Skip to content
2000
image of MT1JP: A Pivotal Tumor-Suppressing LncRNA and its Role in Cancer Progression and Therapeutic Potential

Abstract

Metallothionein 1J pseudogene (MT1JP) is a long non-coding RNA (lncRNA) that functions as a tumor suppressor in various malignancies. Reduced MT1JP expression is associated with increased tumor proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and treatment resistance in nine cancers, such as gastric cancer, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and breast cancer. Mechanistically, MT1JP acts as a competitive endogenous RNA (ceRNA) to regulate oncogenic microRNAs (miRNAs), including miR-92a-3p, miR-214-3p, and miR-24-3p. This regulation restores tumor suppressor genes, such as FBXW7, RUNX3, and PTEN, thereby disrupting oncogenic pathways, including PI3K/AKT, Wnt/β- catenin, and p53, promoting apoptosis, and inhibiting tumor progression. Clinically, MT1JP expression correlates with tumor grade, differentiation, TNM stage, lymph node metastasis, and patient prognosis, suggesting its potential as a diagnostic and prognostic biomarker. Furthermore, its therapeutic potential in RNA-based treatments has attracted significant attention. Despite these findings, questions remain regarding its role in epigenetic regulation, transcriptional control, and RNA delivery. This review explores the molecular mechanisms underlying MT1JP, highlighting its clinical relevance and potential as a therapeutic target. Future research should focus on elucidating its role in epigenetic regulation, overcoming challenges in therapeutic delivery, and validating its utility as a biomarker for different cancers. MT1JP holds promise for advancing precision oncology by providing innovative approaches for cancer diagnosis and treatment.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501365982250119150404
2025-01-22
2025-05-14
Loading full text...

Full text loading...

References

  1. Schwartz S.M. Epidemiology of cancer. Clin. Chem. 2024 70 1 140 149 10.1093/clinchem/hvad202 38175589
    [Google Scholar]
  2. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  3. Santucci C. Carioli G. Bertuccio P. Malvezzi M. Pastorino U. Boffetta P. Negri E. Bosetti C. La Vecchia C. Progress in cancer mortality, incidence, and survival: A global overview. Eur. J. Cancer Prev. 2020 29 5 367 381 10.1097/CEJ.0000000000000594 32740162
    [Google Scholar]
  4. Kaur R. Bhardwaj A. Gupta S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023 50 11 9663 9676 10.1007/s11033‑023‑08809‑3 37828275
    [Google Scholar]
  5. Das S. Dey M.K. Devireddy R. Gartia M.R. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors 2023 24 1 37 10.3390/s24010037 38202898
    [Google Scholar]
  6. Papież M.A. Krzyściak W. Biological therapies in the treatment of cancer—update and new directions. Int. J. Mol. Sci. 2021 22 21 11694 10.3390/ijms222111694 34769123
    [Google Scholar]
  7. Passaro A. Al Bakir M. Hamilton e.g. Diehn M. André F. Roy-Chowdhuri S. Mountzios G. Wistuba I.I. Swanton C. Peters S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024 187 7 1617 1635 10.1016/j.cell.2024.02.041 38552610
    [Google Scholar]
  8. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  9. Bridges M.C. Daulagala A.C. Kourtidis A. LNCcation: lncRNA localization and function. J. Cell Biol. 2021 220 2 e202009045 10.1083/jcb.202009045 33464299
    [Google Scholar]
  10. Bhan A. Soleimani M. Mandal S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res. 2017 77 15 3965 3981 10.1158/0008‑5472.CAN‑16‑2634 28701486
    [Google Scholar]
  11. Yan H. Bu P. Bu P. Non-coding RNA in cancer. Essays Biochem. 2021 65 4 625 639 10.1042/EBC20200032 33860799
    [Google Scholar]
  12. Lou W. Ding B. Fu P. Pseudogene-derived lncRNAs and their miRNA sponging mechanism in human cancer. Front. Cell Dev. Biol. 2020 8 85 10.3389/fcell.2020.00085 32185172
    [Google Scholar]
  13. Xiao-Jie L. Ai-Mei G. Li-Juan J. Jiang X. Pseudogene in cancer: Real functions and promising signature. J. Med. Genet. 2015 52 1 17 24 10.1136/jmedgenet‑2014‑102785 25391452
    [Google Scholar]
  14. The genotype-tissue expression (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  15. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  16. Machlowska J. Baj J. Sitarz M. Maciejewski R. Sitarz R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci. 2020 21 11 4012 10.3390/ijms21114012 32512697
    [Google Scholar]
  17. Smyth E.C. Nilsson M. Grabsch H.I. van Grieken N.C.T. Lordick F. Gastric cancer. Lancet 2020 396 10251 635 648 10.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  18. Karimi P. Islami F. Anandasabapathy S. Freedman N.D. Kamangar F. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev. 2014 23 5 700 713 10.1158/1055‑9965.EPI‑13‑1057 24618998
    [Google Scholar]
  19. Brabletz S. Schuhwerk H. Brabletz T. Stemmler M.P. Dynamic EMT: A multi-tool for tumor progression. EMBO J. 2021 40 18 e108647 10.15252/embj.2021108647 34459003
    [Google Scholar]
  20. Zhang G. Li S. Lu J. Ge Y. Wang Q. Ma G. Zhao Q. Wu D. Gong W. Du M. Chu H. Wang M. Zhang A. Zhang Z. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Mol. Cancer 2018 17 1 87 10.1186/s12943‑018‑0829‑6 29720189
    [Google Scholar]
  21. Xu Y. Zhang G. Zou C. Zhang H. Gong Z. Wang W. Ma G. Jiang P. Zhang W. LncRNA MT1JP suppresses gastric cancer cell proliferation and migration through MT1JP/MiR-214-3p/RUNX3 axis. Cell. Physiol. Biochem. 2018 46 6 2445 2459 10.1159/000489651 29742512
    [Google Scholar]
  22. Zhu C. Ma J. Li Y. Zhang Y. Da M. Low expression of long noncoding RNA MT1JP is associated with poor overall survival in gastric cancer patients. Medicine 2018 97 21 e10394 10.1097/MD.0000000000010394 29794726
    [Google Scholar]
  23. Kelley R.K. Bridgewater J. Gores G.J. Zhu A.X. Systemic therapies for intrahepatic cholangiocarcinoma. J. Hepatol. 2020 72 2 353 363 10.1016/j.jhep.2019.10.009 31954497
    [Google Scholar]
  24. Moris D. Palta M. Kim C. Allen P.J. Morse M.A. Lidsky M.E. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA Cancer J. Clin. 2023 73 2 198 222 10.3322/caac.21759 36260350
    [Google Scholar]
  25. Zhao W. Zhao J. Guo X. Feng Y. Zhang B. Tian L. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis. BMC Cancer 2021 21 1 142 10.1186/s12885‑021‑07838‑0 33557774
    [Google Scholar]
  26. Chidambaranathan-Reghupaty S. Fisher P.B. Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021 149 1 61 10.1016/bs.acr.2020.10.001 33579421
    [Google Scholar]
  27. Brown Z.J. Tsilimigras D.I. Ruff S.M. Mohseni A. Kamel I.R. Cloyd J.M. Pawlik T.M. Management of Hepatocellular Carcinoma. JAMA Surg. 2023 158 4 410 420 10.1001/jamasurg.2022.7989 36790767
    [Google Scholar]
  28. Ganesan P. Kulik L.M. Hepatocellular Carcinoma. Clin. Liver Dis. 2023 27 1 85 102 10.1016/j.cld.2022.08.004 36400469
    [Google Scholar]
  29. Wu J.H. Xu K. Liu J.H. Du L.L. Li X.S. Su Y.M. Liu J.C. LncRNA MT1JP inhibits the malignant progression of hepatocellular carcinoma through regulating AKT. Eur. Rev. Med. Pharmacol. Sci. 2020 24 12 6647 6656 32633354
    [Google Scholar]
  30. Zhang S. Xu J. Chen Q. Zhang F. Wang H. Guo H. lncRNA MT1JP‑overexpression abolishes the silencing of PTEN by miR‑32 in hepatocellular carcinoma. Oncol. Lett. 2021 22 2 604 10.3892/ol.2021.12865 34188706
    [Google Scholar]
  31. Shan Q.L. Chen N.N. Meng G.Z. Qu F. Overexpression of lncRNA MT1JP mediates apoptosis and migration of hepatocellular carcinoma cells by regulating miR-24-3p. Cancer Manag. Res. 2020 12 4715 4724 10.2147/CMAR.S249582 32606962
    [Google Scholar]
  32. Mo W. Dai Y. Chen J. Liang L. Xu S. Xu X. Long noncoding RNA (lncRNA) MT1JP suppresses hepatocellular carcinoma (HCC) in vitro. Cancer Manag. Res. 2020 12 7949 7960 10.2147/CMAR.S253496 32943929
    [Google Scholar]
  33. Yu T. Yu J. Lu L. Zhang Y. Zhou Y. Zhou Y. Huang F. Sun L. Guo Z. Hou G. Dong Z. Wang B. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes Lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis. Cell Oncol. 2021 44 4 821 834 10.1007/s13402‑021‑00605‑0 33974236
    [Google Scholar]
  34. Trayes K.P. Cokenakes S.E.H. Breast cancer treatment. Am. Fam. Physician 2021 104 2 171 178 34383430
    [Google Scholar]
  35. Zhang Y. Xia K. Li C. Wei B. Zhang B. Review of breast cancer pathologigcal image processing. BioMed Res. Int. 2021 2021 1 7 10.1155/2021/1994764 34595234
    [Google Scholar]
  36. Zhu D. Zhang X. Lin Y. Liang S. Song Z. Dong C. MT1JP inhibits tumorigenesis and enhances cisplatin sensitivity of breast cancer cells through competitively binding to miR-24-3p. Am. J. Transl. Res. 2019 11 1 245 256 30787983
    [Google Scholar]
  37. Ouyang Q. Cui Y. Yang S. Wei W. Zhang M. Zeng J. Qu F. lncRNA MT1JP suppresses biological activities of breast cancer cells in vitro and in vivo by regulating the miRNA-214/RUNX3 axis. OncoTargets Ther. 2020 13 5033 5046 10.2147/OTT.S241503 32581560
    [Google Scholar]
  38. Wu H. Li S. Long non-coding RNA MT1JP exerts anti-cancer effects in breast cancer cells by regulating miR-92-3p. Gen. Physiol. Biophys. 2020 39 1 59 67 10.4149/gpb_2019039 32039825
    [Google Scholar]
  39. So J.Y. Ohm J. Lipkowitz S. Yang L. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options. Pharmacol. Ther. 2022 237 108253 10.1016/j.pharmthera.2022.108253 35872332
    [Google Scholar]
  40. Singh D.D. Yadav D.K. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy. Biomedicines 2021 9 8 876 10.3390/biomedicines9080876 34440080
    [Google Scholar]
  41. Vagia E. Mahalingam D. Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers 2020 12 4 916 10.3390/cancers12040916 32276534
    [Google Scholar]
  42. Wang G. Dong Y. Liu H. Ji N. Cao J. Liu A. Tang X. Ren Y. Long noncoding RNA (lncRNA) metallothionein 1 J, pseudogene (MT1JP) is downregulated in triple-negative breast cancer and upregulates microRNA-138 (miR-138) to downregulate hypoxia-inducible factor-1α (HIF-1α). Bioengineered 2022 13 5 13718 13727 10.1080/21655979.2022.2077906 35703312
    [Google Scholar]
  43. Thai A.A. Solomon B.J. Sequist L.V. Gainor J.F. Heist R.S. Lung cancer. Lancet 2021 398 10299 535 554 10.1016/S0140‑6736(21)00312‑3 34273294
    [Google Scholar]
  44. Wu J. Lin Z. Non-small cell lung cancer targeted therapy: Drugs and mechanisms of drug resistance. Int. J. Mol. Sci. 2022 23 23 15056 10.3390/ijms232315056 36499382
    [Google Scholar]
  45. Nooreldeen R. Bach H. Current and future development in lung cancer diagnosis. Int. J. Mol. Sci. 2021 22 16 8661 10.3390/ijms22168661 34445366
    [Google Scholar]
  46. Oliver A.L. Lung cancer. Surg. Clin. North Am. 2022 102 3 335 344 10.1016/j.suc.2021.12.001 35671760
    [Google Scholar]
  47. Ma J. Yan H. Zhang J. Tan Y. Gu W. Long-chain non-coding RNA (lncRNA) MT1JP suppresses biological activities of lung cancer by regulating miRNA-423-3p/Bim axis. Med. Sci. Monit. 2019 25 5114 5126 10.12659/MSM.914387 31342947
    [Google Scholar]
  48. Beird H.C. Bielack S.S. Flanagan A.M. Gill J. Heymann D. Janeway K.A. Livingston J.A. Roberts R.D. Strauss S.J. Gorlick R. Osteosarcoma. Nat. Rev. Dis. Primers 2022 8 1 77 10.1038/s41572‑022‑00409‑y 36481668
    [Google Scholar]
  49. Chen C. Xie L. Ren T. Huang Y. Xu J. Guo W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021 500 1 10 10.1016/j.canlet.2020.12.024 33359211
    [Google Scholar]
  50. Yang L. Liu G. Xiao S. Wang L. Liu X. Tan Q. Li Z. Long noncoding MT1JP enhanced the inhibitory effects of miR-646 on FGF2 in osteosarcoma. Cancer Biother. Radiopharm. 2020 35 5 371 376 10.1089/cbr.2019.3328 32196384
    [Google Scholar]
  51. Weller M. Wen P.Y. Chang S.M. Dirven L. Lim M. Monje M. Reifenberger G. Glioma. Nat. Rev. Dis. Primers 2024 10 1 33 10.1038/s41572‑024‑00516‑y 38724526
    [Google Scholar]
  52. Barthel L. Hadamitzky M. Dammann P. Schedlowski M. Sure U. Thakur B.K. Hetze S. Glioma: Molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev. 2022 41 1 53 75 10.1007/s10555‑021‑09997‑9 34687436
    [Google Scholar]
  53. Chen J. Lou J. Yang S. Lou J. Liao W. Zhou R. Qiu C. Ding G. MT1JP inhibits glioma progression via negative regulation of miR‑24. Oncol. Lett. 2019 10.3892/ol.2019.11085 31890049
    [Google Scholar]
  54. Byroju V.V. Nadukkandy A.S. Cordani M. Kumar L.D. Retinoblastoma: Present scenario and future challenges. Cell Commun. Signal. 2023 21 1 226 10.1186/s12964‑023‑01223‑z 37667345
    [Google Scholar]
  55. Cruz-Gálvez C.C. Ordaz-Favila J.C. Villar-Calvo V.M. Cancino- Marentes M.E. Bosch-Canto V. Retinoblastoma: Review and new insights. Front. Oncol. 2022 12 963780 10.3389/fonc.2022.963780 36408154
    [Google Scholar]
  56. Bi L.L. Han F. Zhang X.M. Li Y.Y. LncRNA MT1JP acts as a tumor inhibitor via reciprocally regulating Wnt/β-Catenin pathway in retinoblastoma. Eur. Rev. Med. Pharmacol. Sci. 2018 22 13 4204 4214 30024609
    [Google Scholar]
  57. Liu L. Yue H. Liu Q. Yuan J. Li J. Wei G. Chen X. Lu Y. Guo M. Luo J. Chen R. LncRNA MT1JP functions as a tumor suppressor by interacting with TIAR to modulate the p53 pathway. Oncotarget 2016 7 13 15787 15800 10.18632/oncotarget.7487 26909858
    [Google Scholar]
  58. Morselli M. Dieci G. Epigenetic regulation of human non-coding RNA gene transcription. Biochem. Soc. Trans. 2022 50 2 723 736 10.1042/BST20210860 35285478
    [Google Scholar]
  59. Much C. Lasda E.L. Pereira I.T. Vallery T.K. Ramirez D. Lewandowski J.P. Dowell R.D. Smallegan M.J. Rinn J.L. The temporal dynamics of lncRNA Firre-mediated epigenetic and transcriptional regulation. Nat. Commun. 2024 15 1 6821 10.1038/s41467‑024‑50402‑0 39122712
    [Google Scholar]
  60. Zhou Y. Sun W. Qin Z. Guo S. Kang Y. Zeng S. Yu L. LncRNA regulation: New frontiers in epigenetic solutions to drug chemoresistance. Biochem. Pharmacol. 2021 189 114228 10.1016/j.bcp.2020.114228 32976832
    [Google Scholar]
  61. Herman A.B. Tsitsipatis D. Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell 2022 82 12 2252 2266 10.1016/j.molcel.2022.05.027 35714586
    [Google Scholar]
  62. Ferrer J. Dimitrova N. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance. Nat. Rev. Mol. Cell Biol. 2024 25 5 396 415 10.1038/s41580‑023‑00694‑9 38242953
    [Google Scholar]
  63. Tan Y.T. Lin J.F. Li T. Li J.J. Xu R.H. Ju H.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. 2021 41 2 109 120 10.1002/cac2.12108 33119215
    [Google Scholar]
  64. Coan M. Haefliger S. Ounzain S. Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat. Rev. Genet. 2024 25 8 578 595 10.1038/s41576‑024‑00693‑2 38424237
    [Google Scholar]
  65. Toden S. Zumwalt T.J. Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 1 188491 10.1016/j.bbcan.2020.188491 33316377
    [Google Scholar]
  66. An X. Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed. Pharmacother. 2022 154 113594 10.1016/j.biopha.2022.113594 36057218
    [Google Scholar]
  67. Goyal B. Yadav S.R.M. Awasthee N. Gupta S. Kunnumakkara A.B. Gupta S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 2 188502 10.1016/j.bbcan.2021.188502 33428963
    [Google Scholar]
  68. Winkle M. El-Daly S.M. Fabbri M. Calin G.A. Noncoding RNA therapeutics — Challenges and potential solutions. Nat. Rev. Drug Discov. 2021 20 8 629 651 10.1038/s41573‑021‑00219‑z 34145432
    [Google Scholar]
  69. Mahato R.K. Bhattacharya S. Khullar N. Sidhu I.S. Reddy P.H. Bhatti G.K. Bhatti J.S. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: A novel paradigm for precision oncology. J. Biotechnol. 2024 379 98 119 10.1016/j.jbiotec.2023.12.003 38065367
    [Google Scholar]
  70. Ahmadi-Balootaki S. Doosti A. Jafarinia M. Goodarzi H.R. Targeting the MALAT1 gene with the CRISPR/Cas9 technique in prostate cancer. Genes Environ. 2022 44 1 22 10.1186/s41021‑022‑00252‑3 36163080
    [Google Scholar]
  71. Cho S.W. Xu J. Sun R. Mumbach M.R. Carter A.C. Chen Y.G. Yost K.E. Kim J. He J. Nevins S.A. Chin S.F. Caldas C. Liu S.J. Horlbeck M.A. Lim D.A. Weissman J.S. Curtis C. Chang H.Y. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 2018 173 6 1398 1412 10.1016/j.cell.2018.03.068 29731168
    [Google Scholar]
  72. Dong Y. Siegwart D.J. Anderson D.G. Strategies, design, and chemistry in siRNA delivery systems. Adv. Drug Deliv. Rev. 2019 144 133 147 10.1016/j.addr.2019.05.004 31102606
    [Google Scholar]
  73. Hu B. Zhong L. Weng Y. Peng L. Huang Y. Zhao Y. Liang X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020 5 1 101 10.1038/s41392‑020‑0207‑x 32561705
    [Google Scholar]
  74. Nojima T. Proudfoot N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol. 2022 23 6 389 406 10.1038/s41580‑021‑00447‑6 35079163
    [Google Scholar]
  75. Cao M. Zhao J. Hu G. Genome-wide methods for investigating long noncoding RNAs. Biomed. Pharmacother. 2019 111 395 401 10.1016/j.biopha.2018.12.078 30594777
    [Google Scholar]
  76. Xu Z. Chen Y. Ma L. Chen Y. Liu J. Guo Y. Yu T. Zhang L. Zhu L. Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol. Ther. 2022 30 10 3133 3154 10.1016/j.ymthe.2022.01.046 35405312
    [Google Scholar]
  77. Booth B.J. Nourreddine S. Katrekar D. Savva Y. Bose D. Long T.J. Huss D.J. Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol. Ther. 2023 31 6 1533 1549 10.1016/j.ymthe.2023.01.005 36620962
    [Google Scholar]
  78. Byun J. Wu Y. Park J. Kim J.S. Li Q. Choi J. Shin N. Lan M. Cai Y. Lee J. Oh Y.K. RNA nanomedicine: Delivery strategies and applications. AAPS J. 2023 25 6 95 10.1208/s12248‑023‑00860‑z 37784005
    [Google Scholar]
  79. de Voogt W.S. Tanenbaum M.E. Vader P. Illuminating RNA trafficking and functional delivery by extracellular vesicles. Adv. Drug Deliv. Rev. 2021 174 250 264 10.1016/j.addr.2021.04.017 33894328
    [Google Scholar]
  80. Yoo Y.J. Lee C.H. Park S.H. Lim Y.T. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J. Control. Release 2022 343 564 583 10.1016/j.jconrel.2022.01.047 35124126
    [Google Scholar]
  81. Kara G. Calin G.A. Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv. Drug Deliv. Rev. 2022 182 114113 10.1016/j.addr.2022.114113 35063535
    [Google Scholar]
  82. Jung H.N. Lee S.Y. Lee S. Youn H. Im H.J. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics 2022 12 17 7509 7531 10.7150/thno.77259 36438494
    [Google Scholar]
  83. Eygeris Y. Gupta M. Kim J. Sahay G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 2022 55 1 2 12 10.1021/acs.accounts.1c00544 34850635
    [Google Scholar]
  84. Dowdy S.F. Setten R.L. Cui X.S. Jadhav S.G. Delivery of RNA therapeutics: The great endosomal escape! Nucleic Acid Ther. 2022 32 5 361 368 10.1089/nat.2022.0004 35612432
    [Google Scholar]
  85. Paunovska K. Loughrey D. Dahlman J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022 23 5 265 280 10.1038/s41576‑021‑00439‑4 34983972
    [Google Scholar]
  86. Zhong R. Talebian S. Mendes B.B. Wallace G. Langer R. Conde J. Shi J. Hydrogels for RNA delivery. Nat. Mater. 2023 22 7 818 831 10.1038/s41563‑023‑01472‑w 36941391
    [Google Scholar]
  87. Li K. Wang Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res. Rev. 2023 86 101878 10.1016/j.arr.2023.101878 36738893
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501365982250119150404
Loading
/content/journals/cdt/10.2174/0113894501365982250119150404
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: LncRNA ; prognosis ; MT1JP ; targeted therapy ; Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test