Skip to content
2000
Volume 11, Issue 10
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Huntington's disease (HD) is neither a fatal hereditary neurodegenerative disorder without satisfactory treatments nor a cure. It is caused by a CAG repeat expansion in the huntingtin gene. The clinical symptoms involve motor-, cognitive- and psychiatric disturbances. Recent studies have shown that non-motor symptoms and signs, such as mood changes, sleep disturbances and metabolic alterations often occur before the onset of overt motor impairments. The hypothalamus is one of the main regulators of emotion, sleep and metabolism, and it is therefore possible that dysfunction of the hypothalamus and neuroendocrine circuits may, at least partly, be responsible for these non-motor symptoms in HD. Several hypothalamic and neuroendocrine changes have now been identified in clinical HD as well as in rodent models of the disease. These changes could be important both in the pathogenesis of HD, constitute biomarkers to track disease progression as well as to provide novel therapeutic targets for this devastating disease. The current state of knowledge in the area of hypothalamic and neuroendocrine changes in both patients and rodent models of HD is summarized in this review, and their potential as targets for novel treatment paradigms are discussed.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/138945010803906940
2010-10-01
2025-04-18
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/138945010803906940
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test