Skip to content
2000
Volume 14, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Peroxisome proliferator–activated receptor gamma (PPARγ) is a nuclear receptor, originally described in adipose tissue, that controls the expression of a large number of regulatory genes in lipid metabolism and insulin sensitization. Well known by endocrinologists, thiazolidinediones (TZDs) are classical PPARγsynthetic agonists which were currently used as insulin-sensitizing agents in the treatment of type 2 diabetes. While the clinical benefits of TZDs in treating metabolic disorders have been clearly demonstrated, new studies performed in animal models of colitis and in patients with ulcerative colitis have also revealed the key roles of PPARγ activation in the regulation of inflammation and immune response, notably in the colon through epithelial cells. During inflammation, PPAR acts directly to negatively regulate gene expression of proinflammatory genes in a ligand-dependent manner by antagonizing the activities of other transcription factors such as members of the NF-κB and AP-1 families. A major mechanism that underlies the ability of PPARs to interfere with the activities of these transcription factors has been termed transrepression. PPARγ acts by inhibiting signaldependent transcription factors that mediate inflammatory programs of gene activation. However, due to safety issues concerning particularly the greater risk of myocardial infarction, use of TZDs has been severely limited for the treatment of type 2 diabetes and/or inflammatory diseases, justifying the development of a new family of PPARγ agonists with major transrepressive effects and without toxicity. By the demonstration that the anti-inflammatory effects of 5- aminosalicylic acid (5-ASA) in patients with ulcerative colitis were mediated by PPARγ activation, several molecules having 5-ASA similarities have been developed and screened leading to the selection of a aminophenyl-alpha-methoxypropionic acids named GED-0507-34-Levo (GED). This compound activating PPARγ has 100-to 150-fold higher anti-inflammatory activity than 5-ASA. This new PPAR modulator is giving promising results both in vitro and in vivo, without toxicity and is currently evaluated in a phase 2 clinical trial. The aim of this review is to present and discuss the evidence suggesting that PPARγ targeting is of therapeutic interest in the treatment of UC.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/13894501113149990162
2013-11-01
2025-05-24
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/13894501113149990162
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test