Skip to content
2000
image of New Advances in Drug Research for Myopia Control in Adolescents

Abstract

Background

Myopia is one of the most common eye diseases worldwide, with an increasing incidence observed in recent years. Globally, effective treatments for myopia have been extensively explored. In recent years, research on drugs for the treatment of myopia has become a popular topic in ophthalmology, with some breakthroughs having been achieved. Compared with surgical treatment, drug treatment is easier for people to accept. Although the efficacy of some drugs in delaying the development of myopia has been confirmed, the mechanism and site of action of some drugs are still not completely clear.

Objective

In this study, we review the recent related research on drug therapy for myopia at home and abroad, describe the mechanism of various drugs in treating myopia, evaluate their clinical application value, and identify existing problems.

Results

These drugs include atropine, a series of anticholinergic drugs, dopamine agonists, 7- methylxanthine, and intraocular pressure-lowering drugs.

Conclusion

Results highlight the efficacy of atropine in myopia treatment with minimal side effects. Anticholinergic medications, such as atropine, have demonstrated efficacy in managing the progression of myopia with a reduced incidence of adverse effects. The emphasis is placed on achieving better long-term effectiveness and minimizing the rebound effect after treatment is stopped. Furthermore, participating in outdoor activities and reducing eye strain are proven strategies for preventing myopia.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501359801250102055530
2025-01-20
2025-05-04
Loading full text...

Full text loading...

References

  1. Holden B.A. Fricke T.R. Wilson D.A. Jong M. Naidoo K.S. Sankaridurg P. Wong T.Y. Naduvilath T.J. Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016 123 5 1036 1042 10.1016/j.ophtha.2016.01.006 26875007
    [Google Scholar]
  2. Barathi V.A. Weon S.R. Beuerman R.W. Expression of muscarinic receptors in human and mouse sclera and their role in the regulation of scleral fibroblasts proliferation. Mol. Vis. 2009 15 1277 1293 19578554
    [Google Scholar]
  3. Qu J. Zhou X. Xie R. Zhang L. Hu D. Li H. Lu F. The presence of m1 to m5 receptors in human sclera: Evidence of the sclera as a potential site of action for muscarinic receptor antagonists. Curr. Eye Res. 2006 31 7-8 587 597 10.1080/02713680600770609 16877267
    [Google Scholar]
  4. Arumugam B. McBrien N.A. Muscarinic antagonist control of myopia: Evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew. Invest. Ophthalmol. Vis. Sci. 2012 53 9 5827 5837 10.1167/iovs.12‑9943 22836762
    [Google Scholar]
  5. Tucek S. Musílková J. Nedoma J. Proska J. Shelkovnikov S. Vorlícek J. Positive cooperativity in the binding of alcuronium and N-methylscopolamine to muscarinic acetylcholine receptors. Mol. Pharmacol. 1990 38 5 674 680 2233700
    [Google Scholar]
  6. Lin H.J. Wan L. Chen W.C. Lin J.M. Lin C.J. Tsai F.J. Muscarinic acetylcholine receptor 3 is dominant in myopia progression. Invest. Ophthalmol. Vis. Sci. 2012 53 10 6519 6525 10.1167/iovs.11‑9031 22899762
    [Google Scholar]
  7. Zhou X. Pardue M.T. Iuvone P.M. Qu J. Dopamine signaling and myopia development: What are the key challenges. Prog. Retin. Eye Res. 2017 61 60 71 10.1016/j.preteyeres.2017.06.003 28602573
    [Google Scholar]
  8. Megaw P. Morgan I. Boelen M. Vitreal dihydroxyphenylacetic acid (DOPAC) as an index of retinal dopamine release. J. Neurochem. 2001 76 6 1636 1644 10.1046/j.1471‑4159.2001.00145.x 11259481
    [Google Scholar]
  9. Witkovsky P. Dopamine and retinal function. Doc. Ophthalmol. 2004 108 1 17 39 10.1023/B:DOOP.0000019487.88486.0a 15104164
    [Google Scholar]
  10. McCarthy C.S. Megaw P. Devadas M. Morgan I.G. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp. Eye Res. 2007 84 1 100 107 10.1016/j.exer.2006.09.018 17094962
    [Google Scholar]
  11. Nickla D.L. Totonelly K. Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks. Exp. Eye Res. 2010 91 5 715 720 10.1016/j.exer.2010.08.021 20801115
    [Google Scholar]
  12. Ward A.H. Siegwart J.T. Jr Frost M.R. Norton T.T. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews. Vis. Neurosci. 2017 34 E003 10.1017/S0952523816000195 28304244
    [Google Scholar]
  13. Huang F. Wang Q. Yan T. Tang J. Hou X. Shu Z. Wan F. Yang Y. Qu J. Zhou X. The role of the dopamine D2 receptor in form-deprivation myopia in mice: Studies with full and partial D2 receptor agonists and knockouts. Invest. Ophthalmol. Vis. Sci. 2020 61 6 47 10.1167/iovs.61.6.47 32572456
    [Google Scholar]
  14. Zhang S. Yang J. Reinach P.S. Wang F. Zhang L. Fan M. Ying H. Pan M. Qu J. Zhou X. Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs. Invest. Ophthalmol. Vis. Sci. 2018 59 11 4441 4448 10.1167/iovs.17‑21574 30193315
    [Google Scholar]
  15. Trier K. Olsen E.B. Kobayashi T. Ribel-Madsen S.M. Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide, or L-ornithine. Br. J. Ophthalmol. 1999 83 12 1370 1375 10.1136/bjo.83.12.1370 10574816
    [Google Scholar]
  16. Cui D. Trier K. Zeng J. Wu K. Yu M. Ge J. Adenosine receptor protein changes in guinea pigs with form deprivation myopia. Acta Ophthalmol. 2010 88 7 759 765 10.1111/j.1755‑3768.2009.01559.x 19604158
    [Google Scholar]
  17. Schulte G. Fredholm B.B. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell. Signal. 2003 15 9 813 827 10.1016/S0898‑6568(03)00058‑5 12834807
    [Google Scholar]
  18. Fredholm B.B. Bättig K. Holmén J. Nehlig A. Zvartau E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999 51 1 83 133 10049999
    [Google Scholar]
  19. Cunha R.A. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem. Int. 2001 38 2 107 125 10.1016/S0197‑0186(00)00034‑6 11137880
    [Google Scholar]
  20. Nie H.H. Huo L.J. Yang X. Gao Z.Y. Zeng J.W. Trier K. Cui D.M. Effects of 7-methylxanthine on form-deprivation myopia in pigmented rabbits. Int. J. Ophthalmol. 2012 5 2 133 137 22762036
    [Google Scholar]
  21. Kaur S. Sukhija J. Khanna R. Takkar A. Singh M. Diplopia after excessive smart phone usage. Neuroophthalmology 2019 43 5 323 326 10.1080/01658107.2018.1518988 31741678
    [Google Scholar]
  22. Drexler W. Findl O. Schmetterer L. Hitzenberger C.K. Fercher A.F. Eye elongation during accommodation in humans: Differences between emmetropes and myopes. Invest. Ophthalmol. Vis. Sci. 1998 39 11 2140 2147 9761293
    [Google Scholar]
  23. Nickla D.L. Ocular diurnal rhythms and eye growth regulation: Where we are 50 years after Lauber. Exp. Eye Res. 2013 114 25 34 10.1016/j.exer.2012.12.013 23298452
    [Google Scholar]
  24. El-Nimri N.W. Wildsoet C.F. Effects of topical latanoprost on intraocular pressure and myopia progression in young guinea pigs. Invest. Ophthalmol. Vis. Sci. 2018 59 6 2644 2651 10.1167/iovs.17‑22890 29847673
    [Google Scholar]
  25. McBrien N.A. Stell W.K. Carr B. How does atropine exert its anti-myopia effects? Ophthalmic Physiol. Opt. 2013 33 3 373 378 10.1111/opo.12052 23662969
    [Google Scholar]
  26. Hu S. Ouyang S. Liu H. Zhang D. Deng Z. The effect of Wnt/β- catenin pathway on the scleral remolding in the mouse during form deprivation. Int. Ophthalmol. 2021 41 9 3099 3107 10.1007/s10792‑021‑01875‑1 33983548
    [Google Scholar]
  27. Li X.Q. Kang P. Zhou Y. Ameliorative effect and mechanism of action of atropine on rats in a morphologic deprivation model of myopia. Hebei Med. 2023 29 01 76 81
    [Google Scholar]
  28. Hsiao Y.T. Chang W.A. Kuo M.T. Lo J. Lin H.C. Yen M.C. Jian S.F. Chen Y.J. Kuo P.L. Systematic analysis of transcriptomic profile of the effects of low dose atropine treatment on scleral fibroblasts using next-generation sequencing and bioinformatics. Int. J. Med. Sci. 2019 16 12 1652 1667 10.7150/ijms.38571 31839753
    [Google Scholar]
  29. Zheng Z.T. Zhang L.Y. Feng Y. Effect of low concentration of atropine eye drops on retinal and choroidal thickness and microcirculation in myopic children and adolescents. Recent Advances in Ophthalmology 2023 43 11 887 892
    [Google Scholar]
  30. Chua W.H. Balakrishnan V. Chan Y.H. Tong L. Ling Y. Quah B.L. Tan D. Atropine for the treatment of childhood myopia. Ophthalmology 2006 113 12 2285 2291 10.1016/j.ophtha.2006.05.062 16996612
    [Google Scholar]
  31. Fan D.S.P. Lam D.S.C. Chan C.K.M. Fan A.H. Cheung E.Y.Y. Rao S.K. Topical atropine in retarding myopic progression and axial length growth in children with moderate to severe myopia: A pilot study. Jpn. J. Ophthalmol. 2007 51 1 27 33 10.1007/s10384‑006‑0380‑7 17295137
    [Google Scholar]
  32. Zhu Q. Tang Y. Guo L. Tighe S. Zhou Y. Zhang X. Zhang J. Zhu Y. Hu M. Efficacy and safety of 1% atropine on retardation of moderate myopia progression in chinese school children. Int. J. Med. Sci. 2020 17 2 176 181 10.7150/ijms.39365 32038101
    [Google Scholar]
  33. Polling J.R. Tan E. Driessen S. Loudon S.E. Wong H.L. van der Schans A. Tideman J.W.L. Klaver C.C.W. A 3-year follow-up study of atropine treatment for progressive myopia in Europeans. Eye (Lond.) 2020 34 11 2020 2028 10.1038/s41433‑020‑1122‑7 32958872
    [Google Scholar]
  34. Chia A. Chua W.H. Cheung Y.B. Wong W.L. Lingham A. Fong A. Tan D. Atropine for the treatment of childhood myopia: Safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology 2012 119 2 347 354 10.1016/j.ophtha.2011.07.031 21963266
    [Google Scholar]
  35. Chia A. Chua W.H. Wen L. Fong A. Goon Y.Y. Tan D. Atropine for the treatment of childhood myopia: Changes after stopping atropine 0.01%, 0.1% and 0.5%. Am. J. Ophthalmol. 2014 157 2 451 457.e1 10.1016/j.ajo.2013.09.020 24315293
    [Google Scholar]
  36. Morgan I.G. He M. An important step forward in myopia prevention: Low-dose atropine. Ophthalmology 2016 123 2 232 233 10.1016/j.ophtha.2015.10.012 26802703
    [Google Scholar]
  37. Gong Q. Janowski M. Luo M. Wei H. Chen B. Yang G. Liu L. Efficacy and adverse effects of atropine in childhood myopia: A meta-analysis. JAMA Ophthalmol. 2017 135 6 624 630 10.1001/jamaophthalmol.2017.1091 28494063
    [Google Scholar]
  38. Leo S.W. Scientific Bureau of World Society of Paediatric Ophthalmology and Strabismus (WSPOS) Current approaches to myopia control. Curr. Opin. Ophthalmol. 2017 28 3 267 275 10.1097/ICU.0000000000000367 28212157
    [Google Scholar]
  39. Chia A. Lu Q.S. Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: Myopia control with atropine 0.01% eyedrops. Ophthalmology 2016 123 2 391 399 10.1016/j.ophtha.2015.07.004 26271839
    [Google Scholar]
  40. Cooper J. Tkatchenko A.V. A review of current concepts of the etiology and treatment of myopia. Eye Contact Lens 2018 44 4 231 247 10.1097/ICL.0000000000000499 29901472
    [Google Scholar]
  41. Chierigo A. Ferro Desideri L. Traverso C.E. Vagge A. The role of atropine in preventing myopia progression: An update. Pharmaceutics 2022 14 5 900 10.3390/pharmaceutics14050900 35631486
    [Google Scholar]
  42. Li F.F. Kam K.W. Zhang Y. Tang S.M. Young A.L. Chen L.J. Tham C.C. Pang C.P. Yam J.C. Differential effects on ocular biometrics by 0.05%, 0.025%, and 0.01% atropine: Low-concentration atropine for myopia progression study. Ophthalmology 2020 127 12 1603 1611 10.1016/j.ophtha.2020.06.004 32525048
    [Google Scholar]
  43. Wang M Cui C Sui Y Yu S A Ma J X Fu A C Effect of 0.02% and 0.01% atropine on astigmatism: A two-year clinical trial. BMC Ophthalmol. 2022 22 1 161 10.1186/s12886‑022‑02385‑z 35392841
    [Google Scholar]
  44. Chia A. Chua W-H. Tan D. Effect of topical atropine on astigmatism. Br. J. Ophthalmol. 2009 93 6 799 802 10.1136/bjo.2008.147421 19211603
    [Google Scholar]
  45. Leech E.M. Cottriall C.L. McBrien N.A. Pirenzepine prevents form deprivation myopia in a dose dependent manner. Ophthalmic Physiol. Opt. 1995 15 5 351 356 10.1046/j.1475‑1313.1995.9500074n.x 8524553
    [Google Scholar]
  46. Yin G.C. Gentle A. McBrien N.A. Muscarinic antagonist control of myopia: A molecular search for the M1 receptor in chick. Mol. Vis. 2004 10 787 793 15525903
    [Google Scholar]
  47. Cottriall C.L. Truong H.T. McBrien N.A. Inhibition of myopia development in chicks using himbacine: A role for M4 receptors? Neuroreport 2001 12 11 2453 2456 10.1097/00001756‑200108080‑00033 11496128
    [Google Scholar]
  48. Bartlett J.D. Niemann K. Houde B. Allred T. Edmondson M.J. Crockett R.S. A tolerability study of pirenzepine ophthalmic gel in myopic children. J. Ocul. Pharmacol. Ther. 2003 19 3 271 279 10.1089/108076803321908392 12828845
    [Google Scholar]
  49. Tan D. Lam D. Chua W. Shuping D. Crockett R. Asian Pirenzepine Study Group One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology 2005 112 1 84 91 10.1016/j.ophtha.2004.06.038 15629825
    [Google Scholar]
  50. Siatkowski R.M. Cotter S. Miller J.M. Scher C.A. Crockett R.S. Novack G.D. US Pirenzepine Study Group Safety and efficacy of 2% pirenzepine ophthalmic gel in children with myopia: A 1-year, multicenter, double-masked, placebo-controlled parallel study. Arch. Ophthalmol. 2004 122 11 1667 1674 10.1001/archopht.122.11.1667 15534128
    [Google Scholar]
  51. Siatkowski R.M. Cotter S.A. Crockett R.S. Miller J.M. Novack G.D. Zadnik K. U.S. Pirenzepine Study Group Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. J. AAPOS 2008 12 4 332 339 10.1016/j.jaapos.2007.10.014 18359651
    [Google Scholar]
  52. Dai S.Z. Zeng J.W. Wang L.Y. Effect of pirenzepine on form deprivation myopia in chicks and its possible mechanism. Zhonghua Yan Ke Za Zhi 2006 42 1 42 47 16638280
    [Google Scholar]
  53. Qian L. Zhao H. Li X. Yin J. Tang W. Chen P. Wang Q. Zhang J. Pirenzepine inhibits myopia in guinea pig model by regulating the balance of MMP-2 and TIMP-2 expression and increased tyrosine hydroxylase Levels. Cell Biochem. Biophys. 2015 71 3 1373 1378 10.1007/s12013‑014‑0359‑9 25388839
    [Google Scholar]
  54. Han W.T. Rong A. Xu W. Combination with different anticholinergic eyedrops for the treatment of children myopia. Zhonghua Yi Xue Za Zhi 2019 99 24 1859 1863 31269580
    [Google Scholar]
  55. Zhao J. Liu Z.S. Zeng L. Efficacy of racemic scopolamine eye drops in controlling the progression of myopia degree in 112 cases. China Pharmaceuticals 2017 26 24 47 49
    [Google Scholar]
  56. Shih Y.F. Chen C.H. Chou A.C. Ho T.C. Lin L.L.K. Hung P.T. Effects of different concentrations of atropine on controlling myopia in myopic children. J. Ocul. Pharmacol. Ther. 1999 15 1 85 90 10.1089/jop.1999.15.85 10048351
    [Google Scholar]
  57. Li J.J. Observations on the effect of tropicamide ophthalmic solution in the treatment of myopia in children. Journal Of North Pharmacy 2021 18 04 40 41
    [Google Scholar]
  58. Huppé-Gourgues F. Coudé G. Lachapelle P. Casanova C. Effects of the intravitreal administration of dopaminergic ligands on the b-wave amplitude of the rabbit electroretinogram. Vision Res. 2005 45 2 137 145 10.1016/j.visres.2004.08.001 15581915
    [Google Scholar]
  59. Schmid K.L. Wildsoet C.F. Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks. Optom. Vis. Sci. 2004 81 2 137 147 10.1097/00006324‑200402000‑00012 15127933
    [Google Scholar]
  60. Karouta C. Ashby R.S. Correlation between light levels and the development of deprivation myopia. Invest. Ophthalmol. Vis. Sci. 2015 56 1 299 309 10.1167/iovs.14‑15499 25491298
    [Google Scholar]
  61. Rose K.A. Morgan I.G. Ip J. Kifley A. Huynh S. Smith W. Mitchell P. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008 115 8 1279 1285 10.1016/j.ophtha.2007.12.019 18294691
    [Google Scholar]
  62. Ashby R.S. Schaeffel F. The effect of bright light on lens compensation in chicks. Invest. Ophthalmol. Vis. Sci. 2010 51 10 5247 5253 10.1167/iovs.09‑4689 20445123
    [Google Scholar]
  63. Thomson K. Morgan I. Kelly T. Karouta C. Ashby R. Coadministration with carbidopa enhances the antimyopic effects of levodopa in chickens. Invest. Ophthalmol. Vis. Sci. 2021 62 4 25 10.1167/iovs.62.4.25 33877264
    [Google Scholar]
  64. Thomson K. Karouta C. Ashby R. Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks. Exp. Eye Res. 2020 200 108233 10.1016/j.exer.2020.108233 32919992
    [Google Scholar]
  65. Repka M.X. Kraker R.T. Beck R.W. Atkinson C.S. Bacal D.A. Bremer D.L. Davis P.L. Gearinger M.D. Glaser S.R. Hoover D.L. Laby D.M. Morrison D.G. Rogers D.L. Sala N.A. Suh D.W. Wheeler M.B. Pediatric Eye Disease Investigator Group Pilot study of levodopa dose as treatment for residual amblyopia in children aged 8 years to younger than 18 years. Arch. Ophthalmol. 2010 128 9 1215 1217 10.1001/archophthalmol.2010.178 20837811
    [Google Scholar]
  66. Cui D. Trier K. Zeng J. Wu K. Yu M. Hu J. Chen X. Ge J. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs. Acta Ophthalmol. 2011 89 4 328 334 10.1111/j.1755‑3768.2009.01688.x 19860777
    [Google Scholar]
  67. Hung L.F. Arumugam B. Ostrin L. Patel N. Trier K. Jong M. Iii E.L.S. The adenosine receptor antagonist, 7-Methylxanthine, alters emmetropizing responses in infant macaques. Invest. Ophthalmol. Vis. Sci. 2018 59 1 472 486 10.1167/iovs.17‑22337 29368006
    [Google Scholar]
  68. Trier K. Munk Ribel-Madsen S. Cui D. Brøgger Christensen S. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: A 36-month pilot study. J. Ocul. Biol. Dis. Infor. 2008 1 2-4 85 93 10.1007/s12177‑008‑9013‑3 20072638
    [Google Scholar]
  69. Singh H. Singh H. Sahajpal N.S. Paul S. Kaur I. Jain S.K. Sub-chronic and chronic toxicity evaluation of 7-methylxanthine: A new molecule for the treatment of myopia. Drug Chem. Toxicol. 2022 45 3 1383 1394 10.1080/01480545.2020.1833904 33076712
    [Google Scholar]
  70. Liu Y. Wang Y. Lv H. Jiang X. Zhang M. Li X. α-adrenergic agonist brimonidine control of experimentally induced myopia in guinea pigs: A pilot study. Mol. Vis. 2017 23 785 798 29204068
    [Google Scholar]
  71. Schmid K.L. Abbott M. Humphries M. Pyne K. Wildsoet C.F. Timolol lowers intraocular pressure but does not inhibit the development of experimental myopia in chick. Exp. Eye Res. 2000 70 5 659 666 10.1006/exer.2000.0834 10870524
    [Google Scholar]
  72. Dong L. Li Y.F. Wu H.T. Di Kou H. Lan Y.J. Wang Y.X. Jonas J.B. Wei W.B. Lens-induced myopization and intraocular pressure in young guinea pigs. BMC Ophthalmol. 2020 20 1 343 10.1186/s12886‑020‑01610‑x 32842961
    [Google Scholar]
  73. Maeda N. New diagnostic methods for imaging the anterior segment of the eye to enable treatment modalities selection. Nippon Ganka Gakkai Zasshi 2011 115 3 297 322 21476312
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501359801250102055530
Loading
/content/journals/cdt/10.2174/0113894501359801250102055530
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: drug therapy ; intervention measure ; atropine ; mechanism ; Myopia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test