Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

A pan-genome is a compilation of the common and unique genomes found in a given species. It incorporates the genetic information from all of the genomes sampled, producing a big and diverse set of genetic material. Pan-genomic analysis has various advantages over typical genomics research. It creates a vast and varied spectrum of genetic material by combining the genetic data from all the sampled genomes. Comparing pan-genomics analysis to conventional genomic research, there are a number of benefits. Although the most recent era of pan-genomic studies has used cutting-edge sequencing technology to shed fresh light on biological variety and improvement, the potential uses of pan-genomics in improvement have not yet been fully realized. Pan-genome research in various organisms has demonstrated that missing genetic components and the detection of significant Structural Variants (SVs) can be investigated using pan-genomic methods. Many individual-specific sequences have been linked to biological adaptability, phenotypic, and key economic attributes. This study aims to focus on how pangenome analysis uncovers genetic differences in various organisms, including human, and their effects on phenotypes, as well as how this might help us comprehend the diversity of species. The review also concentrated on potential problems and the prospects for future pangenome research.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029311541240627111506
2024-07-03
2024-12-26
Loading full text...

Full text loading...

References

  1. (a HebertP.D.N. CywinskaA. BallS.L. deWaardJ.R. Biological identifications through DNA barcodes.Proc. Biol. Sci.2003270151231332110.1098/rspb.2002.221812614582
    [Google Scholar]
  2. (b BohraA. Chand JhaU. GodwinI.D. Kumar VarshneyR. Genomic interventions for sustainable agriculture.Plant Biotechnol. J.202018122388240510.1111/pbi.1347232875704
    [Google Scholar]
  3. HeatherJ.M. ChainB. The sequence of sequencers: The history of sequencing DNA.Genomics201610711810.1016/j.ygeno.2015.11.00326554401
    [Google Scholar]
  4. VarshneyR.K. NayakS.N. MayG.D. JacksonS.A. Next-generation sequencing technologies and their implications for crop genetics and breeding.Trends Biotechnol.200927952253010.1016/j.tibtech.2009.05.00619679362
    [Google Scholar]
  5. VarshneyR.K. BohraA. YuJ. GranerA. ZhangQ. SorrellsM.E. Designing future crops: Genomics-assisted breeding comes of age.Trends Plant Sci.202126663164910.1016/j.tplants.2021.03.01033893045
    [Google Scholar]
  6. TettelinH. MasignaniV. CieslewiczM.J. DonatiC. MediniD. WardN.L. AngiuoliS.V. CrabtreeJ. JonesA.L. DurkinA.S. DeBoyR.T. DavidsenT.M. MoraM. ScarselliM. Margarit y RosI. PetersonJ.D. HauserC.R. SundaramJ.P. NelsonW.C. MadupuR. BrinkacL.M. DodsonR.J. RosovitzM.J. SullivanS.A. DaughertyS.C. HaftD.H. SelengutJ. GwinnM.L. ZhouL. ZafarN. KhouriH. RaduneD. DimitrovG. WatkinsK. O’ConnorK.J.B. SmithS. UtterbackT.R. WhiteO. RubensC.E. GrandiG. MadoffL.C. KasperD.L. TelfordJ.L. WesselsM.R. RappuoliR. FraserC.M. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : Implications for the microbial “pan-genome”.Proc. Natl. Acad. Sci.200510239139501395510.1073/pnas.050675810216172379
    [Google Scholar]
  7. GoliczA.A. BatleyJ. EdwardsD. Towards plant pangenomics.Plant Biotechnol. J.20161441099110510.1111/pbi.1249926593040
    [Google Scholar]
  8. VernikosG. MediniD. RileyD.R. TettelinH. Ten years of pan-genome analyses.Curr. Opin. Microbiol.20152314815410.1016/j.mib.2014.11.01625483351
    [Google Scholar]
  9. MediniD. DonatiC. TettelinH. MasignaniV. RappuoliR. The microbial pan-genome.Curr. Opin. Genet. Dev.200515658959410.1016/j.gde.2005.09.00616185861
    [Google Scholar]
  10. KhanA.W. GargV. RoorkiwalM. GoliczA.A. EdwardsD. VarshneyR.K. Super-pangenome by integrating the wild side of a species for accelerated crop improvement.Trends Plant Sci.202025214815810.1016/j.tplants.2019.10.01231787539
    [Google Scholar]
  11. SaxenaR.K. EdwardsD. VarshneyR.K. Structural variations in plant genomes.Brief. Funct. Genomics201413429630710.1093/bfgp/elu01624907366
    [Google Scholar]
  12. Carlos GuimaraesL. Benevides de JesusL. Vinicius Canario VianaM. SilvaA. Thiago Juca RamosR. de Castro SoaresS. AzevedoV. SoaresS.C. Inside the pan-genome : Methods and software overview.Curr. Genomics201516424525210.2174/138920291666615042300231127006628
    [Google Scholar]
  13. MarschallT. MarzM. AbeelT. DijkstraL. DutilhB.E. GhaffaariA. KerseyP. KloostermanW.P. MäkinenV. NovakA.M. Computational pan-genomics: Status, promises and challenges.Brief. Bioinform.201819111813527769991
    [Google Scholar]
  14. ZhaoQ. FengQ. LuH. LiY. WangA. TianQ. ZhanQ. LuY. ZhangL. HuangT. WangY. FanD. ZhaoY. WangZ. ZhouC. ChenJ. ZhuC. LiW. WengQ. XuQ. WangZ.X. WeiX. HanB. HuangX. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice.Nat. Genet.201850227828410.1038/s41588‑018‑0041‑z29335547
    [Google Scholar]
  15. GoliczA.A. BayerP.E. BarkerG.C. EdgerP.P. KimH. MartinezP.A. ChanC.K.K. Severn-EllisA. McCombieW.R. ParkinI.A.P. PatersonA.H. PiresJ.C. SharpeA.G. TangH. TeakleG.R. TownC.D. BatleyJ. EdwardsD. The pangenome of an agronomically important crop plant Brassica oleracea.Nat. Commun.2016711339010.1038/ncomms1339027834372
    [Google Scholar]
  16. HirschC.N. FoersterJ.M. JohnsonJ.M. SekhonR.S. MuttoniG. VaillancourtB. PeñagaricanoF. LindquistE. PedrazaM.A. BarryK. de LeonN. KaepplerS.M. BuellC.R. Insights into the maize pan-genome and pan-transcriptome.Plant Cell201426112113510.1105/tpc.113.11998224488960
    [Google Scholar]
  17. LiY. ZhouG. MaJ. JiangW. JinL. ZhangZ. GuoY. ZhangJ. SuiY. ZhengL. ZhangS. ZuoQ. ShiX. LiY. ZhangW. HuY. KongG. HongH. TanB. SongJ. LiuZ. WangY. RuanH. YeungC.K.L. LiuJ. WangH. ZhangL. GuanR. WangK. LiW. ChenS. ChangR. JiangZ. JacksonS.A. LiR. QiuL. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits.Nat. Biotechnol.201432101045105210.1038/nbt.297925218520
    [Google Scholar]
  18. VernikosG.S. A review of pangenome tools and recent studies.The Pangenome.SpringerCham20208911210.1007/978‑3‑030‑38281‑0_4
    [Google Scholar]
  19. BakerM. Structural variation: The genome’s hidden architecture.Nat. Methods20129213313710.1038/nmeth.185822290183
    [Google Scholar]
  20. SpringerN.M. YingK. FuY. JiT. YehC.T. JiaY. WuW. RichmondT. KitzmanJ. RosenbaumH. IniguezA.L. BarbazukW.B. JeddelohJ.A. NettletonD. SchnableP.S. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content.PLoS Genet.2009511e100073410.1371/journal.pgen.100073419956538
    [Google Scholar]
  21. EllisJ. DoddsP. PryorT. Structure, function and evolution of plant disease resistance genes.Curr. Opin. Plant Biol.20003427828410.1016/S1369‑5266(00)00080‑710873844
    [Google Scholar]
  22. TaoY. ZhaoX. MaceE. HenryR. JordanD. Exploring and exploiting pan-genomics for crop improvement.Mol. Plant201912215616910.1016/j.molp.2018.12.01630594655
    [Google Scholar]
  23. AshikawaI. HayashiN. YamaneH. KanamoriH. WuJ. MatsumotoT. OnoK. YanoM. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance.Genetics200818042267227610.1534/genetics.108.09503418940787
    [Google Scholar]
  24. LinZ. LiX. ShannonL.M. YehC.T. WangM.L. BaiG. PengZ. LiJ. TrickH.N. ClementeT.E. DoebleyJ. SchnableP.S. TuinstraM.R. TessoT.T. WhiteF. YuJ. Parallel domestication of the Shattering1 genes in cereals.Nat. Genet.201244672072410.1038/ng.228122581231
    [Google Scholar]
  25. YangQ. LiZ. LiW. KuL. WangC. YeJ. LiK. YangN. LiY. ZhongT. LiJ. ChenY. YanJ. YangX. XuM. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize.Proc. Natl. Acad. Sci.201311042169691697410.1073/pnas.131094911024089449
    [Google Scholar]
  26. FuH. DoonerH.K. Intraspecific violation of genetic colinearity and its implications in maize.Proc. Natl. Acad. Sci.200299149573957810.1073/pnas.13225919912060715
    [Google Scholar]
  27. BadetT. OggenfussU. AbrahamL. McDonaldB.A. CrollD. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici.BMC Biol.20201811210.1186/s12915‑020‑0744‑332046716
    [Google Scholar]
  28. PlissonneauC. HartmannF.E. CrollD. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome.BMC Biol.2018161510.1186/s12915‑017‑0457‑429325559
    [Google Scholar]
  29. AgarwalG. GitaitisR.D. DuttaB. Pan-genome of novel Pantoea stewartii subsp. indologenes reveals genes involved in onion pathogenicity and evidence of lateral gene transfer.Microorganisms202198176110.3390/microorganisms908176134442840
    [Google Scholar]
  30. GonzálezV.M. AventínN. CentenoE. PuigdomènechP. High presence/absence gene variability in defense-related gene clusters of Cucumis melo.BMC Genomics201314178210.1186/1471‑2164‑14‑78224219589
    [Google Scholar]
  31. ShenJ. ArakiH. ChenL. ChenJ.Q. TianD. Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana.Genetics200617221243125010.1534/genetics.105.04729016452149
    [Google Scholar]
  32. WinzerT. GazdaV. HeZ. KaminskiF. KernM. LarsonT.R. LiY. MeadeF. TeodorR. VaistijF.E. WalkerC. BowserT.A. GrahamI.A. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine.Science201233660891704170810.1126/science.122075722653730
    [Google Scholar]
  33. Swanson-WagnerR.A. EichtenS.R. KumariS. TiffinP. SteinJ.C. WareD. SpringerN.M. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor.Genome Res.201020121689169910.1101/gr.109165.11021036921
    [Google Scholar]
  34. RouliL. MerhejV. FournierP.E. RaoultD. The bacterial pangenome as a new tool for analysing pathogenic bacteria.New Microbes New Infect.20157728510.1016/j.nmni.2015.06.00526442149
    [Google Scholar]
  35. AbudahabK. PradaJ.M. YangZ. BentleyS.D. CroucherN.J. CoranderJ. AanensenD.M. PANINI: Pangenome neighbour identification for bacterial populations.Microb. Genom.201954410.1099/mgen.0.00022030465642
    [Google Scholar]
  36. SantosA.R. BarbosaE. FiauxK. Zurita-TurkM. ChaitankarV. KamapantulaB. AbdelzaherA. GhoshP. TiwariS. BarveN. JainN. BarhD. SilvaA. MiyoshiA. AzevedoV. PANNOTATOR: An automated tool for annotation of pan-genomes.Genet. Mol. Res.20131232982298910.4238/2013.August.16.224065654
    [Google Scholar]
  37. FoutsD.E. BrinkacL. BeckE. InmanJ. SuttonG. PanOCT: Automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species.Nucleic Acids Res.20124022e17210.1093/nar/gks75722904089
    [Google Scholar]
  38. HennigA. BernhardtJ. NieseltK. Pan-Tetris: An interactive visualisation for pan-genomes.BMC Bioinformatics201516S1111S310.1186/1471‑2105‑16‑S11‑S326328606
    [Google Scholar]
  39. SheikhizadehS. SchranzM.E. AkdelM. de RidderD. SmitS. PanTools: Representation, storage and exploration of pan-genomic data.Bioinformatics20163217i487i49310.1093/bioinformatics/btw45527587666
    [Google Scholar]
  40. PedersenT.L. NookaewI. Wayne UsseryD. MånssonM. PanViz: Interactive visualization of the structure of functionally annotated pangenomes.Bioinformatics20173371081108210.1093/bioinformatics/btw76128057677
    [Google Scholar]
  41. PantojaY. PinheiroK. VerasA. AraújoF. Lopes de SousaA. GuimarãesL.C. SilvaA. RamosR.T.J. PanWeb: A web interface for pan-genomic analysis.PLoS One2017125e017815410.1371/journal.pone.017815428542514
    [Google Scholar]
  42. DingW. BaumdickerF. NeherR.A. PanX. panX: pan-genome analysis and exploration.Nucleic Acids Res.2018461e510.1093/nar/gkx97729077859
    [Google Scholar]
  43. LiuY.Y. ChiouC.S. ChenC.C. PGAdb-builder: A web service tool for creating pan-genome allele database for molecular fine typing.Sci. Rep.2016613621310.1038/srep3621327824078
    [Google Scholar]
  44. ThorpeH.A. BaylissS.C. SheppardS.K. FeilE.J. Piggy: A rapid, large-scale pan-genome analysis tool for intergenic regions in bacteria.Gigascience20187411110.1093/gigascience/giy01529635296
    [Google Scholar]
  45. LeesJ.A. GalardiniM. BentleyS.D. WeiserJ.N. CoranderJ. pyseer: A comprehensive tool for microbial pangenome-wide association studies.Bioinformatics201834244310431210.1093/bioinformatics/bty53930535304
    [Google Scholar]
  46. JandrasitsC. DabrowskiP.W. FuchsS. RenardB.Y. seq-seq- pan: Building a computational pan-genome data structure on whole genome alignment.BMC Genomics20181914710.1186/s12864‑017‑4401‑329334898
    [Google Scholar]
  47. OzerE.A. AllenJ.P. HauserA.R. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt.BMC Genomics201415173710.1186/1471‑2164‑15‑73725168460
    [Google Scholar]
  48. ChaudhariN.M. GuptaV.K. DuttaC. BPGA- an ultra-fast pan-genome analysis pipeline.Sci. Rep.2016612437310.1038/srep2437327071527
    [Google Scholar]
  49. MawlaA.M. van der MeulenT. HuisingM.O. Chromatin accessibility differences between alpha, beta, and delta cells identifies common and cell type-specific enhancers.BMC Genomics202324120210.1186/s12864‑023‑09293‑637069576
    [Google Scholar]
  50. SchaefferM. NollmannM. Contributions of 3D chromatin structure to cell-type-specific gene regulation.Curr. Opin. Genet. Dev.20237910203210.1016/j.gde.2023.10203236893484
    [Google Scholar]
  51. YaschenkoA.E. FenechM. Mazzoni-PutmanS. AlonsoJ.M. StepanovaA.N. Deciphering the molecular basis of tissue-specific gene expression in plants: Can synthetic biology help?Curr. Opin. Plant Biol.20226810224110.1016/j.pbi.2022.10224135700675
    [Google Scholar]
  52. El-ZeinM. CheishviliD. GotliebW. GilbertL. HemmingsR. BehrM.A. SzyfM. FrancoE.L. Genome-wide DNA methylation profiling identifies two novel genes in cervical neoplasia.Int. J. Cancer202014751264127410.1002/ijc.3288031983058
    [Google Scholar]
  53. ChenP. BandoyD.J.D. WeimerB.C. Bacterial Epigenomics: epigenetics in the age of population genomics.The Pangenome: Diversity, Dynamics and Evolution of Genomes. TettelinH. MediniD. Cham, SwitzerlandSpringer202010.1007/978‑3‑030‑38281‑0_11
    [Google Scholar]
  54. CuiW.J. ZhangB. ZhaoR. LiuL.X. JiaoJ. ZhangZ. TianC.F. Lineage-specific rewiring of core pathways predating innovation of legume nodules shapes symbiotic efficiency.mSystems202162e01299-2010.1128/mSystems.01299‑2033850043
    [Google Scholar]
  55. BroadbentJ.A. BroszczakD.A. TennakoonI.U.K. HuygensF. Pan-proteomics, a concept for unifying quantitative proteome measurements when comparing closely-related bacterial strains.Expert Rev. Proteomics201613435536510.1586/14789450.2016.115598626889693
    [Google Scholar]
  56. MaB. FranceM. RavelJ. Meta-Pangenome: At the crossroad of pangenomics and metagenomics.The Pangenome: Diversity, Dynamics and Evolution of Genomes. TettelinH. MediniD. Cham, SwitzerlandSpringer202010.1007/978‑3‑030‑38281‑0_9
    [Google Scholar]
  57. ZhongC. ChenC. WangL. NingK. Integrating pan-genome with metagenome for microbial community profiling.Comput. Struct. Biotechnol. J.2021191458146610.1016/j.csbj.2021.02.02133841754
    [Google Scholar]
  58. LiT. YinY. Critical assessment of pan-genomic analysis of metagenome-assembled genomes.Brief. Bioinform.2022236bbac41310.1093/bib/bbac41336124775
    [Google Scholar]
  59. ZhaiY. WeiC. Open pangenome of Lactococcus lactis generated by a combination of metagenome-assembled genomes and isolate genomes.Front. Microbiol.20221394813810.3389/fmicb.2022.94813836081802
    [Google Scholar]
  60. Romero PicazoD. WernerA. DaganT. KupczokA. Pangenome evolution in environmentally transmitted symbionts of deep-sea mussels is governed by vertical inheritance.Genome Biol. Evol.2022147evac09810.1093/gbe/evac09835731940
    [Google Scholar]
  61. JaiswalA.K. TiwariS. TavaresG.C. Da SilvaW.M. De Castro OliveiraL. IbraimI.C. GuimarãesL.C. GomideA.C.P. JamalS.B. PantojaY. Pan-genomics: Applications, challenges, and future prospects.Pan-omics focused to Crick’s central dogmaElsevierAmsterdam, The Netherlands2020141
    [Google Scholar]
  62. InnamoratiK.A. EarlJ.P. AggarwalS.D. EhrlichG.D. HillerN.L. The bacterial guide to designing a diversified gene portfolio.The Pangenome: Diversity, Dynamics and Evolution of Genomes. TettelinH. MediniD. Cham, SwitzerlandSpringer202010.1007/978‑3‑030‑38281‑0_3
    [Google Scholar]
  63. TiwaryB.K. Pan-genomics: Applications, challenges, and future prospects.Evolutionary pan-genomics and applicationsElsevierAmsterdam, The Netherlands20206580
    [Google Scholar]
  64. DouglasG.M. ShapiroB.J. Genic selection within prokaryotic pangenomes.Genome Biol. Evol.20211311evab23410.1093/gbe/evab23434665261
    [Google Scholar]
  65. HyunJ.C. MonkJ.M. PalssonB.O. Comparative pangenomics: Analysis of 12 microbial pathogen pangenomes reveals conserved global structures of genetic and functional diversity.BMC Genomics2022231710.1186/s12864‑021‑08223‑834983386
    [Google Scholar]
  66. AndersonB.D. BisanzJ.E. Challenges and opportunities of strain diversity in gut microbiome research.Front. Microbiol.202314111712210.3389/fmicb.2023.111712236876113
    [Google Scholar]
  67. MaistrenkoO.M. MendeD.R. LuetgeM. HildebrandF. SchmidtT.S.B. LiS.S. RodriguesJ.F.M. von MeringC. Pedro CoelhoL. Huerta-CepasJ. SunagawaS. BorkP. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity.ISME J.20201451247125910.1038/s41396‑020‑0600‑z32047279
    [Google Scholar]
  68. KöstlbacherS. CollingroA. HalterT. SchulzF. JungbluthS.P. HornM. Pangenomics reveals alternative environmental lifestyles among chlamydiae.Nat. Commun.2021121402110.1038/s41467‑021‑24294‑334188040
    [Google Scholar]
  69. de Korne-ElenbaasJ. BruistenS.M. van DamA.P. MaidenM.C.J. HarrisonO.B. The Neisseria gonorrhoeae accessory genome and its association with the core genome and antimicrobial resistance.Microbiol. Spectr.2022103e02654-2110.1128/spectrum.02654‑2135604129
    [Google Scholar]
  70. MesaV. MonotM. FerrarisL. PopoffM. MazuetC. BarbutF. DelannoyJ. DupuyB. ButelM.J. AiresJ. Core-, pan- and accessory genome analyses of Clostridium neonatale: Insights into genetic diversity.Microb. Genom.202285mgen00081310.1099/mgen.0.00081335550024
    [Google Scholar]
  71. ZakhamF. SironenT. VapalahtiO. KantR. Pan and core genome analysis of 183 Mycobacterium tuberculosis strains revealed a high inter-species diversity among the human adapted strains.Antibiotics202110550010.3390/antibiotics1005050033924811
    [Google Scholar]
  72. GolchhaN.C. NighojkarA. NighojkarS. Redefining genomic view of Clostridioides difficile through pangenome analysis and identification of drug targets from its core genome.Drug Target Insights202216172436415217
    [Google Scholar]
  73. WhelanF.J. HallR.J. McInerneyJ.O. Evidence for selection in the abundant accessory gene content of a prokaryote pangenome.Mol. Biol. Evol.20213893697370810.1093/molbev/msab13933963386
    [Google Scholar]
  74. ZarebskiA.E. du PlessisL. ParagK.V. PybusO.G. A computationally tractable birth-death model that combines phylogenetic and epidemiological data.PLOS Comput. Biol.2022182e100980510.1371/journal.pcbi.100980535148311
    [Google Scholar]
  75. Tranchant-DubreuilC. RouardM. SabotF. Plant Pangenome: Impacts on phenotypes and evolution.Annual Plant Reviews Online. RobertsJ.A. Hoboken, NJ, USAWiley201945347810.1002/9781119312994.apr0664
    [Google Scholar]
  76. MigaK.H. WangT. The need for a human pangenome reference sequence.Annu. Rev. Genomics Hum. Genet.20212218110210.1146/annurev‑genom‑120120‑08192133929893
    [Google Scholar]
  77. WangT. Antonacci-FultonL. HoweK. LawsonH.A. LucasJ.K. PhillippyA.M. PopejoyA.B. AsriM. CarsonC. ChaissonM.J.P. ChangX. Cook-DeeganR. FelsenfeldA.L. FultonR.S. GarrisonE.P. GarrisonN.A. Graves-LindsayT.A. JiH. KennyE.E. KoenigB.A. LiD. MarschallT. McMichaelJ.F. NovakA.M. PurushothamD. SchneiderV.A. SchultzB.I. SmithM.W. SofiaH.J. WeissmanT. FlicekP. LiH. MigaK.H. PatenB. JarvisE.D. HallI.M. EichlerE.E. HausslerD. The Human Pangenome Project: A global resource to map genomic diversity.Nature2022604790643744610.1038/s41586‑022‑04601‑835444317
    [Google Scholar]
  78. SinghV. PandeyS. BhardwajA. From the reference human genome to human pangenome: Premise, promise and challenge.Front. Genet.202213104255010.3389/fgene.2022.104255036437921
    [Google Scholar]
  79. LiaoW.W. AsriM. EblerJ. DoerrD. HauknessM. HickeyG. LuS. LucasJ.K. MonlongJ. AbelH.J. BuonaiutoS. ChangX.H. ChengH. ChuJ. ColonnaV. EizengaJ.M. FengX. FischerC. FultonR.S. GargS. GrozaC. GuarracinoA. HarveyW.T. HeumosS. HoweK. JainM. LuT.Y. MarkelloC. MartinF.J. MitchellM.W. MunsonK.M. MwanikiM.N. NovakA.M. OlsenH.E. PesoutT. PorubskyD. PrinsP. SibbesenJ.A. SirénJ. TomlinsonC. VillaniF. VollgerM.R. Antonacci-FultonL.L. BaidG. BakerC.A. BelyaevaA. BillisK. CarrollA. ChangP.C. CodyS. CookD.E. Cook-DeeganR.M. CornejoO.E. DiekhansM. EbertP. FairleyS. FedrigoO. FelsenfeldA.L. FormentiG. FrankishA. GaoY. GarrisonN.A. GironC.G. GreenR.E. HaggertyL. HoekzemaK. HourlierT. JiH.P. KennyE.E. KoenigB.A. KolesnikovA. KorbelJ.O. KordoskyJ. KorenS. LeeH. LewisA.P. MagalhãesH. Marco-SolaS. MarijonP. McCartneyA. McDanielJ. MountcastleJ. NattestadM. NurkS. OlsonN.D. PopejoyA.B. PuiuD. RautiainenM. RegierA.A. RhieA. SaccoS. SandersA.D. SchneiderV.A. SchultzB.I. ShafinK. SmithM.W. SofiaH.J. Abou TayounA.N. Thibaud-NissenF. TricomiF.F. WagnerJ. WalenzB. WoodJ.M.D. ZiminA.V. BourqueG. ChaissonM.J.P. FlicekP. PhillippyA.M. ZookJ.M. EichlerE.E. HausslerD. WangT. JarvisE.D. MigaK.H. GarrisonE. MarschallT. HallI.M. LiH. PatenB. A draft human pangenome reference.Nature2023617796031232410.1038/s41586‑023‑05896‑x37165242
    [Google Scholar]
  80. NeouM. VillaC. ArmignaccoR. JouinotA. Raffin-SansonM.L. SeptierA. LetourneurF. DiryS. DiedisheimM. IzacB. GasparC. PerlemoineK. VerjusV. BernierM. BoulinA. EmileJ.F. BertagnaX. JaffrezicF. LaloeD. BaussartB. BertheratJ. GaillardS. AssiéG. Pangenomic classification of pituitary neuroendocrine tumors.Cancer Cell2020371123134.e510.1016/j.ccell.2019.11.00231883967
    [Google Scholar]
  81. TreangenT.J. OndovB.D. KorenS. PhillippyA.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes.Genome Biol.2014151152410.1186/s13059‑014‑0524‑x25410596
    [Google Scholar]
  82. LandM. HauserL. JunS.R. NookaewI. LeuzeM.R. AhnT.H. KarpinetsT. LundO. KoraG. WassenaarT. PoudelS. UsseryD.W. Insights from 20 years of bacterial genome sequencing.Funct. Integr. Genomics201515214116110.1007/s10142‑015‑0433‑425722247
    [Google Scholar]
  83. IslamM.S. CoronejoS. SubudhiP.K. Whole-genome sequencing reveals uniqueness of black-hulled and straw-hulled weedy rice genomes.Theor. Appl. Genet.202013382461247510.1007/s00122‑020‑03611‑232488303
    [Google Scholar]
  84. KhanS.Y. AliM. LeeM.C.W. MaZ. BiswasP. KhanA.A. NaeemM.A. RiazuddinS. RiazuddinS. AyyagariR. HejtmancikJ.F. RiazuddinS.A. Whole genome sequencing data of multiple individuals of Pakistani descent.Sci. Data20207135010.1038/s41597‑020‑00664‑233051442
    [Google Scholar]
  85. MaoX. ZhangH. QiaoS. LiuY. ChangF. XieP. ZhangM. WangT. LiM. CaoP. YangR. LiuF. DaiQ. FengX. PingW. LeiC. OlsenJ.W. BennettE.A. FuQ. The deep population history of northern East Asia from the Late Pleistocene to the Holocene.Cell20211841232563266.e1310.1016/j.cell.2021.04.04034048699
    [Google Scholar]
  86. LappalainenT. ScottA.J. BrandtM. HallI.M. Genomic analysis in the age of human genome sequencing.Cell20191771708410.1016/j.cell.2019.02.03230901550
    [Google Scholar]
  87. AlkanC. CoeB.P. EichlerE.E. Genome structural variation discovery and genotyping.Nat. Rev. Genet.201112536337610.1038/nrg295821358748
    [Google Scholar]
  88. Mancini-DiNardoD. JudkinsT. KiddJ. BernhiselR. DanielsC. BrownK. MeekK. CraftJ. HolladayJ. MorrisB. RoaB.B. Detection of large rearrangements in a hereditary pan-cancer panel using next-generation sequencing.BMC Med. Genomics201912113810.1186/s12920‑019‑0587‑331623605
    [Google Scholar]
  89. RhoadsA. AuK.F. PacBio sequencing and its applications.Genom. Proteom. Bioinform.201513527828910.1016/j.gpb.2015.08.00226542840
    [Google Scholar]
  90. van DijkE.L. JaszczyszynY. NaquinD. ThermesC. The third revolution in sequencing technology.Trends Genet.201834966668110.1016/j.tig.2018.05.00829941292
    [Google Scholar]
  91. Senol CaliD. KimJ.S. GhoseS. AlkanC. MutluO. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions.Brief. Bioinform.20192041542155910.1093/bib/bby01729617724
    [Google Scholar]
  92. RosenB.D. BickhartD.M. SchnabelR.D. KorenS. ElsikC.G. TsengE. RowanT.N. LowW.Y. ZiminA. CouldreyC. HallR. LiW. RhieA. GhuryeJ. McKayS.D. Thibaud-NissenF. HoffmanJ. MurdochB.M. SnellingW.M. McDaneldT.G. HammondJ.A. SchwartzJ.C. NandoloW. HagenD.E. DreischerC. SchultheissS.J. SchroederS.G. PhillippyA.M. ColeJ.B. Van TassellC.P. LiuG. SmithT.P.L. MedranoJ.F. De novo assembly of the cattle reference genome with single-molecule sequencing.Gigascience202093giaa02110.1093/gigascience/giaa02132191811
    [Google Scholar]
/content/journals/cg/10.2174/0113892029311541240627111506
Loading
/content/journals/cg/10.2174/0113892029311541240627111506
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): conventional genomic; evolution; human genomics; OMIM; Pan-genomics; telomer genome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test