Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Succumbing to Multi-Drug Resistant (MDR) bacteria is a great distress to the recent health care system. Out of the several attempts that have been made to kill MDR pathogens, a few gained short-lived success. The failures, of the discovered or innovated antimicrobials, were mostly due to their high level of toxicity to hosts and the phenomenal rate of developing resistance by the pathogens against the new arsenal. Recently, a few quantum dots were tested against the pathogenic bacteria and therefore, justified for potential stockpiling of next-generation antibacterial agents. The key players for antimicrobial properties of quantum dots are considered to be Reactive Oxygen Species (ROS). The mechanism of reaction between bacteria and quantum dots needs to be better understood. They are generally targeted towards the cell wall and membrane components as lipoteichoic acid and phosphatidyl glycerol of bacteria have been documented here. In this paper, we have attempted to simulate ZnS quantum dots and have analysed their mechanism of reaction as well as binding potential to the above bacterial membrane components using CDOCKER. Results have shown a high level of antibacterial activity towards several pathogenic bacteria which specify their potentiality for future generation antibacterial drug development.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/1389450119666180731142423
2019-03-01
2025-05-25
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/1389450119666180731142423
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test