.Bioelectrochemistry202114110784410.1016/j.bioelechem.2021.10784434052542
    [Google Scholar]
  25. TomB.H. RutzkyL.P. JakstysM.M. OyasuR. KayeC.I. KahanB.D. Human colonic adenocarcinoma cells.In Vitro197612318019110.1007/BF027964401262041
    [Google Scholar]
  26. BergK.C.G. EideP.W. EilertsenI.A. JohannessenB. BruunJ. DanielsenS.A. BjørnslettM. Meza-ZepedaL.A. EknæsM. LindG.E. MyklebostO. SkotheimR.I. SveenA. LotheR.A. Multi-omics of 34 colorectal cancer cell lines - A resource for biomedical studies.Mol. Cancer201716111610.1186/s12943‑017‑0691‑y28683746
    [Google Scholar]
  27. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods200125440240810.1006/meth.2001.126211846609
    [Google Scholar]
  28. JonckheereN. SkrypekN. Van SeuningenI. Mucins and tumor resistance to chemotherapeutic drugs.Biochim. Biophys. Acta20141846114215124785432
    [Google Scholar]
  29. SchwartzB. BresalierR.S. KimY.S. The role of mucin in colon-cancer metastasis.Int. J. Cancer1992521606510.1002/ijc.29105201131323540
    [Google Scholar]
  30. SinicropeF.A. RegoR.L. FosterN. SargentD.J. WindschitlH.E. BurgartL.J. WitzigT.E. ThibodeauS.N. Microsatellite instability accounts for tumor site-related differences in clinicopathologic variables and prognosis in human colon cancers.Am. J. Gastroenterol.2006101122818282510.1111/j.1572‑0241.2006.00845.x17026563
    [Google Scholar]
  31. BolandC.R. GoelA. Microsatellite instability in colorectal cancer.Gastroenterology2010138620732087.e310.1053/j.gastro.2009.12.06420420947
    [Google Scholar]
  32. ReynoldsI.S. O’ConnellE. FichtnerM. McNamaraD.A. KayE.W. PrehnJ.H.M. FurneyS.J. BurkeJ.P. Mucinous adenocarcinoma of the colon and rectum: A genomic analysis.J. Surg. Oncol.201912081427143510.1002/jso.2576431729037
    [Google Scholar]
  33. ReynoldsI.S. ThomasV. O’ConnellE. FichtnerM. McNamaraD.A. KayE.W. PrehnJ.H.M. BurkeJ.P. FurneyS.J. Mucinous adenocarcinoma of the rectum: A whole genome sequencing study.Front. Oncol.202010168210.3389/fonc.2020.0168232984045
    [Google Scholar]
  34. ZhangX. ZuoJ. WangL. HanJ. FengL. WangY. FanZ. Identification of differentially expressed genes between mucinous adenocarcinoma and other adenocarcinoma of colorectal cancer using bioinformatics analysis.J. Int. Med. Res.202048810.1177/030006052094903632840168
    [Google Scholar]
  35. JohanssonM.E. LarssonJ.M. HanssonG.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions.Proc. Natl. Acad. Sci. U.S.A.2011108Suppl 14659466510.1073/pnas.1006451107
    [Google Scholar]
  36. BeumerJ. CleversH. Cell fate specification and differentiation in the adult mammalian intestine.Nat. Rev. Mol. Cell Biol.2021221395310.1038/s41580‑020‑0278‑032958874
    [Google Scholar]
  37. GaoS. YanL. WangR. LiJ. YongJ. ZhouX. WeiY. WuX. WangX. FanX. YanJ. ZhiX. GaoY. GuoH. JinX. WangW. MaoY. WangF. WenL. FuW. GeH. QiaoJ. TangF. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing.Nat. Cell Biol.201820672173410.1038/s41556‑018‑0105‑429802404
    [Google Scholar]
  38. NoahT.K. KazanjianA. WhitsettJ. ShroyerN.F. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells.Exp. Cell Res.2010316345246510.1016/j.yexcr.2009.09.02019786015
    [Google Scholar]
  39. OwenR.P. WhiteM.J. SeversonD.T. BradenB. BaileyA. GoldinR. WangL.M. Ruiz-PuigC. MaynardN.D. GreenA. PiazzaP. BuckD. MiddletonM.R. PontingC.P. Schuster-BöcklerB. LuX. Single cell RNA-seq reveals profound transcriptional similarity between Barrett’s oesophagus and oesophageal submucosal glands.Nat. Commun.201891426110.1038/s41467‑018‑06796‑930323168
    [Google Scholar]
  40. YeD.Z. KaestnerK.H. Foxa1 and Foxa2 control the differentiation of goblet and enteroendocrine L- and D-cells in mice.Gastroenterology200913762052206210.1053/j.gastro.2009.08.05919737569
    [Google Scholar]
  41. ShahabiS. KumaranV. CastilloJ. CongZ. NandagopalG. MullenD.J. AlvaradoA. CorreaM.R. SaizanA. GoelR. BhatA. LynchS.K. ZhouB. BorokZ. MarconettC.N. LINC00261 is an epigenetically regulated tumor suppressor essential for activation of the dna damage response.Cancer Res.201979123050306210.1158/0008‑5472.CAN‑18‑203430796052
    [Google Scholar]
  42. ShanY.S. HsuH.P. LaiM.D. YenM.C. FangJ.H. WengT.Y. ChenY.L. Suppression of mucin 2 promotes interleukin-6 secretion and tumor growth in an orthotopic immune-competent colon cancer animal model.Oncol. Rep.20143262335234210.3892/or.2014.354425322805
    [Google Scholar]
  43. SvobodovaS. TopolcanO. HolubecL.Jr LevyM. PecenL. SvacinaS. Parameters of biological activity in colorectal cancer.Anticancer Res.201131137337821273626
    [Google Scholar]
  44. YanC. YangH. ChenL. LiuR. ShangW. YuanW. YangF. SunQ. XiaL. Clinical significance of mucinous component in colorectal adenocarcinoma: A propensity score-matched study.BMC Cancer2021211128610.1186/s12885‑021‑09031‑934852768
    [Google Scholar]
  45. VerhulstJ. FerdinandeL. DemetterP. CeelenW. Mucinous subtype as prognostic factor in colorectal cancer: A systematic review and meta-analysis.J. Clin. Pathol.201265538138810.1136/jclinpath‑2011‑20034022259177
    [Google Scholar]
  46. TarantinoI. HüttnerF.J. WarschkowR. SchmiedB.M. DienerM.K. UlrichA. Prognostic relevance of mucinous subtype in a population-based propensity score analysis of 40,083 rectal cancer patients.Ann. Surg. Oncol.20162351576158610.1245/s10434‑015‑5029‑726714956
    [Google Scholar]
  47. BlankM. KlussmannE. Krüger-KrasagakesS. Schmitt-GräffA. StolteM. BornhoeftG. SteinH. XingP.X. McKenzieI.F.C. VerstijnenC.P.H.J. RieckenE.O. HanskiC. Expression of MUC2-mucin in colorectal adenomas and carcinomas of different histological types.Int. J. Cancer199459330130610.1002/ijc.29105903027927933
    [Google Scholar]
  48. VelcichA. YangW. HeyerJ. FragaleA. NicholasC. VianiS. KucherlapatiR. LipkinM. YangK. AugenlichtL. Colorectal cancer in mice genetically deficient in the mucin Muc2.Science200229555601726172910.1126/science.106909411872843
    [Google Scholar]
  49. CompanioniO. BonetC. GarcíaN. Ramírez-LázaroM.J. LarioS. MendozaJ. AdradosM.M. PovesE. EspinosaL. Pozo-KreilingerJ.J. OrtegaL. BujandaL. CosmeA. FerrándezA. MuñozG. CuatrecasasM. ElizaldeI. AndreuV. PaulesM.J. MadrigalB. BarrioJ. BerdascoM. CalvetX. Sanz-AnquelaJ.M. GisbertJ.P. GonzálezC.A. SalaN. Study Group Genetic variation analysis in a follow-up study of gastric cancer precursor lesions confirms the association of MUC2 variants with the evolution of the lesions and identifies a significant association with NFKB1 and CD14.Int. J. Cancer2018143112777278610.1002/ijc.3183930171605
    [Google Scholar]
  50. HugenN. BrownG. Glynne-JonesR. de WiltJ.H.W. NagtegaalI.D. Advances in the care of patients with mucinous colorectal cancer.Nat. Rev. Clin. Oncol.201613636136910.1038/nrclinonc.2015.14026323388
    [Google Scholar]
  51. HanskiC. RiedeE. GratchevA. FossH.D. BöhmC. KlussmannE. HummelM. MannB. BuhrH.J. SteinH. KimY.S. GumJ. RieckenE.O. MUC2 gene suppression in human colorectal carcinomas and their metastases: In vitro evidence of the modulatory role of DNA methylation.Lab. Invest.19977766856959426407
    [Google Scholar]
/content/journals/cg/10.2174/0113892029312303240821080358
Loading
/content/journals/cg/10.2174/0113892029312303240821080358
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test