Skip to content
2000
Volume 11, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The perception that carbon monoxide (CO) is poisonous and life-threatening for mammalian organisms stems from its intrinsic propensity to bind iron in hemoglobin, a reaction that ultimately leads to impaired oxygen delivery to tissues. From evolutionary and chemical perspectives, however, CO is one of the most essential molecules in the formation of biological components and its interaction with transition metals is at the origin of primordial cell signaling. Not surprisingly, mammals have gradually evolved systems to finely control the synthesis and the sensing of this gaseous molecule. Cells are indeed continuously exposed to small quantities of CO produced endogenously during the degradation of heme by constitutive and inducible heme oxygenase enzymes. We have gradually learnt that heme oxygenase-derived carbon monoxide (CO) serves as a ubiquitous signaling mediator which could be exploited for therapeutic purposes. The development of transition metal carbonyls as prototypic carbon monoxide-releasing molecules (CO-RMs) represents a novel stratagem for a safer delivery of CO-based pharmaceuticals in the treatment of various pathological disorders. This review looks back at evolution to analyze and argue that a dynamic interaction of CO with specific intracellular metal centers is the common denominator for the diversified beneficial effects mediated by this gaseous molecule.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/138945010793177997
2010-12-01
2025-05-03
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/138945010793177997
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test