Skip to content
2000
Volume 16, Issue 8
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Recently, the hypothalamic 82-aa peptide Nesfatin-1 received notable attention for its anorexigenic and anti-hyperglycemic properties. In mammalian hypothalamus, Nesfatin-1 is expressed, together with the precursor Nucleobindin 2 (NUCB2), in regions controlling water-food intake, body weight, and glucose homeostasis. The peptide is also peripherally expressed, as shown in the rat heart, in which it is present together with NUCB2. In addition to a central modulation of nutrition and energy balance, and of the nervous circuits responsible for blood pressure and heart rate control, Nesfatin-1 also acts peripherally on several districts, including the cardiovascular (CV) system. Accordingly, the peptide is regarded with interest as a multifunctional hormone not only linked to alimentary homeostasis. This review aims to analyze the literature on Nesfatin-1, with focus on its emerging CV activity. Few available studies show that the peptide affects energy metabolism of murine and human cardiomyocytes, by eliciting insulin-like effects. On the ex vivo rat heart, it directly depresses contractility and relaxation via cGMP, PKG and ERK1/2, and limits ischemia/reperfusion (I/R) damage, acting in post-conditioning protection. Nesfatin-1 actions are proposed to involve an unknown G-protein coupled receptor. However, in the rat heart, functional studies, co-immunoprecipitation and local sequence alignment analyses suggest an interaction with the Natriuretic Peptide Receptor-type A (NPR-A). These data open up novel perspectives to clarify not only the biological significance of the peptide, but also its putative biomedical potential in the presence of nutrition-dependent cardiovascular diseases.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/1389450116666150408101431
2015-07-01
2025-05-18
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/1389450116666150408101431
Loading

  • Article Type:
    Research Article
Keyword(s): cardioprotection; cardiovascular physiology; Neuropeptides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test