Skip to content
2000
image of Emerging Carbon Dots Nanomaterials for Ovarian Cancer Diagnosis and Therapy

Abstract

Delayed diagnosis and limited treatment options make ovarian cancer difficult to treat. This paper examines the growing role of Carbon Dots (CDs) in ovarian cancer diagnosis and treatment. Photoluminescence and biocompatibility make CDs ideal for biomedical use. We emphasize their ability to improve fluorescence and molecular imaging in imaging and diagnostics. We also demonstrate the efficacy of carbon dots in targeted drug delivery systems in overcoming drug resistance and improving therapeutic outcomes. Photodynamic and photothermal therapies are used to show that CDs can treat hypoxic ovarian cancer tumours. We also discuss CD safety issues and constraints, emphasising the need for thorough assessments and fine-tuning. Future research focuses on personalised medicine and CD integration with other therapies. This text concludes by discussing CDs' clinical use and the challenges of production and regulatory approval. CDs can improve ovarian cancer diagnosis and treatment, improving patient outcomes and survival.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501347816241223065618
2025-02-04
2025-05-01
Loading full text...

Full text loading...

References

  1. Chałupnik A. Chilimoniuk Z. Dobosz M. Sobstyl A. Sobstyl M. The latest reports on biomarkers used in the diagnosis of ovarian cancer. J. Educ. Health Sport 2022 12 7 799 809 10.12775/JEHS.2022.12.07.080
    [Google Scholar]
  2. Inge H. Carine B. Laure D. Elom K.A. Sabine N. Dietary and circulating fatty acids and ovarian cancer risk in the european prospective investigation into cancer and nutrition. Canc. Epi. Bio. Prev. 2020 29 9 1739 1749
    [Google Scholar]
  3. Wu P. Jiang Q. Han L. Liu X. Systematic analysis and prediction for disease burden of ovarian cancer attributable to hyperglycemia: A comparative study between China and the world from 1990 to 2019. Front. Med. 2023 10 1145487 10.3389/fmed.2023.1145487 37122334
    [Google Scholar]
  4. Liu J. Li R. Yang B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020 6 12 2179 2195 10.1021/acscentsci.0c01306 33376780
    [Google Scholar]
  5. Shu Q. Liu J. Chang Q. Liu C. Wang H. Xie Y. Deng X. Enhanced photothermal performance by carbon dot-chelated polydopamine nanoparticles. ACS Biomater. Sci. Eng. 2021 7 12 5497 5505 10.1021/acsbiomaterials.1c01045 34739201
    [Google Scholar]
  6. Singh G. Kaur H. Sharma A. Singh J. Alajangi H.K. Kumar S. Singla N. Kaur I.P. Barnwal R.P. Carbon based nanodots in early diagnosis of cancer. Front Chem. 2021 9 669169 10.3389/fchem.2021.669169 34109155
    [Google Scholar]
  7. Lagos K.J. Buzzá H.H. Bagnato V.S. Romero M.P. Carbon-based materials in photodynamic and photothermal therapies applied to tumor destruction. Int. J. Mol. Sci. 2021 23 1 22 10.3390/ijms23010022 35008458
    [Google Scholar]
  8. Kong J. Wei Y. Zhou F. Shi L. Zhao S. Wan M. Zhang X. Carbon quantum dots: Properties, preparation, and applications. Molecules 2024 29 9 2002 10.3390/molecules29092002 38731492
    [Google Scholar]
  9. Sajjad F. Han Y. Bao L. Yan Y. Shea O.D. Wang L. Chen Z. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities. J. Biomater. Appl. 2022 36 8 1378 1389 10.1177/08853282211050449 34968148
    [Google Scholar]
  10. Yu Y. Song M. Chen C. Du Y. Li C. Han Y. Yan F. Shi Z. Feng S. Bortezomib-encapsulated CuS/Carbon dot nanocomposites for enhanced photothermal therapy via stabilization of polyubiquitinated substrates in the proteasomal degradation pathway. ACS Nano 2020 14 8 10688 10703 10.1021/acsnano.0c05332 32790339
    [Google Scholar]
  11. Tiron C.E. Luta G. Butura M. Eloae Z.F. Stan C.S. Coroabă A. Ursu E.L. Stanciu G.D. Tiron A. NHF-derived carbon dots: Prevalidation approach in breast cancer treatment. Sci. Rep. 2020 10 1 12662 10.1038/s41598‑020‑69670‑z 32728167
    [Google Scholar]
  12. Kaur N. Tiwari P. Kumar P. Biswas M. Sonawane A. Mobin S.M. Multifaceted carbon dots: Toward pH-responsive delivery of 5-fluorouracil for in vitro antiproliferative activity. ACS Appl. Bio Mater. 2023 6 7 2760 2770 10.1021/acsabm.3c00228 37366546
    [Google Scholar]
  13. Bai Y. Zhao J. Zhang L. Wang S. Hua J. Zhao S. Liang H. A smart near-infrared carbon dot-metal organic framework assemblies for tumor microenvironment-activated cancer imaging and chemodynamic-photothermal combined therapy. Adv. Healthc. Mater. 2022 11 12 2102759 10.1002/adhm.202102759 35170255
    [Google Scholar]
  14. Nayak P.P. S N. Narayanan A. Badekila A.K. Kini S. Nanomedicine in cancer clinics: Are we there yet? Curr. Pathobiol. Rep. 2021 9 2 43 55 10.1007/s40139‑021‑00220‑6
    [Google Scholar]
  15. Bayda S. Amadio E. Cailotto S. Herrera F.Y. Perosa A. Rizzolio F. Carbon dots for cancer nanomedicine: A bright future. Nanoscale Adv. 2021 3 18 5183 5221 10.1039/D1NA00036E 36132627
    [Google Scholar]
  16. Omer W.E. Abdelbar M.F. El-Kemary N.M. Fukata N. El-Kemary M.A. Cancer antigen 125 assessment using carbon quantum dots for optical biosensing for the early diagnosis of ovarian cancer. RSC Advances 2021 11 49 31047 31057 10.1039/D1RA05121K 35498938
    [Google Scholar]
  17. Li X. Zhao S. Li B. Yang K. Lan M. Zeng L. Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord. Chem. Rev. 2021 431 213686 10.1016/j.ccr.2020.213686
    [Google Scholar]
  18. Wang Q. Qi X. Chen H. Li J. Yang M. Liu J. Sun K. Li Z. Deng G. Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal–organic frameworks. Mikrochim. Acta 2022 189 8 272 10.1007/s00604‑022‑05377‑4 35790600
    [Google Scholar]
  19. Phukan K. Sarma R.R. Dash S. Devi R. Chowdhury D. Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells. Nanoscale Adv. 2021 4 1 138 149 10.1039/D1NA00617G 36132963
    [Google Scholar]
  20. Liu J. Geng Y. Li D. Yao H. Huo Z. Li Y. Zhang K. Zhu S. Wei H. Xu W. Jiang J. Yang B. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv. Mater. 2020 32 17 1906641 10.1002/adma.201906641 32191372
    [Google Scholar]
  21. Zhu S. Meng Q. Wang L. Zhang J. Song Y. Jin H. Zhang K. Sun H. Wang H. Yang B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 2013 52 14 3953 3957 10.1002/anie.201300519 23450679
    [Google Scholar]
  22. Lu S. Sui L. Liu J. Zhu S. Chen A. Jin M. Yang B. Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence. Adv. Mater. 2017 29 15 1603443 10.1002/adma.201603443 28195369
    [Google Scholar]
  23. Liu J. Li D. Zhang K. Yang M. Sun H. Yang B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 2018 14 15 1703919 10.1002/smll.201703919 29508542
    [Google Scholar]
  24. Yuan F. Yuan T. Sui L. Wang Z. Xi Z. Li Y. Li X. Fan L. Tan Z. Chen A. Jin M. Yang S. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018 9 1 2249 10.1038/s41467‑018‑04635‑5 29884873
    [Google Scholar]
  25. Gao T. Wang X. Yang L.Y. He H. Ba X.X. Zhao J. Jiang F.L. Liu Y. Red, yellow, and blue luminescence by graphene quantum dots: Syntheses, mechanism, and cellular imaging. ACS Appl. Mater. Interfaces 2017 9 29 24846 24856 10.1021/acsami.7b05569 28675929
    [Google Scholar]
  26. Sun S. Zhang L. Jiang K. Wu A. Lin H. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 2016 28 23 8659 8668 10.1021/acs.chemmater.6b03695
    [Google Scholar]
  27. Fang B.Y. Li C. Song Y.Y. Tan F. Cao Y.C. Zhao Y.D. Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells. Biosens. Bioelectron. 2018 100 41 48 10.1016/j.bios.2017.08.057 28858680
    [Google Scholar]
  28. Wang B. Cai H. Waterhouse G.I.N. Qu X. Yang B. Lu S. Carbon dots in bioimaging, biosensing and therapeutics: A comprehensive review. Small Sci. 2022 2 6 2200012 10.1002/smsc.202200012
    [Google Scholar]
  29. Ding H. Yu S.B. Wei J.S. Xiong H.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016 10 1 484 491 10.1021/acsnano.5b05406 26646584
    [Google Scholar]
  30. Miao X. Qu D. Yang D. Nie B. Zhao Y. Fan H. Sun Z. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018 30 1 1704740 10.1002/adma.201704740 29178388
    [Google Scholar]
  31. Li D. Jing P. Sun L. An Y. Shan X. Lu X. Zhou D. Han D. Shen D. Zhai Y. Qu S. Zbořil R. Rogach A.L. Near-infrared Excitation/Emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018 30 13 1705913 10.1002/adma.201705913 29411443
    [Google Scholar]
  32. Bao X. Yuan Y. Chen J. Zhang B. Li D. Zhou D. Jing P. Xu G. Wang Y. Holá K. Shen D. Wu C. Song L. Liu C. Zbořil R. Qu S. in vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci. Appl. 2018 7 1 91 10.1038/s41377‑018‑0090‑1 30479757
    [Google Scholar]
  33. Ye X. Xiang Y. Wang Q. Li Z. Liu Z. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 2019 15 48 1901673 10.1002/smll.201901673 31157517
    [Google Scholar]
  34. Hui W. Yang Y. Xu Q. Gu H. Feng S. Su Z. Zhang M. Wang J. Li X. Fang J. Xia F. Xia Y. Chen Y. Gao X. Huang W. Red-carbon-quantum-dot-doped SnO 2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv. Mater. 2020 32 4 1906374 10.1002/adma.201906374 31799762
    [Google Scholar]
  35. Zheng M. Li Y. Liu S. Wang W. Xie Z. Jing X. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl. Mater. Interfaces 2016 8 36 23533 23541 10.1021/acsami.6b07453 27558196
    [Google Scholar]
  36. Zhang M. Zhai X. Ma T. Huang Y. Yan C. Du Y. Multifunctional cerium doped carbon dots nanoplatform and its applications for wound healing. Chem. Eng. J. 2021 423 130301 10.1016/j.cej.2021.130301
    [Google Scholar]
  37. Singh V. Rawat K.S. Mishra S. Baghel T. Fatima S. John A.A. Kalleti N. Singh D. Nazir A. Rath S.K. Goel A. Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for in vivo live imaging in C. elegans and BALB/c mice. J. Mater. Chem. B Mater. Biol. Med. 2018 6 20 3366 3371 10.1039/C8TB00503F 32254394
    [Google Scholar]
  38. Pyati U.J. Look A.T. Hammerschmidt M. Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Semin. Cancer Biol. 2007 17 2 154 165 10.1016/j.semcancer.2006.11.007 17210257
    [Google Scholar]
  39. Wang Y. Seebald J.L. Szeto D.P. Irudayaraj J. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 2010 4 7 4039 4053 10.1021/nn100351h 20552995
    [Google Scholar]
  40. Howe K. Clark M.D. Torroja C.F. Torrance J. Berthelot C. Muffato M. Collins J.E. Humphray S. McLaren K. Matthews L. McLaren S. Sealy I. Caccamo M. Churcher C. Scott C. Barrett J.C. Koch R. Rauch G.J. White S. Chow W. Kilian B. Quintais L.T. Assunção G.J.A. Zhou Y. Gu Y. Yen J. Vogel J.H. Eyre T. Redmond S. Banerjee R. Chi J. Fu B. Langley E. Maguire S.F. Laird G.K. Lloyd D. Kenyon E. Donaldson S. Sehra H. King A.J. Loveland J. Trevanion S. Jones M. Quail M. Willey D. Hunt A. Burton J. Sims S. McLay K. Plumb B. Davis J. Clee C. Oliver K. Clark R. Riddle C. Elliott D. Threadgold G. Harden G. Ware D. Begum S. Mortimore B. Kerry G. Heath P. Phillimore B. Tracey A. Corby N. Dunn M. Johnson C. Wood J. Clark S. Pelan S. Griffiths G. Smith M. Glithero R. Howden P. Barker N. Lloyd C. Stevens C. Harley J. Holt K. Panagiotidis G. Lovell J. Beasley H. Henderson C. Gordon D. Auger K. Wright D. Collins J. Raisen C. Dyer L. Leung K. Robertson L. Ambridge K. Leongamornlert D. McGuire S. Gilderthorp R. Griffiths C. Manthravadi D. Nichol S. Barker G. Whitehead S. Kay M. Brown J. Murnane C. Gray E. Humphries M. Sycamore N. Barker D. Saunders D. Wallis J. Babbage A. Hammond S. Mohammadi M.M. Barr L. Martin S. Wray P. Ellington A. Matthews N. Ellwood M. Woodmansey R. Clark G. Cooper J.D. Tromans A. Grafham D. Skuce C. Pandian R. Andrews R. Harrison E. Kimberley A. Garnett J. Fosker N. Hall R. Garner P. Kelly D. Bird C. Palmer S. Gehring I. Berger A. Dooley C.M. Ürün E.Z. Eser C. Geiger H. Geisler M. Karotki L. Kirn A. Konantz J. Konantz M. Oberländer M. Geiger R.S. Teucke M. Lanz C. Raddatz G. Osoegawa K. Zhu B. Rapp A. Widaa S. Langford C. Yang F. Schuster S.C. Carter N.P. Harrow J. Ning Z. Herrero J. Searle S.M.J. Enright A. Geisler R. Plasterk R.H.A. Lee C. Westerfield M. de Jong P.J. Zon L.I. Postlethwait J.H. Volhard N.C. Hubbard T.J.P. Crollius H.R. Rogers J. Stemple D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013 496 7446 498 503 10.1038/nature12111 23594743
    [Google Scholar]
  41. Pal T. Mohiyuddin S. Packirisamy G. Facile and green synthesis of multicolor fluorescence carbon dots from curcumin: in vitro and in vivo bioimaging and other applications. ACS Omega 2018 3 1 831 843 10.1021/acsomega.7b01323 30023790
    [Google Scholar]
  42. Dias C. Vasimalai N. Sárria P.M. Pinheiro I. Boas V.V. Peixoto J. Espiña B. Biocompatibility and bioimaging potential of fruit-based carbon dots. Nanomaterials 2019 9 2 199 10.3390/nano9020199 30717497
    [Google Scholar]
  43. Wang K. Gao Z. Gao G. Wo Y. Wang Y. Shen G. Cui D. Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res. Lett. 2013 8 1 122 10.1186/1556‑276X‑8‑122 23497260
    [Google Scholar]
  44. Chen W. Shen J. Wang Z. Liu X. Xu Y. Zhao H. Astruc D. Turning waste into wealth: Facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging. Chem. Sci. 2021 12 35 11722 11729 10.1039/D1SC02837E 34659707
    [Google Scholar]
  45. Tao H. Yang K. Ma Z. Wan J. Zhang Y. Kang Z. Liu Z. in vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012 8 2 281 290 10.1002/smll.201101706 22095931
    [Google Scholar]
  46. Yao H. Li J. Song Y. Zhao H. Wei Z. Li X. Jin Y. Yang B. Jiang J. Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. Int. J. Nanomedicine 2018 13 6249 6264 10.2147/IJN.S176176 30349248
    [Google Scholar]
  47. Fatahi Z. Esfandiari N. Ehtesabi H. Bagheri Z. Tavana H. Ranjbar Z. Latifi H. Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging. EXCLI J. 2019 18 454 466 10.17179/excli2019‑1465 31423124
    [Google Scholar]
  48. Li S. Guo Z. Feng R. Zhang Y. Xue W. Liu Z. Hyperbranched polyglycerol conjugated fluorescent carbon dots with improved in vitro toxicity and red blood cell compatibility for bioimaging. RSC Advances 2017 7 9 4975 4982 10.1039/C6RA27159F
    [Google Scholar]
  49. Mishra V. Patil A. Thakur S. Kesharwani P. Carbon dots: Emerging theranostic nanoarchitectures. Drug Discov. Today 2018 23 6 1219 1232 10.1016/j.drudis.2018.01.006 29366761
    [Google Scholar]
  50. Gao N. Yang W. Nie H. Gong Y. Jing J. Gao L. Zhang X. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens. Bioelectron. 2017 96 300 307 10.1016/j.bios.2017.05.019 28511113
    [Google Scholar]
  51. Shu Y. Lu J. Mao Q.X. Song R.S. Wang X.Y. Chen X.W. Wang J.H. Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging. Carbon 2017 114 324 333 10.1016/j.carbon.2016.12.038
    [Google Scholar]
  52. Wang H.J. He X. Luo T.Y. Zhang J. Liu Y.H. Yu X.Q. Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery. Nanoscale 2017 9 18 5935 5947 10.1039/C7NR01029J 28440819
    [Google Scholar]
  53. Yao Y.Y. Gedda G. Girma W.M. Yen C.L. Ling Y.C. Chang J.Y. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl. Mater. Interfaces 2017 9 16 13887 13899 10.1021/acsami.7b01599 28388048
    [Google Scholar]
  54. Hailing Y. Xiufang L. Lili W. Baoqiang L. Kaichen H. Yongquan H. Qianqian Z. Chaoming M. Xiaoshuai R. Rui Z. Hui L. Pengfei P. Hong S. Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale 2020 12 33 17222 17237 10.1039/D0NR01236J 32671377
    [Google Scholar]
  55. Zeng Q. Shao D. He X. Ren Z. Ji W. Shan C. Qu S. Li J. Chen L. Li Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem. B Mater. Biol. Med. 2016 4 30 5119 5126 10.1039/C6TB01259K 32263509
    [Google Scholar]
  56. Feng T. Ai X. Ong H. Zhao Y. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl. Mater. Interfaces 2016 8 29 18732 18740 10.1021/acsami.6b06695 27367152
    [Google Scholar]
  57. Wu R. Liu J. Chen D. Pan J. Carbon nanodots modified with catechol–borane moieties for pH-stimulated doxorubicin delivery: Toward nuclear targeting. ACS Appl. Nano Mater. 2019 2 7 4333 4341 10.1021/acsanm.9b00779
    [Google Scholar]
  58. Feng T. Ai X. An G. Yang P. Zhao Y. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016 10 4 4410 4420 10.1021/acsnano.6b00043 26997431
    [Google Scholar]
  59. Li H. Kang Z. Liu Y. Lee S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012 22 46 24230 10.1039/c2jm34690g
    [Google Scholar]
  60. Xia J. Zhuang Y.T. Yu Y.L. Wang J.H. Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Mikrochim. Acta 2017 184 4 1109 1116 10.1007/s00604‑017‑2104‑8
    [Google Scholar]
  61. Zu F. Yan F. Bai Z. Xu J. Wang Y. Huang Y. Zhou X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Mikrochim. Acta 2017 184 7 1899 1914 10.1007/s00604‑017‑2318‑9
    [Google Scholar]
  62. Mao Y. Bao Y. Han D. Li F. Niu L. Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens. Bioelectron. 2012 38 1 55 60 10.1016/j.bios.2012.04.043 22672763
    [Google Scholar]
  63. Sabharanjak S. Mayor S. Folate receptor endocytosis and trafficking. Adv. Drug Deliv. Rev. 2004 56 8 1099 1109 10.1016/j.addr.2004.01.010 15094209
    [Google Scholar]
  64. Zwicke G.L. Mansoori A.G. Jeffery C.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012 3 1 18496 10.3402/nano.v3i0.18496 23240070
    [Google Scholar]
  65. Cheung A. Bax H.J. Josephs D.H. Ilieva K.M. Pellizzari G. Opzoomer J. Bloomfield J. Fittall M. Grigoriadis A. Figini M. Canevari S. Spicer J.F. Tutt A.N. Karagiannis S.N. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016 7 32 52553 52574 10.18632/oncotarget.9651 27248175
    [Google Scholar]
  66. Agarwal A. Saraf S. Asthana A. Gupta U. Gajbhiye V. Jain N.K. Ligand based dendritic systems for tumor targeting. Int. J. Pharm. 2008 350 1-2 3 13 10.1016/j.ijpharm.2007.09.024 18162345
    [Google Scholar]
  67. Mansoori G.A. Brandenburg K.S. Zadeh S.A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2010 2 4 1911 1928 10.3390/cancers2041911 24281209
    [Google Scholar]
  68. Mewada A. Pandey S. Thakur M. Jadhav D. Sharon M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J. Mater. Chem. B Mater. Biol. Med. 2014 2 6 698 705 10.1039/C3TB21436B 32261288
    [Google Scholar]
  69. Hou Q. Liu L. Dong Y. Wu J. Du L. Dong H. Li D. Effects of thymoquinone on radiation enteritis in mice. Sci. Rep. 2018 8 1 1 7 10.1038/s41598‑018‑33214‑3 30310156
    [Google Scholar]
  70. Liu H. Li Z. Sun Y. Geng X. Hu Y. Meng H. Ge J. Qu L. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci. Rep. 2018 8 1 1086 10.1038/s41598‑018‑19373‑3 29348413
    [Google Scholar]
  71. Choi Y. Kim S. Choi M.H. Ryoo S.R. Park J. Min D.H. Kim B.S. Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv. Funct. Mater. 2014 24 37 5781 5789 10.1002/adfm.201400961
    [Google Scholar]
  72. Zheng X.T. Lai Y.C. Tan Y.N. Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy. Nanoscale Adv. 2019 1 6 2250 2257 10.1039/C9NA00058E 36131960
    [Google Scholar]
  73. Tang C. Zhou J. Qian Z. Ma Y. Huang Y. Feng H. A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: Β-galactosidase activity detection in vitro and in living cells. J. Mater. Chem. B Mater. Biol. Med. 2017 5 10 1971 1979 10.1039/C6TB03361J 32263951
    [Google Scholar]
  74. Su Y. Yu B. Wang S. Cong H. Shen Y. NIR-II bioimaging of small organic molecule. Biomaterials 2021 271 120717 10.1016/j.biomaterials.2021.120717 33610960
    [Google Scholar]
  75. García S.S. Solórzano R. Novio F. Alibés R. Busqué F. Molina R.D. Coordination polymers nanoparticles for bioimaging. Coord. Chem. Rev. 2021 432 213716 10.1016/j.ccr.2020.213716
    [Google Scholar]
  76. Luo P.G. Yang F. Yang S.T. Sonkar S.K. Yang L. Broglie J.J. Liu Y. Sun Y.P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Advances 2014 4 21 10791 10.1039/c3ra47683a
    [Google Scholar]
  77. Su W. Wu H. Xu H. Zhang Y. Li Y. Li X. Fan L. Carbon dots: A booming material for biomedical applications. Mater. Chem. Front. 2020 4 3 821 836 10.1039/C9QM00658C
    [Google Scholar]
  78. Wegner K.D. Hildebrandt N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015 44 14 4792 4834 10.1039/C4CS00532E 25777768
    [Google Scholar]
  79. Gedda G. Sankaranarayanan S.A. Putta C.L. Gudimella K.K. Rengan A.K. Girma W.M. Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Sci. Rep. 2023 13 1 6371 10.1038/s41598‑023‑33652‑8 37076562
    [Google Scholar]
  80. Biswas M.C. Islam M.T. Nandy P.K. Hossain M.M. Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: A review. ACS Mater. Lett. 2021 3 6 889 911 10.1021/acsmaterialslett.0c00550
    [Google Scholar]
  81. Jia Q. Zhao Z. Liang K. Nan F. Li Y. Wang J. Ge J. Wang P. Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater. Chem. Front. 2020 4 2 449 471 10.1039/C9QM00667B
    [Google Scholar]
  82. Zhang Y. Song H. Wang L. Yu J. Wang B. Hu Y. Zang S.Q. Yang B. Lu S. Solid-state red laser with a single longitudinal mode from carbon dots. Angew. Chem. Int. Ed. 2021 60 48 25514 25521 10.1002/anie.202111285 34549866
    [Google Scholar]
  83. Soni N. Singh S. Sharma S. Batra G. Kaushik K. Rao C. Verma N.C. Mondal B. Yadav A. Nandi C.K. Absorption and emission of light in red emissive carbon nanodots. Chem. Sci. 2021 12 10 3615 3626 10.1039/D0SC05879C 34163635
    [Google Scholar]
  84. Zhang Q. Wang R. Feng B. Zhong X. Ostrikov K. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021 12 1 6856 10.1038/s41467‑021‑27071‑4 34824216
    [Google Scholar]
  85. Liu K.K. Song S.Y. Sui L.Z. Wu S.X. Jing P.T. Wang R.Q. Li Q.Y. Wu G.R. Zhang Z.Z. Yuan K.J. Shan C.X. Efficient Red/Near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019 6 17 1900766 10.1002/advs.201900766 31508282
    [Google Scholar]
  86. Jiang L. Ding H. Xu M. Hu X. Li S. Zhang M. Zhang Q. Wang Q. Lu S. Tian Y. Bi H. UV–Vis–NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo. Small 2020 16 19 2000680 10.1002/smll.202000680 32285624
    [Google Scholar]
  87. Li C. Wang Y. Zhang X. Guo X. Kang X. Du L. Liu Y. Red fluorescent carbon dots with phenylboronic acid tags for quick detection of Fe(III) in PC12 cells. J. Colloid Interface Sci. 2018 526 487 496 10.1016/j.jcis.2018.05.017 29772416
    [Google Scholar]
  88. Xia J. Kawamura Y. Suehiro T. Chen Y. Sato K. Carbon dots have antitumor action as monotherapy or combination therapy. Drug Discov. Ther. 2019 13 2 114 117 10.5582/ddt.2019.01013 31080202
    [Google Scholar]
  89. Shi X. Hu Y. Meng H.M. Yang J. Qu L. Zhang X.B. Li Z. Red emissive carbon dots with dual targetability for imaging polarity in living cells. Sens. Actuators B Chem. 2020 306 127582 10.1016/j.snb.2019.127582
    [Google Scholar]
  90. Tian X. Zeng A. Liu Z. Zheng C. Wei Y. Yang P. Zhang M. Yang F. Xie F. Carbon quantum dots: in vitro and in vivo studies on biocompatibility and biointeractions for optical imaging. Int. J. Nanomedicine 2020 15 6519 6529 10.2147/IJN.S257645 32943866
    [Google Scholar]
  91. El-brolsy H.M.E.M. Hanafy N.A.N. El-Kemary M.A. Fighting non-small lung cancer cells using optimal functionalization of targeted carbon quantum dots derived from natural sources might provide potential therapeutic and cancer bio image strategies. Int. J. Mol. Sci. 2022 23 21 13283 10.3390/ijms232113283 36362075
    [Google Scholar]
  92. Kim J. Park J. Kim H. Singha K. Kim W.J. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials 2013 34 29 7168 7180 10.1016/j.biomaterials.2013.05.072 23790437
    [Google Scholar]
  93. Havrdová M. Urbančič I. Tománková K.B. Malina L. Poláková K. Štrancar J. Bourlinos A.B. Intracellular trafficking of cationic carbon dots in cancer cell lines MCF-7 and HeLa—Time lapse microscopy, concentration-dependent uptake, viability, dna damage, and cell cycle profile. Int. J. Mol. Sci. 2022 23 3 1077 10.3390/ijms23031077 35162996
    [Google Scholar]
  94. Li S. Su W. Wu H. Yuan T. Yuan C. Liu J. Deng G. Gao X. Chen Z. Bao Y. Yuan F. Zhou S. Tan H. Li Y. Li X. Fan L. Zhu J. Chen A.T. Liu F. Zhou Y. Li M. Zhai X. Zhou J. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat. Biomed. Eng. 2020 4 7 704 716 10.1038/s41551‑020‑0540‑y 32231314
    [Google Scholar]
  95. Ding H. Zhou X.X. Wei J.S. Li X.B. Qin B.T. Chen X.B. Xiong H.M. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon 2020 167 322 344 10.1016/j.carbon.2020.06.024
    [Google Scholar]
  96. Moniruzzaman M. Dutta S.D. Lim K.T. Kim J. Perylene-derived hydrophilic carbon dots with polychromatic emissions as superior bioimaging and NIR-responsive photothermal bactericidal agent. ACS Omega 2022 7 42 37388 37400 10.1021/acsomega.2c04130 36312345
    [Google Scholar]
  97. Marković Z.M. Budimir M.D. Danko M. Milivojević D.D. Kubat P. Zmejkoski D.Z. Pavlović V.B. Mojsin M.M. Stevanović M.J. Marković T.B.M. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o -phenylenediamine. Beilstein J. Nanotechnol. 2023 14 165 174 10.3762/bjnano.14.17 36761674
    [Google Scholar]
  98. Ge J. Jia Q. Liu W. Guo L. Liu Q. Lan M. Zhang H. Meng X. Wang P. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 2015 27 28 4169 4177 10.1002/adma.201500323 26045099
    [Google Scholar]
  99. Gao L. Zhao X. Wang J. Wang Y. Yu L. Peng H. Zhu J. Multiple functionalized carbon quantum dots for targeting glioma and tissue imaging. Opt. Mater. 2018 75 764 769 10.1016/j.optmat.2017.11.044
    [Google Scholar]
  100. Jiao M. Wang Y. Wang W. Zhou X. Xu J. Xing Y. Chen L. Zhang Y. Chen M. Xu K. Zheng S. Gadolinium doped red-emissive carbon dots as targeted theranostic agents for fluorescence and MR imaging guided cancer phototherapy. Chem. Eng. J. 2022 440 135965 10.1016/j.cej.2022.135965
    [Google Scholar]
  101. Sekar R. Basavegowda N. Jena S. Jayakodi S. Elumalai P. Chaitanyakumar A. Somu P. Baek K.H. Recent developments in Heteroatom/Metal-doped carbon dot-based image-guided photodynamic therapy for cancer. Pharmaceutics 2022 14 9 1869 10.3390/pharmaceutics14091869 36145617
    [Google Scholar]
  102. Khoshnood A. Farhadian N. Abnous K. Matin M.M. Ziaee N. Yaghoobi E. N doped-carbon quantum dots with ultra-high quantum yield photoluminescent property conjugated with folic acid for targeted drug delivery and bioimaging applications. J. Photochem. Photobiol. Chem. 2023 444 114972 10.1016/j.jphotochem.2023.114972
    [Google Scholar]
  103. Mousa M.A. Abdelrahman H.H. Fahmy M.A. Ebrahim D.G. Moustafa A.H.E. Pure and doped carbon quantum dots as fluorescent probes for the detection of phenol compounds and antibiotics in aquariums. Sci. Rep. 2023 13 1 12863 10.1038/s41598‑023‑39490‑y 37553364
    [Google Scholar]
  104. Wei Y. Chen L. Wang J. Liu X. Yang Y. Yu S. Rapid synthesis of B-N co-doped yellow emissive carbon quantum dots for cellular imaging. Opt. Mater. 2020 100 109647 10.1016/j.optmat.2019.109647
    [Google Scholar]
  105. Zhou J. Deng W. Wang Y. Cao X. Chen J. Wang Q. Xu W. Du P. Yu Q. Chen J. Spector M. Yu J. Xu X. Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Acta Biomater. 2016 42 209 219 10.1016/j.actbio.2016.06.021 27321673
    [Google Scholar]
  106. Han C. Xu H. Wang R. Wang K. Dai Y. Liu Q. Guo M. Li J. Xu K. Synthesis of a multifunctional manganese( ii )–carbon dots hybrid and its application as an efficient magnetic-fluorescent imaging probe for ovarian cancer cell imaging. J. Mater. Chem. B Mater. Biol. Med. 2016 4 35 5798 5802 10.1039/C6TB01250G 32263751
    [Google Scholar]
  107. Gedda G. Bhupathi A. Tiruveedhi V.L.N.B.G. Gedda G. Bhupathi A. Tiruveedhi V.L.N.B.G. Naturally derived carbon dots as bioimaging agents. Biomechanics and Functional Tissue Engineering 2021 96912 10.5772/intechopen.96912
    [Google Scholar]
  108. Saljoughi H. Khakbaz F. Mahani M. Synthesis of folic acid conjugated photoluminescent carbon quantum dots with ultrahigh quantum yield for targeted cancer cell fluorescence imaging. Photodiagn. Photodyn. Ther. 2020 30 101687 10.1016/j.pdpdt.2020.101687 32070730
    [Google Scholar]
  109. Heidari F. Mohajeri N. Zarghami N. Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem. Biophys. 2022 80 1 75 88 10.1007/s12013‑021‑01034‑4 34716880
    [Google Scholar]
  110. Sun Y. Zheng S. Liu L. Kong Y. Zhang A. Xu K. Han C. The cost-effective preparation of green fluorescent carbon dots for bioimaging and enhanced intracellular drug delivery. Nanoscale Res. Lett. 2020 15 1 55 59 10.1186/s11671‑020‑3288‑0 32130552
    [Google Scholar]
  111. Gao G. Jiang Y.W. Jia H.R. Yang J. Wu F.G. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 2018 134 232 243 10.1016/j.carbon.2018.02.063
    [Google Scholar]
  112. Han C. Chen R. Wu X. Shi N. Duan T. Xu K. Huang T. Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots. Anal. Chim. Acta 2021 1187 339160 10.1016/j.aca.2021.339160 34753571
    [Google Scholar]
  113. Mohammadi S. Salimi A. Ghadareh H.S. Fathi F. Soleimani F. A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal. Biochem. 2018 557 18 26 10.1016/j.ab.2018.06.008 29908158
    [Google Scholar]
  114. Jiao Y. Sun H. Jia Y. Liu Y. Gao Y. Xian M. Shuang S. Dong C. Functionalized fluorescent carbon nanoparticles for sensitively targeted of folate-receptor-positive cancer cells. Microchem. J. 2019 146 464 470 10.1016/j.microc.2019.01.003
    [Google Scholar]
  115. Soleymani J. Hasanzadeh M. Somi M.H. Ozkan S.A. Jouyban A. Targeting and sensing of some cancer cells using folate bioreceptor functionalized nitrogen-doped graphene quantum dots. Int. J. Biol. Macromol. 2018 118 Pt A 1021 1034 10.1016/j.ijbiomac.2018.06.183 30001595
    [Google Scholar]
  116. Motaghi H. Mehrgardi M.A. Bouvet P. Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells. Sci. Rep. 2017 7 1 10513 10.1038/s41598‑017‑11087‑2 28874822
    [Google Scholar]
  117. Zuo G. Xie A. Li J. Su T. Pan X. Dong W. Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag + detection. J. Phys. Chem. C 2017 121 47 26558 26565 10.1021/acs.jpcc.7b10179
    [Google Scholar]
  118. Chai L. Zhou J. Feng H. Tang C. Huang Y. Qian Z. Functionalized carbon quantum dots with dopamine for tyrosinase activity monitoring and inhibitor screening: in vitro and intracellular investigation. ACS Appl. Mater. Interfaces 2015 7 42 23564 23574 10.1021/acsami.5b06711 26440479
    [Google Scholar]
  119. Ghadareh H.S. Salimi A. Fathi F. Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens. Bioelectron. 2017 96 308 316 10.1016/j.bios.2017.05.003 28525848
    [Google Scholar]
  120. Gedda G. Chen G.R. Yao Y.Y. Girma W.M. Li J.D. Yen C.L. Ling Y.C. Chang J.Y. Aqueous synthesis of dual-targeting Gd-doped CuInS 2 /ZnS quantum dots for cancer-specific bi-modal imaging. New J. Chem. 2017 41 23 14161 14170 10.1039/C7NJ02252B
    [Google Scholar]
  121. Li B. Chen D. Wang J. Yan Z. Jiang L. Duan D. He J. Luo Z. Zhang J. Yuan F. MOFzyme: Intrinsic protease-like activity of Cu-MOF. Sci. Rep. 2014 4 1 6759 10.1038/srep06759 25342169
    [Google Scholar]
  122. Chen D. Li B. Lei T. Na D. Nie M. Yang Y. Congjia Xie He Z. Wang J. Selective mediation of ovarian cancer SKOV3 cells death by pristine carbon quantum dots/Cu2O composite through targeting matrix metalloproteinases, angiogenic cytokines and cytoskeleton. J. Nanobiotechnology 2021 19 1 68 10.1186/s12951‑021‑00813‑8 33663548
    [Google Scholar]
  123. Dučić T. Alves C.S. Vučinić Ž. Martínez L.J.M. Petković M. Soto J. Mutavdžić D. de Yuso V.M.M. Radotić K. Algarra M. S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach. J. Colloid Interface Sci. 2022 623 226 237 10.1016/j.jcis.2022.05.005 35576652
    [Google Scholar]
  124. Ghadareh H.S. Salimi A. Parsa S. Fathi F. Simultaneous biosensing of CA125 and CA15-3 tumor markers and imaging of OVCAR-3 and MCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength. Int. J. Biol. Macromol. 2018 118 Pt A 617 628 10.1016/j.ijbiomac.2018.06.116 29953892
    [Google Scholar]
  125. Serag E. Helal M. El Nemr A. Curcumin loaded onto folic acid carbon dots as a potent drug delivery system for antibacterial and anticancer applications. J Clust Sci 2023 519 532 10.1007/s10876‑023‑02491‑y
    [Google Scholar]
  126. Jia X. Han Y. Pei M. Zhao X. Tian K. Zhou T. Liu P. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics. Carbohydr. Polym. 2016 152 391 397 10.1016/j.carbpol.2016.06.109 27516286
    [Google Scholar]
  127. Barough N.L. Sarookhani M.R. Sharifi M. Moghbelinejad S. Jangjoo S. Salehi R. Molecular mechanisms of drug resistance in ovarian cancer. J. Cell. Physiol. 2018 233 6 4546 4562 10.1002/jcp.26289 29152737
    [Google Scholar]
  128. Lan H. Yuan J. Zeng D. Liu C. Guo X. Yong J. Zeng X. Xiao S. The emerging role of non-coding RNAs in drug resistance of ovarian cancer. Front. Genet. 2021 12 693259 10.3389/fgene.2021.693259 34512721
    [Google Scholar]
  129. Mo L. Pospichalova V. Huang Z. Murphy S.K. Payne S. Wang F. Kennedy M. Cianciolo G.J. Bryja V. Pizzo S.V. Bachelder R.E. Ascites increases expression/function of multidrug resistance proteins in ovarian cancer cells. PLoS One 2015 10 7 e0131579 10.1371/journal.pone.0131579 26148191
    [Google Scholar]
  130. Sarkar S. Malekshah O.M. Nomani A. Patel N. Hatefi A. A novel chemotherapeutic protocol for peritoneal metastasis and inhibition of relapse in drug resistant ovarian cancer. Cancer Med. 2018 7 8 3630 3641 10.1002/cam4.1631 29926538
    [Google Scholar]
  131. Wang Z. Wang H. Guo H. Li F. Wu W. Zhang S. Wang T. The circadian rhythm and core gene Period2 regulate the chemotherapy effect and multidrug resistance of ovarian cancer through the PI3K signaling pathway. Biosci. Rep. 2020 40 11 BSR20202683 10.1042/BSR20202683 33083827
    [Google Scholar]
  132. Wang A. Li J. Zhou T. Li T. Cai H. Shi H. Liu A. CUEDC2 contributes to cisplatin-based chemotherapy resistance in ovarian serious carcinoma by regulating p38 MAPK signaling. J. Cancer 2019 10 8 1800 1807 10.7150/jca.29889 31205536
    [Google Scholar]
  133. Yang Y. Ding H. Li Z. Tedesco A.C. Bi H. Carbon dots derived from tea polyphenols as photosensitizers for photodynamic therapy. Molecules 2022 27 23 8627 10.3390/molecules27238627 36500718
    [Google Scholar]
  134. Jia Q. Zheng X. Ge J. Liu W. Ren H. Chen S. Wen Y. Zhang H. Wu J. Wang P. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J. Colloid Interface Sci. 2018 526 302 311 10.1016/j.jcis.2018.05.005 29747042
    [Google Scholar]
  135. Soumya K. More N. Choppadandi M. Aishwarya D.A. Singh G. Kapusetti G. A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment. Bio. Technol. 2023 4 11 20 10.1016/j.bmt.2023.01.005
    [Google Scholar]
  136. Lim S.Y. Shen W. Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015 44 1 362 381 10.1039/C4CS00269E 25316556
    [Google Scholar]
  137. Gedda G. Pandey S. Khan M.S. Talib A. Wu H.F. Synthesis of mesoporous titanium oxide for release control and high efficiency drug delivery of vinorelbine bitartrate. RSC Advances 2016 6 16 13145 13151 10.1039/C5RA14841C
    [Google Scholar]
  138. Yang L. Wang Z. Wang J. Jiang W. Jiang X. Bai Z. He Y. Jiang J. Wang D. Yang L. Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy. Nanoscale 2016 8 12 6801 6809 10.1039/C6NR00247A 26957191
    [Google Scholar]
  139. Pandey S. Gedda G.R. Thakur M. Bhaisare M.L. Talib A. Khan M.S. Wu S.M. Wu H.F. Theranostic carbon dots ‘clathrate-like’ nanostructures for targeted photo-chemotherapy and bioimaging of cancer. J. Ind. Eng. Chem. 2017 56 62 73 10.1016/j.jiec.2017.06.008
    [Google Scholar]
  140. Zhang M. Wang W. Cui Y. Chu X. Sun B. Zhou N. Shen J. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chem. Eng. J. 2018 338 526 538 10.1016/j.cej.2018.01.081
    [Google Scholar]
  141. Piktel E. Ościłowska I. Suprewicz Ł. Depciuch J. Marcińczyk N. Chabielska E. Wolak P. Wollny T. Janion M. Wojtan P.M. Bucki R. ROS-mediated apoptosis and autophagy in ovarian cancer cells treated with peanut-shaped gold nanoparticles. Int. J. Nanomedicine 2021 16 1993 2011 10.2147/IJN.S277014 33727811
    [Google Scholar]
  142. Lan T. Zhao Y. Du Y. Ma C. Wang R. Zhang Q. Wang S. Wei W. Yuan H. Huang Q. Fabrication of a novel Au Star@AgAu yolk-shell nanostructure for ovarian cancer early diagnosis and targeted therapy. Int. J. Nanomedicine 2023 18 3813 3824 10.2147/IJN.S413457 37457800
    [Google Scholar]
  143. Yim W. Borum R.M. Zhou J. Mantri Y. Wu Z. Zhou J. Jin Z. Creyer M. Jokerst J.V. Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window. Nanotheranostics 2022 6 1 79 90 10.7150/ntno.63634 34976582
    [Google Scholar]
  144. Ledari T.R. Zhang W. Radmanesh M. Cathcart N. Maleki A. Kitaev V. Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy. J. Nanobiotechnol. 2021 19 1 239 10.1186/s12951‑021‑00982‑6 34380469
    [Google Scholar]
  145. Choe H.S. Shin M.J. Kwon S.G. Lee H. Kim D.K. Choi K.U. Kim J.H. Kim J.H. Yolk–shell-type gold nanoaggregates for chemo- and photothermal combination therapy for drug-resistant cancers. ACS Appl. Mater. Interfaces 2021 13 45 53519 53529 10.1021/acsami.1c10036 34730926
    [Google Scholar]
  146. Wang Z. Sun X. Huang T. Song J. Wang Y. A sandwich nanostructure of gold nanoparticle coated reduced graphene oxide for photoacoustic imaging-guided photothermal therapy in the second NIR window. Front. Bioeng. Biotechnol. 2020 8 655 10.3389/fbioe.2020.00655 32695755
    [Google Scholar]
  147. Liu J. Ma W. Kou W. Shang L. Huang R. Zhao J. Poly-amino acids coated gold nanorod and doxorubicin for synergistic photodynamic therapy and chemotherapy in ovarian cancer cells. Biosci. Rep. 2019 39 12 BSR20192521 10.1042/BSR20192521 31742323
    [Google Scholar]
  148. Liu C. Gong P. Liang Y. Wang Z. Wang L. Application of gold nanorods for photothermal therapy. Medziagotyra 2020 26 3 243 248 10.5755/j01.ms.26.3.21577
    [Google Scholar]
  149. Zhou H. Xu H. Li X. Lv Y. Ma T. Guo S. Huang Z. Wang X. Xu P. Dual targeting hyaluronic acid - RGD mesoporous silica coated gold nanorods for chemo-photothermal cancer therapy. Mater. Sci. Eng. C 2017 81 261 270 10.1016/j.msec.2017.08.002 28887972
    [Google Scholar]
  150. Zhou G. Xiao H. Li X. Huang Y. Song W. Song L. Chen M. Cheng D. Shuai X. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater. 2017 64 223 236 10.1016/j.actbio.2017.10.018 29030300
    [Google Scholar]
  151. Li W. Guo X. Kong F. Zhang H. Luo L. Li Q. Zhu C. Yang J. Du Y. You J. Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres. J. Control. Release 2017 258 171 181 10.1016/j.jconrel.2017.05.015 28522192
    [Google Scholar]
  152. Wang L. Wang L. Xu T. Guo C. Liu C. Zhang H. Li J. Liang Z. Synthesis of 15P-conjugated PPy-modified gold nanoparticles and their application to photothermal therapy of ovarian cancer. Chem. Res. Chin. Univ. 2014 30 6 959 964 10.1007/s40242‑014‑4039‑5
    [Google Scholar]
  153. Van de Broek B. Devoogdt N. D’Hollander A. Gijs H.L. Jans K. Lagae L. Muyldermans S. Maes G. Borghs G. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011 5 6 4319 4328 10.1021/nn1023363 21609027
    [Google Scholar]
  154. You J. Zhang R. Zhang G. Zhong M. Liu Y. Van Pelt C.S. Liang D. Wei W. Sood A.K. Li C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release 2012 158 2 319 328 10.1016/j.jconrel.2011.10.028 22063003
    [Google Scholar]
  155. Elagin V.V. Sergeeva E.A. Bugrova M.L. Ignatova N.I. Yuzhakova D.V. Denisov N.N. Nadtochenko V.A. Zagaynova E.V. Selection of stabilizing agents to provide effective penetration of gold nanoparticles into cells. Photonics Lasers Med. 2014 3 4 351 362 10.1515/plm‑2014‑0016
    [Google Scholar]
  156. Taratula O. Taratula O. Patel M. Schumann C. Naleway M. He H. Pang A. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. Int. J. Nanomedicine 2015 10 2347 2362 10.2147/IJN.S81097 25848255
    [Google Scholar]
  157. Yan J. Zhang Y. Zheng L. Wu Y. Wang T. Jiang T. Liu X. Peng D. Liu Y. Liu Z. Let-7i miRNA and platinum loaded nano-graphene oxide platform for detection/reversion of drug resistance and synergetic chemical-photothermal inhibition of cancer cell. Chin. Chem. Lett. 2022 33 2 767 772 10.1016/j.cclet.2021.08.018
    [Google Scholar]
  158. Maheshwari R. Sharma M. EpCAM aptamer integrated graphene nanosystem for combined anti-ovarian cancer therapy. J. Drug Deliv. Sci. Technol. 2024 95 105593 10.1016/j.jddst.2024.105593
    [Google Scholar]
  159. Marangon I. Moyon M.C. Silva A.K.A. Bianco A. Luciani N. Gazeau F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon 2016 97 110 123 10.1016/j.carbon.2015.08.023
    [Google Scholar]
  160. Wang S. Wu W. Liu Y. Wang C. Xu Q. Lv Q. Huang R. Li X. Targeted peptide-modified oxidized mesoporous carbon nanospheres for chemo-thermo combined therapy of ovarian cancer in vitro. Drug Deliv. 2022 29 1 1951 1958 10.1080/10717544.2022.2089298 35758337
    [Google Scholar]
  161. Yu H. He X. Zhou L. Chen L. Lu H. Wang J. Gao L. Exploring the potential of carbon-coated MoSe2 nanoparticles as a photothermal therapy for ovarian cancer. Arab. J. Chem. 2024 17 2 105495 10.1016/j.arabjc.2023.105495
    [Google Scholar]
  162. Li X. Kong L. Hu W. Zhang C. Pich A. Shi X. Wang X. Xing L. Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study. J. Adv. Res. 2022 37 255 266 10.1016/j.jare.2021.08.004 35499043
    [Google Scholar]
  163. Uprety B. Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem. 2022 10 946574 10.3389/fchem.2022.946574 36034651
    [Google Scholar]
  164. Liu J.H. Cao L. LeCroy G.E. Wang P. Meziani M.J. Dong Y. Liu Y. Luo P.G. Sun Y.P. Carbon “Quantum” dots for fluorescence labeling of cells. ACS Appl. Mater. Interfaces 2015 7 34 19439 19445 10.1021/acsami.5b05665 26262834
    [Google Scholar]
  165. Guo Y. Shen M. Shi X. Construction of poly(amidoamine) Dendrimer/Carbon dot nanohybrids for biomedical applications. Macromol. Biosci. 2021 21 4 2100007 10.1002/mabi.202100007 33615730
    [Google Scholar]
  166. Wu Y.F. Wu H.C. Kuan C.H. Lin C.J. Wang L.W. Chang C.W. Wang T.W. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 2016 6 1 21170 10.1038/srep21170 26880047
    [Google Scholar]
  167. Wang P. Liu C. Tang W. Ren S. Chen Z. Guo Y. Rostamian R. Zhao S. Li J. Liu S. Li S. Molecular glue strategy: Large-scale conversion of clustering-induced emission luminogen to carbon dots. ACS Appl. Mater. Interfaces 2019 11 21 19301 19307 10.1021/acsami.8b22605 31062574
    [Google Scholar]
  168. Zhang H. Guo X. Jian K. Fu L. Zhao X. Rapid preparation of long-wavelength emissive carbon dots for information encryption using the microwave-assisted method. Inorg. Chem. 2023 62 34 13847 13856 10.1021/acs.inorgchem.3c01677 37583357
    [Google Scholar]
  169. Cayuela A. Soriano M.L. Carrión C.C. Valcárcel M. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun. 2016 52 7 1311 1326 10.1039/C5CC07754K 26671042
    [Google Scholar]
  170. Nocito G. Calabrese G. Forte S. Petralia S. Puglisi C. Campolo M. Esposito E. Conoci S. Carbon dots as promising tools for cancer diagnosis and therapy. Cancers 2021 13 9 1991 10.3390/cancers13091991 33919096
    [Google Scholar]
  171. Calabrese G. De Luca G. Nocito G. Rizzo M.G. Lombardo S.P. Chisari G. Forte S. Sciuto E.L. Conoci S. Carbon dots: An innovative tool for drug delivery in brain tumors. Int. J. Mol. Sci. 2021 22 21 11783 10.3390/ijms222111783 34769212
    [Google Scholar]
  172. Li S. Amat D. Peng Z. Vanni S. Raskin S. De Angulo G. Othman A.M. Graham R.M. Leblanc R.M. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale 2016 8 37 16662 16669 10.1039/C6NR05055G 27714111
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501347816241223065618
Loading
/content/journals/cdt/10.2174/0113894501347816241223065618
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test