Skip to content
2000
Volume 27, Issue 1
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Delayed diagnosis and limited treatment options make ovarian cancer difficult to treat. This paper examines the growing role of Carbon Dots (CDs) in ovarian cancer diagnosis and treatment. Photoluminescence and biocompatibility make CDs ideal for biomedical use. We emphasize their ability to improve fluorescence and molecular imaging in radiology and diagnostics. We also demonstrate the efficacy of carbon dots in targeted drug delivery systems in overcoming drug resistance and improving therapeutic outcomes. Photodynamic and photothermal therapies are used to show that CDs can treat hypoxic ovarian cancer tumours. We also discuss CD safety issues and constraints, emphasising the need for thorough assessments and fine-tuning. Future research focuses on personalised medicine and CD integration with other therapies. This text concludes by discussing CDs' clinical use and the challenges of production and regulatory approval. CDs can improve ovarian cancer diagnosis and treatment, improving patient outcomes and survival.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501347816241223065618
2025-02-04
2026-02-09
Loading full text...

Full text loading...

References

  1. ChałupnikA. ChilimoniukZ. DoboszM. SobstylA. SobstylM. The latest reports on biomarkers used in the diagnosis of ovarian cancer.J. Educ. Health Sport202212779980910.12775/JEHS.2022.12.07.080
    [Google Scholar]
  2. IngeH. CarineB. LaureD. ElomK.A. SabineN. Dietary and circulating fatty acids and ovarian cancer risk in the european prospective investigation into cancer and nutrition.Canc. Epi. Bio. Prev.202029917391749
    [Google Scholar]
  3. WuP. JiangQ. HanL. LiuX. Systematic analysis and prediction for disease burden of ovarian cancer attributable to hyperglycemia: A comparative study between China and the world from 1990 to 2019.Front. Med.202310114548710.3389/fmed.2023.114548737122334
    [Google Scholar]
  4. LiuJ. LiR. YangB. Carbon dots: A new type of carbon-based nanomaterial with wide applications.ACS Cent. Sci.20206122179219510.1021/acscentsci.0c0130633376780
    [Google Scholar]
  5. ShuQ. LiuJ. ChangQ. LiuC. WangH. XieY. DengX. Enhanced photothermal performance by carbon dot-chelated polydopamine nanoparticles.ACS Biomater. Sci. Eng.20217125497550510.1021/acsbiomaterials.1c0104534739201
    [Google Scholar]
  6. SinghG. KaurH. SharmaA. SinghJ. AlajangiH.K. KumarS. SinglaN. KaurI.P. BarnwalR.P. Carbon based nanodots in early diagnosis of cancer.Front Chem.2021966916910.3389/fchem.2021.66916934109155
    [Google Scholar]
  7. LagosK.J. BuzzáH.H. BagnatoV.S. RomeroM.P. Carbon-based materials in photodynamic and photothermal therapies applied to tumor destruction.Int. J. Mol. Sci.20212312210.3390/ijms2301002235008458
    [Google Scholar]
  8. KongJ. WeiY. ZhouF. ShiL. ZhaoS. WanM. ZhangX. Carbon quantum dots: Properties, preparation, and applications.Molecules2024299200210.3390/molecules2909200238731492
    [Google Scholar]
  9. SajjadF. HanY. BaoL. YanY. SheaO.D. WangL. ChenZ. The improvement of biocompatibility by incorporating porphyrins into carbon dots with photodynamic effects and pH sensitivities.J. Biomater. Appl.20223681378138910.1177/0885328221105044934968148
    [Google Scholar]
  10. YuY. SongM. ChenC. DuY. LiC. HanY. YanF. ShiZ. FengS. Bortezomib-encapsulated CuS/Carbon dot nanocomposites for enhanced photothermal therapy via stabilization of polyubiquitinated substrates in the proteasomal degradation pathway.ACS Nano2020148106881070310.1021/acsnano.0c0533232790339
    [Google Scholar]
  11. TironC.E. LutaG. ButuraM. EloaeZ.F. StanC.S. CoroabăA. UrsuE.L. StanciuG.D. TironA. NHF-derived carbon dots: Prevalidation approach in breast cancer treatment.Sci. Rep.20201011266210.1038/s41598‑020‑69670‑z32728167
    [Google Scholar]
  12. KaurN. TiwariP. KumarP. BiswasM. SonawaneA. MobinS.M. Multifaceted carbon dots: Toward pH-responsive delivery of 5-fluorouracil for in vitro antiproliferative activity.ACS Appl. Bio Mater.2023672760277010.1021/acsabm.3c0022837366546
    [Google Scholar]
  13. BaiY. ZhaoJ. ZhangL. WangS. HuaJ. ZhaoS. LiangH. A smart near-infrared carbon dot-metal organic framework assemblies for tumor microenvironment-activated cancer imaging and chemodynamic-photothermal combined therapy.Adv. Healthc. Mater.20221112210275910.1002/adhm.20210275935170255
    [Google Scholar]
  14. NayakP.P. SN. NarayananA. BadekilaA.K. KiniS. Nanomedicine in cancer clinics: Are we there yet?Curr. Pathobiol. Rep.202192435510.1007/s40139‑021‑00220‑6
    [Google Scholar]
  15. BaydaS. AmadioE. CailottoS. HerreraF.Y. PerosaA. RizzolioF. Carbon dots for cancer nanomedicine: A bright future.Nanoscale Adv.20213185183522110.1039/D1NA00036E36132627
    [Google Scholar]
  16. OmerW.E. AbdelbarM.F. El-KemaryN.M. FukataN. El-KemaryM.A. Cancer antigen 125 assessment using carbon quantum dots for optical biosensing for the early diagnosis of ovarian cancer.RSC Advances20211149310473105710.1039/D1RA05121K35498938
    [Google Scholar]
  17. LiX. ZhaoS. LiB. YangK. LanM. ZengL. Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application.Coord. Chem. Rev.202143121368610.1016/j.ccr.2020.213686
    [Google Scholar]
  18. WangQ. QiX. ChenH. LiJ. YangM. LiuJ. SunK. LiZ. DengG. Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal–organic frameworks.Mikrochim. Acta2022189827210.1007/s00604‑022‑05377‑435790600
    [Google Scholar]
  19. PhukanK. SarmaR.R. DashS. DeviR. ChowdhuryD. Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells.Nanoscale Adv.20214113814910.1039/D1NA00617G36132963
    [Google Scholar]
  20. LiuJ. GengY. LiD. YaoH. HuoZ. LiY. ZhangK. ZhuS. WeiH. XuW. JiangJ. YangB. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum.Adv. Mater.20203217190664110.1002/adma.20190664132191372
    [Google Scholar]
  21. ZhuS. MengQ. WangL. ZhangJ. SongY. JinH. ZhangK. SunH. WangH. YangB. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging.Angew. Chem. Int. Ed.201352143953395710.1002/anie.20130051923450679
    [Google Scholar]
  22. LuS. SuiL. LiuJ. ZhuS. ChenA. JinM. YangB. Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence.Adv. Mater.20172915160344310.1002/adma.20160344328195369
    [Google Scholar]
  23. LiuJ. LiD. ZhangK. YangM. SunH. YangB. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging.Small20181415170391910.1002/smll.20170391929508542
    [Google Scholar]
  24. YuanF. YuanT. SuiL. WangZ. XiZ. LiY. LiX. FanL. TanZ. ChenA. JinM. YangS. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs.Nat. Commun.201891224910.1038/s41467‑018‑04635‑529884873
    [Google Scholar]
  25. GaoT. WangX. YangL.Y. HeH. BaX.X. ZhaoJ. JiangF.L. LiuY. Red, yellow, and blue luminescence by graphene quantum dots: Syntheses, mechanism, and cellular imaging.ACS Appl. Mater. Interfaces2017929248462485610.1021/acsami.7b0556928675929
    [Google Scholar]
  26. SunS. ZhangL. JiangK. WuA. LinH. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents.Chem. Mater.201628238659866810.1021/acs.chemmater.6b03695
    [Google Scholar]
  27. FangB.Y. LiC. SongY.Y. TanF. CaoY.C. ZhaoY.D. Nitrogen- doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells.Biosens. Bioelectron.2018100414810.1016/j.bios.2017.08.05728858680
    [Google Scholar]
  28. WangB. CaiH. WaterhouseG.I.N. QuX. YangB. LuS. Carbon dots in bioimaging, biosensing and therapeutics: A comprehensive review.Small Sci.202226220001210.1002/smsc.202200012
    [Google Scholar]
  29. DingH. YuS.B. WeiJ.S. XiongH.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism.ACS Nano201610148449110.1021/acsnano.5b0540626646584
    [Google Scholar]
  30. MiaoX. QuD. YangD. NieB. ZhaoY. FanH. SunZ. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization.Adv. Mater.2018301170474010.1002/adma.20170474029178388
    [Google Scholar]
  31. LiD. JingP. SunL. AnY. ShanX. LuX. ZhouD. HanD. ShenD. ZhaiY. QuS. ZbořilR. RogachA.L. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots.Adv. Mater.20183013170591310.1002/adma.20170591329411443
    [Google Scholar]
  32. BaoX. YuanY. ChenJ. ZhangB. LiD. ZhouD. JingP. XuG. WangY. HoláK. ShenD. WuC. SongL. LiuC. ZbořilR. QuS. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration.Light Sci. Appl.2018719110.1038/s41377‑018‑0090‑130479757
    [Google Scholar]
  33. YeX. XiangY. WangQ. LiZ. LiuZ. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection.Small20191548190167310.1002/smll.20190167331157517
    [Google Scholar]
  34. HuiW. YangY. XuQ. GuH. FengS. SuZ. ZhangM. WangJ. LiX. FangJ. XiaF. XiaY. ChenY. GaoX. HuangW. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells.Adv. Mater.2020324190637410.1002/adma.20190637431799762
    [Google Scholar]
  35. ZhengM. LiY. LiuS. WangW. XieZ. JingX. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy.ACS Appl. Mater. Interfaces2016836235332354110.1021/acsami.6b0745327558196
    [Google Scholar]
  36. ZhangM. ZhaiX. MaT. HuangY. YanC. DuY. Multifunctional cerium doped carbon dots nanoplatform and its applications for wound healing.Chem. Eng. J.202142313030110.1016/j.cej.2021.130301
    [Google Scholar]
  37. SinghV. RawatK.S. MishraS. BaghelT. FatimaS. JohnA.A. KalletiN. SinghD. NazirA. RathS.K. GoelA. Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for in vivo live imaging in C. elegans and BALB/c mice.J. Mater. Chem. B Mater. Biol. Med.20186203366337110.1039/C8TB00503F32254394
    [Google Scholar]
  38. PyatiU.J. LookA.T. HammerschmidtM. Zebrafish as a powerful vertebrate model system for in vivo studies of cell death.Semin. Cancer Biol.200717215416510.1016/j.semcancer.2006.11.00717210257
    [Google Scholar]
  39. WangY. SeebaldJ.L. SzetoD.P. IrudayarajJ. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: In vivo and multiplex imaging.ACS Nano2010474039405310.1021/nn100351h20552995
    [Google Scholar]
  40. HoweK. ClarkM.D. TorrojaC.F. TorranceJ. BerthelotC. MuffatoM. CollinsJ.E. HumphrayS. McLarenK. MatthewsL. McLarenS. SealyI. CaccamoM. ChurcherC. ScottC. BarrettJ.C. KochR. RauchG.J. WhiteS. ChowW. KilianB. QuintaisL.T. AssunçãoG.J.A. ZhouY. GuY. YenJ. VogelJ.H. EyreT. RedmondS. BanerjeeR. ChiJ. FuB. LangleyE. MaguireS.F. LairdG.K. LloydD. KenyonE. DonaldsonS. SehraH. KingA.J. LovelandJ. TrevanionS. JonesM. QuailM. WilleyD. HuntA. BurtonJ. SimsS. McLayK. PlumbB. DavisJ. CleeC. OliverK. ClarkR. RiddleC. ElliottD. ThreadgoldG. HardenG. WareD. BegumS. MortimoreB. KerryG. HeathP. PhillimoreB. TraceyA. CorbyN. DunnM. JohnsonC. WoodJ. ClarkS. PelanS. GriffithsG. SmithM. GlitheroR. HowdenP. BarkerN. LloydC. StevensC. HarleyJ. HoltK. PanagiotidisG. LovellJ. BeasleyH. HendersonC. GordonD. AugerK. WrightD. CollinsJ. RaisenC. DyerL. LeungK. RobertsonL. AmbridgeK. LeongamornlertD. McGuireS. GilderthorpR. GriffithsC. ManthravadiD. NicholS. BarkerG. WhiteheadS. KayM. BrownJ. MurnaneC. GrayE. HumphriesM. SycamoreN. BarkerD. SaundersD. WallisJ. BabbageA. HammondS. MohammadiM.M. BarrL. MartinS. WrayP. EllingtonA. MatthewsN. EllwoodM. WoodmanseyR. ClarkG. CooperJ.D. TromansA. GrafhamD. SkuceC. PandianR. AndrewsR. HarrisonE. KimberleyA. GarnettJ. FoskerN. HallR. GarnerP. KellyD. BirdC. PalmerS. GehringI. BergerA. DooleyC.M. ÜrünE.Z. EserC. GeigerH. GeislerM. KarotkiL. KirnA. KonantzJ. KonantzM. OberländerM. GeigerR.S. TeuckeM. LanzC. RaddatzG. OsoegawaK. ZhuB. RappA. WidaaS. LangfordC. YangF. SchusterS.C. CarterN.P. HarrowJ. NingZ. HerreroJ. SearleS.M.J. EnrightA. GeislerR. PlasterkR.H.A. LeeC. WesterfieldM. de JongP.J. ZonL.I. PostlethwaitJ.H. VolhardN.C. HubbardT.J.P. CrolliusH.R. RogersJ. StempleD.L. The zebrafish reference genome sequence and its relationship to the human genome.Nature2013496744649850310.1038/nature1211123594743
    [Google Scholar]
  41. PalT. MohiyuddinS. PackirisamyG. Facile and green synthesis of multicolor fluorescence carbon dots from curcumin: In vitro and in vivo bioimaging and other applications.ACS Omega20183183184310.1021/acsomega.7b0132330023790
    [Google Scholar]
  42. DiasC. VasimalaiN. SárriaP.M. PinheiroI. BoasV.V. PeixotoJ. EspiñaB. Biocompatibility and bioimaging potential of fruit-based carbon dots.Nanomaterials20199219910.3390/nano902019930717497
    [Google Scholar]
  43. WangK. GaoZ. GaoG. WoY. WangY. ShenG. CuiD. Systematic safety evaluation on photoluminescent carbon dots.Nanoscale Res. Lett.20138112210.1186/1556‑276X‑8‑12223497260
    [Google Scholar]
  44. ChenW. ShenJ. WangZ. LiuX. XuY. ZhaoH. AstrucD. Turning waste into wealth: Facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging.Chem. Sci.20211235117221172910.1039/D1SC02837E34659707
    [Google Scholar]
  45. TaoH. YangK. MaZ. WanJ. ZhangY. KangZ. LiuZ. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite.Small20128228129010.1002/smll.20110170622095931
    [Google Scholar]
  46. YaoH. LiJ. SongY. ZhaoH. WeiZ. LiX. JinY. YangB. JiangJ. Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells.Int. J. Nanomedicine2018136249626410.2147/IJN.S17617630349248
    [Google Scholar]
  47. FatahiZ. EsfandiariN. EhtesabiH. BagheriZ. TavanaH. RanjbarZ. LatifiH. Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging.EXCLI J.20191845446610.17179/excli2019‑146531423124
    [Google Scholar]
  48. LiS. GuoZ. FengR. ZhangY. XueW. LiuZ. Hyperbranched polyglycerol conjugated fluorescent carbon dots with improved in vitro toxicity and red blood cell compatibility for bioimaging.RSC Advances2017794975498210.1039/C6RA27159F
    [Google Scholar]
  49. MishraV. PatilA. ThakurS. KesharwaniP. Carbon dots: Emerging theranostic nanoarchitectures.Drug Discov. Today20182361219123210.1016/j.drudis.2018.01.00629366761
    [Google Scholar]
  50. GaoN. YangW. NieH. GongY. JingJ. GaoL. ZhangX. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery.Biosens. Bioelectron.20179630030710.1016/j.bios.2017.05.01928511113
    [Google Scholar]
  51. ShuY. LuJ. MaoQ.X. SongR.S. WangX.Y. ChenX.W. WangJ.H. Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging.Carbon201711432433310.1016/j.carbon.2016.12.038
    [Google Scholar]
  52. WangH.J. HeX. LuoT.Y. ZhangJ. LiuY.H. YuX.Q. Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery.Nanoscale20179185935594710.1039/C7NR01029J28440819
    [Google Scholar]
  53. YaoY.Y. GeddaG. GirmaW.M. YenC.L. LingY.C. ChangJ.Y. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery.ACS Appl. Mater. Interfaces2017916138871389910.1021/acsami.7b0159928388048
    [Google Scholar]
  54. HailingY. XiufangL. LiliW. BaoqiangL. KaichenH. YongquanH. QianqianZ. ChaomingM. XiaoshuaiR. RuiZ. HuiL. PengfeiP. HongS. Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy.Nanoscale20201233172221723710.1039/D0NR01236J32671377
    [Google Scholar]
  55. ZengQ. ShaoD. HeX. RenZ. JiW. ShanC. QuS. LiJ. ChenL. LiQ. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo.J. Mater. Chem. B Mater. Biol. Med.20164305119512610.1039/C6TB01259K32263509
    [Google Scholar]
  56. FengT. AiX. OngH. ZhaoY. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery.ACS Appl. Mater. Interfaces2016829187321874010.1021/acsami.6b0669527367152
    [Google Scholar]
  57. WuR. LiuJ. ChenD. PanJ. Carbon nanodots modified with catechol–borane moieties for pH-stimulated doxorubicin delivery: Toward nuclear targeting.ACS Appl. Nano Mater.2019274333434110.1021/acsanm.9b00779
    [Google Scholar]
  58. FengT. AiX. AnG. YangP. ZhaoY. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency.ACS Nano20161044410442010.1021/acsnano.6b0004326997431
    [Google Scholar]
  59. LiH. KangZ. LiuY. LeeS.T. Carbon nanodots: Synthesis, properties and applications.J. Mater. Chem.201222462423010.1039/c2jm34690g
    [Google Scholar]
  60. XiaJ. ZhuangY.T. YuY.L. WangJ.H. Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion.Mikrochim. Acta201718441109111610.1007/s00604‑017‑2104‑8
    [Google Scholar]
  61. ZuF. YanF. BaiZ. XuJ. WangY. HuangY. ZhouX. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications.Mikrochim. Acta201718471899191410.1007/s00604‑017‑2318‑9
    [Google Scholar]
  62. MaoY. BaoY. HanD. LiF. NiuL. Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing.Biosens. Bioelectron.2012381556010.1016/j.bios.2012.04.04322672763
    [Google Scholar]
  63. SabharanjakS. MayorS. Folate receptor endocytosis and trafficking.Adv. Drug Deliv. Rev.20045681099110910.1016/j.addr.2004.01.01015094209
    [Google Scholar]
  64. ZwickeG.L. MansooriA.G. JefferyC.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics.Nano Rev.2012311849610.3402/nano.v3i0.1849623240070
    [Google Scholar]
  65. CheungA. BaxH.J. JosephsD.H. IlievaK.M. PellizzariG. OpzoomerJ. BloomfieldJ. FittallM. GrigoriadisA. FiginiM. CanevariS. SpicerJ.F. TuttA.N. KaragiannisS.N. Targeting folate receptor alpha for cancer treatment.Oncotarget2016732525535257410.18632/oncotarget.965127248175
    [Google Scholar]
  66. AgarwalA. SarafS. AsthanaA. GuptaU. GajbhiyeV. JainN.K. Ligand based dendritic systems for tumor targeting.Int. J. Pharm.20083501-231310.1016/j.ijpharm.2007.09.02418162345
    [Google Scholar]
  67. MansooriG.A. BrandenburgK.S. ZadehS.A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications.Cancers2010241911192810.3390/cancers204191124281209
    [Google Scholar]
  68. MewadaA. PandeyS. ThakurM. JadhavD. SharonM. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging.J. Mater. Chem. B Mater. Biol. Med.20142669870510.1039/C3TB21436B32261288
    [Google Scholar]
  69. HouQ. LiuL. DongY. WuJ. DuL. DongH. LiD. Effects of thymoquinone on radiation enteritis in mice.Sci. Rep.2018811710.1038/s41598‑018‑33214‑330310156
    [Google Scholar]
  70. LiuH. LiZ. SunY. GengX. HuY. MengH. GeJ. QuL. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability.Sci. Rep.201881108610.1038/s41598‑018‑19373‑329348413
    [Google Scholar]
  71. ChoiY. KimS. ChoiM.H. RyooS.R. ParkJ. MinD.H. KimB.S. Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo.Adv. Funct. Mater.201424375781578910.1002/adfm.201400961
    [Google Scholar]
  72. ZhengX.T. LaiY.C. TanY.N. Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy.Nanoscale Adv.2019162250225710.1039/C9NA00058E36131960
    [Google Scholar]
  73. TangC. ZhouJ. QianZ. MaY. HuangY. FengH. A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: Β-galactosidase activity detection in vitro and in living cells.J. Mater. Chem. B Mater. Biol. Med.20175101971197910.1039/C6TB03361J32263951
    [Google Scholar]
  74. SuY. YuB. WangS. CongH. ShenY. NIR-II bioimaging of small organic molecule.Biomaterials202127112071710.1016/j.biomaterials.2021.12071733610960
    [Google Scholar]
  75. GarcíaS.S. SolórzanoR. NovioF. AlibésR. BusquéF. MolinaR.D. Coordination polymers nanoparticles for bioimaging.Coord. Chem. Rev.202143221371610.1016/j.ccr.2020.213716
    [Google Scholar]
  76. LuoP.G. YangF. YangS.T. SonkarS.K. YangL. BroglieJ.J. LiuY. SunY.P. Carbon-based quantum dots for fluorescence imaging of cells and tissues.RSC Advances20144211079110.1039/c3ra47683a
    [Google Scholar]
  77. SuW. WuH. XuH. ZhangY. LiY. LiX. FanL. Carbon dots: A booming material for biomedical applications.Mater. Chem. Front.20204382183610.1039/C9QM00658C
    [Google Scholar]
  78. WegnerK.D. HildebrandtN. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors.Chem. Soc. Rev.201544144792483410.1039/C4CS00532E25777768
    [Google Scholar]
  79. GeddaG. SankaranarayananS.A. PuttaC.L. GudimellaK.K. RenganA.K. GirmaW.M. Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications.Sci. Rep.2023131637110.1038/s41598‑023‑33652‑837076562
    [Google Scholar]
  80. BiswasM.C. IslamM.T. NandyP.K. HossainM.M. Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: A review.ACS Mater. Lett.20213688991110.1021/acsmaterialslett.0c00550
    [Google Scholar]
  81. JiaQ. ZhaoZ. LiangK. NanF. LiY. WangJ. GeJ. WangP. Recent advances and prospects of carbon dots in cancer nanotheranostics.Mater. Chem. Front.20204244947110.1039/C9QM00667B
    [Google Scholar]
  82. ZhangY. SongH. WangL. YuJ. WangB. HuY. ZangS.Q. YangB. LuS. Solid-state red laser with a single longitudinal mode from carbon dots.Angew. Chem. Int. Ed.20216048255142552110.1002/anie.20211128534549866
    [Google Scholar]
  83. SoniN. SinghS. SharmaS. BatraG. KaushikK. RaoC. VermaN.C. MondalB. YadavA. NandiC.K. Absorption and emission of light in red emissive carbon nanodots.Chem. Sci.202112103615362610.1039/D0SC05879C34163635
    [Google Scholar]
  84. ZhangQ. WangR. FengB. ZhongX. OstrikovK. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation.Nat. Commun.2021121685610.1038/s41467‑021‑27071‑434824216
    [Google Scholar]
  85. LiuK.K. SongS.Y. SuiL.Z. WuS.X. JingP.T. WangR.Q. LiQ.Y. WuG.R. ZhangZ.Z. YuanK.J. ShanC.X. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence.Adv. Sci.2019617190076610.1002/advs.20190076631508282
    [Google Scholar]
  86. JiangL. DingH. XuM. HuX. LiS. ZhangM. ZhangQ. WangQ. LuS. TianY. BiH. UV–Vis–NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo.Small20201619200068010.1002/smll.20200068032285624
    [Google Scholar]
  87. LiC. WangY. ZhangX. GuoX. KangX. DuL. LiuY. Red fluorescent carbon dots with phenylboronic acid tags for quick detection of Fe(III) in PC12 cells.J. Colloid Interface Sci.201852648749610.1016/j.jcis.2018.05.01729772416
    [Google Scholar]
  88. XiaJ. KawamuraY. SuehiroT. ChenY. SatoK. Carbon dots have antitumor action as monotherapy or combination therapy.Drug Discov. Ther.201913211411710.5582/ddt.2019.0101331080202
    [Google Scholar]
  89. ShiX. HuY. MengH.M. YangJ. QuL. ZhangX.B. LiZ. Red emissive carbon dots with dual targetability for imaging polarity in living cells.Sens. Actuators B Chem.202030612758210.1016/j.snb.2019.127582
    [Google Scholar]
  90. TianX. ZengA. LiuZ. ZhengC. WeiY. YangP. ZhangM. YangF. XieF. Carbon quantum dots: In vitro and in vivo studies on biocompatibility and biointeractions for optical imaging.Int. J. Nanomedicine2020156519652910.2147/IJN.S25764532943866
    [Google Scholar]
  91. El-brolsyH.M.E.M. HanafyN.A.N. El-KemaryM.A. Fighting non-small lung cancer cells using optimal functionalization of targeted carbon quantum dots derived from natural sources might provide potential therapeutic and cancer bio image strategies.Int. J. Mol. Sci.202223211328310.3390/ijms23211328336362075
    [Google Scholar]
  92. KimJ. ParkJ. KimH. SinghaK. KimW.J. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA.Biomaterials201334297168718010.1016/j.biomaterials.2013.05.07223790437
    [Google Scholar]
  93. HavrdováM. UrbančičI. TománkováK.B. MalinaL. PolákováK. ŠtrancarJ. BourlinosA.B. Intracellular trafficking of cationic carbon dots in cancer cell lines MCF-7 and HeLa—Time lapse microscopy, concentration-dependent uptake, viability, dna damage, and cell cycle profile.Int. J. Mol. Sci.2022233107710.3390/ijms2303107735162996
    [Google Scholar]
  94. LiS. SuW. WuH. YuanT. YuanC. LiuJ. DengG. GaoX. ChenZ. BaoY. YuanF. ZhouS. TanH. LiY. LiX. FanL. ZhuJ. ChenA.T. LiuF. ZhouY. LiM. ZhaiX. ZhouJ. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids.Nat. Biomed. Eng.20204770471610.1038/s41551‑020‑0540‑y32231314
    [Google Scholar]
  95. DingH. ZhouX.X. WeiJ.S. LiX.B. QinB.T. ChenX.B. XiongH.M. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications.Carbon202016732234410.1016/j.carbon.2020.06.024
    [Google Scholar]
  96. MoniruzzamanM. DuttaS.D. LimK.T. KimJ. Perylene-derived hydrophilic carbon dots with polychromatic emissions as superior bioimaging and NIR-responsive photothermal bactericidal agent.ACS Omega2022742373883740010.1021/acsomega.2c0413036312345
    [Google Scholar]
  97. MarkovićZ.M. BudimirM.D. DankoM. MilivojevićD.D. KubatP. ZmejkoskiD.Z. PavlovićV.B. MojsinM.M. StevanovićM.J. MarkovićT.B.M. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o -phenylenediamine.Beilstein J. Nanotechnol.20231416517410.3762/bjnano.14.1736761674
    [Google Scholar]
  98. GeJ. JiaQ. LiuW. GuoL. LiuQ. LanM. ZhangH. MengX. WangP. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice.Adv. Mater.201527284169417710.1002/adma.20150032326045099
    [Google Scholar]
  99. GaoL. ZhaoX. WangJ. WangY. YuL. PengH. ZhuJ. Multiple functionalized carbon quantum dots for targeting glioma and tissue imaging.Opt. Mater.20187576476910.1016/j.optmat.2017.11.044
    [Google Scholar]
  100. JiaoM. WangY. WangW. ZhouX. XuJ. XingY. ChenL. ZhangY. ChenM. XuK. ZhengS. Gadolinium doped red-emissive carbon dots as targeted theranostic agents for fluorescence and MR imaging guided cancer phototherapy.Chem. Eng. J.202244013596510.1016/j.cej.2022.135965
    [Google Scholar]
  101. SekarR. BasavegowdaN. JenaS. JayakodiS. ElumalaiP. ChaitanyakumarA. SomuP. BaekK.H. Recent developments in Heteroatom/Metal-doped carbon dot-based image-guided photodynamic therapy for cancer.Pharmaceutics2022149186910.3390/pharmaceutics1409186936145617
    [Google Scholar]
  102. KhoshnoodA. FarhadianN. AbnousK. MatinM.M. ZiaeeN. YaghoobiE. N doped-carbon quantum dots with ultra-high quantum yield photoluminescent property conjugated with folic acid for targeted drug delivery and bioimaging applications.J. Photochem. Photobiol. Chem.202344411497210.1016/j.jphotochem.2023.114972
    [Google Scholar]
  103. MousaM.A. AbdelrahmanH.H. FahmyM.A. EbrahimD.G. MoustafaA.H.E. Pure and doped carbon quantum dots as fluorescent probes for the detection of phenol compounds and antibiotics in aquariums.Sci. Rep.20231311286310.1038/s41598‑023‑39490‑y37553364
    [Google Scholar]
  104. WeiY. ChenL. WangJ. LiuX. YangY. YuS. Rapid synthesis of B-N co-doped yellow emissive carbon quantum dots for cellular imaging.Opt. Mater.202010010964710.1016/j.optmat.2019.109647
    [Google Scholar]
  105. ZhouJ. DengW. WangY. CaoX. ChenJ. WangQ. XuW. DuP. YuQ. ChenJ. SpectorM. YuJ. XuX. Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake.Acta Biomater.20164220921910.1016/j.actbio.2016.06.02127321673
    [Google Scholar]
  106. HanC. XuH. WangR. WangK. DaiY. LiuQ. GuoM. LiJ. XuK. Synthesis of a multifunctional manganese( ii )–carbon dots hybrid and its application as an efficient magnetic-fluorescent imaging probe for ovarian cancer cell imaging.J. Mater. Chem. B Mater. Biol. Med.20164355798580210.1039/C6TB01250G32263751
    [Google Scholar]
  107. GeddaG. BhupathiA. TiruveedhiV.L.N.B.G. GeddaG. BhupathiA. TiruveedhiV.L.N.B.G. Naturally derived carbon dots as bioimaging agents.Biomechanics and Functional Tissue Engineering20219691210.5772/intechopen.96912
    [Google Scholar]
  108. SaljoughiH. KhakbazF. MahaniM. Synthesis of folic acid conjugated photoluminescent carbon quantum dots with ultrahigh quantum yield for targeted cancer cell fluorescence imaging.Photodiagn. Photodyn. Ther.20203010168710.1016/j.pdpdt.2020.10168732070730
    [Google Scholar]
  109. HeidariF. MohajeriN. ZarghamiN. Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell.Cell Biochem. Biophys.2022801758810.1007/s12013‑021‑01034‑434716880
    [Google Scholar]
  110. SunY. ZhengS. LiuL. KongY. ZhangA. XuK. HanC. The cost-effective preparation of green fluorescent carbon dots for bioimaging and enhanced intracellular drug delivery.Nanoscale Res. Lett.2020151555910.1186/s11671‑020‑3288‑032130552
    [Google Scholar]
  111. GaoG. JiangY.W. JiaH.R. YangJ. WuF.G. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots.Carbon201813423224310.1016/j.carbon.2018.02.063
    [Google Scholar]
  112. HanC. ChenR. WuX. ShiN. DuanT. XuK. HuangT. Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots.Anal. Chim. Acta2021118733916010.1016/j.aca.2021.33916034753571
    [Google Scholar]
  113. MohammadiS. SalimiA. GhadarehH.S. FathiF. SoleimaniF. A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair.Anal. Biochem.2018557182610.1016/j.ab.2018.06.00829908158
    [Google Scholar]
  114. JiaoY. SunH. JiaY. LiuY. GaoY. XianM. ShuangS. DongC. Functionalized fluorescent carbon nanoparticles for sensitively targeted of folate-receptor-positive cancer cells.Microchem. J.201914646447010.1016/j.microc.2019.01.003
    [Google Scholar]
  115. SoleymaniJ. HasanzadehM. SomiM.H. OzkanS.A. JouybanA. Targeting and sensing of some cancer cells using folate bioreceptor functionalized nitrogen-doped graphene quantum dots.Int. J. Biol. Macromol.2018118Pt A1021103410.1016/j.ijbiomac.2018.06.18330001595
    [Google Scholar]
  116. MotaghiH. MehrgardiM.A. BouvetP. Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells.Sci. Rep.2017711051310.1038/s41598‑017‑11087‑228874822
    [Google Scholar]
  117. ZuoG. XieA. LiJ. SuT. PanX. DongW. Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag + detection.J. Phys. Chem. C201712147265582656510.1021/acs.jpcc.7b10179
    [Google Scholar]
  118. ChaiL. ZhouJ. FengH. TangC. HuangY. QianZ. Functionalized carbon quantum dots with dopamine for tyrosinase activity monitoring and inhibitor screening: in vitro and intracellular investigation.ACS Appl. Mater. Interfaces2015742235642357410.1021/acsami.5b0671126440479
    [Google Scholar]
  119. GhadarehH.S. SalimiA. FathiF. BahramiS. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing.Biosens. Bioelectron.20179630831610.1016/j.bios.2017.05.00328525848
    [Google Scholar]
  120. GeddaG. ChenG.R. YaoY.Y. GirmaW.M. LiJ.D. YenC.L. LingY.C. ChangJ.Y. Aqueous synthesis of dual-targeting Gd-doped CuInS2 /ZnS quantum dots for cancer-specific bi-modal imaging.New J. Chem.20174123141611417010.1039/C7NJ02252B
    [Google Scholar]
  121. LiB. ChenD. WangJ. YanZ. JiangL. DuanD. HeJ. LuoZ. ZhangJ. YuanF. MOFzyme: Intrinsic protease-like activity of Cu-MOF.Sci. Rep.201441675910.1038/srep0675925342169
    [Google Scholar]
  122. ChenD. LiB. LeiT. NaD. NieM. YangY. Congjia Xie HeZ. WangJ. Selective mediation of ovarian cancer SKOV3 cells death by pristine carbon quantum dots/Cu2O composite through targeting matrix metalloproteinases, angiogenic cytokines and cytoskeleton.J. Nanobiotechnology20211916810.1186/s12951‑021‑00813‑833663548
    [Google Scholar]
  123. DučićT. AlvesC.S. VučinićŽ. MartínezL.J.M. PetkovićM. SotoJ. MutavdžićD. de YusoV.M.M. RadotićK. AlgarraM. S, N-doped carbon dots-based cisplatin delivery system in adenocarcinoma cells: Spectroscopical and computational approach.J. Colloid Interface Sci.202262322623710.1016/j.jcis.2022.05.00535576652
    [Google Scholar]
  124. GhadarehH.S. SalimiA. ParsaS. FathiF. Simultaneous biosensing of CA125 and CA15-3 tumor markers and imaging of OVCAR-3 and MCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength.Int. J. Biol. Macromol.2018118Pt A61762810.1016/j.ijbiomac.2018.06.11629953892
    [Google Scholar]
  125. SeragE. HelalM. El NemrA. Curcumin loaded onto folic acid carbon dots as a potent drug delivery system for antibacterial and anticancer applications.J Clust Sci202351953210.1007/s10876‑023‑02491‑y
    [Google Scholar]
  126. JiaX. HanY. PeiM. ZhaoX. TianK. ZhouT. LiuP. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics.Carbohydr. Polym.201615239139710.1016/j.carbpol.2016.06.10927516286
    [Google Scholar]
  127. BaroughN.L. SarookhaniM.R. SharifiM. MoghbelinejadS. JangjooS. SalehiR. Molecular mechanisms of drug resistance in ovarian cancer.J. Cell. Physiol.201823364546456210.1002/jcp.2628929152737
    [Google Scholar]
  128. LanH. YuanJ. ZengD. LiuC. GuoX. YongJ. ZengX. XiaoS. The emerging role of non-coding RNAs in drug resistance of ovarian cancer.Front. Genet.20211269325910.3389/fgene.2021.69325934512721
    [Google Scholar]
  129. MoL. PospichalovaV. HuangZ. MurphyS.K. PayneS. WangF. KennedyM. CiancioloG.J. BryjaV. PizzoS.V. BachelderR.E. Ascites increases expression/function of multidrug resistance proteins in ovarian cancer cells.PLoS One2015107e013157910.1371/journal.pone.013157926148191
    [Google Scholar]
  130. SarkarS. MalekshahO.M. NomaniA. PatelN. HatefiA. A novel chemotherapeutic protocol for peritoneal metastasis and inhibition of relapse in drug resistant ovarian cancer.Cancer Med.2018783630364110.1002/cam4.163129926538
    [Google Scholar]
  131. WangZ. WangH. GuoH. LiF. WuW. ZhangS. WangT. The circadian rhythm and core gene Period2 regulate the chemotherapy effect and multidrug resistance of ovarian cancer through the PI3K signaling pathway.Biosci. Rep.20204011BSR2020268310.1042/BSR2020268333083827
    [Google Scholar]
  132. WangA. LiJ. ZhouT. LiT. CaiH. ShiH. LiuA. CUEDC2 contributes to cisplatin-based chemotherapy resistance in ovarian serious carcinoma by regulating p38 MAPK signaling.J. Cancer20191081800180710.7150/jca.2988931205536
    [Google Scholar]
  133. YangY. DingH. LiZ. TedescoA.C. BiH. Carbon dots derived from tea polyphenols as photosensitizers for photodynamic therapy.Molecules20222723862710.3390/molecules2723862736500718
    [Google Scholar]
  134. JiaQ. ZhengX. GeJ. LiuW. RenH. ChenS. WenY. ZhangH. WuJ. WangP. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer.J. Colloid Interface Sci.201852630231110.1016/j.jcis.2018.05.00529747042
    [Google Scholar]
  135. SoumyaK. MoreN. ChoppadandiM. AishwaryaD.A. SinghG. KapusettiG. A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment.Bio. Technol.20234112010.1016/j.bmt.2023.01.005
    [Google Scholar]
  136. LimS.Y. ShenW. GaoZ. Carbon quantum dots and their applications.Chem. Soc. Rev.201544136238110.1039/C4CS00269E25316556
    [Google Scholar]
  137. GeddaG. PandeyS. KhanM.S. TalibA. WuH.F. Synthesis of mesoporous titanium oxide for release control and high efficiency drug delivery of vinorelbine bitartrate.RSC Advances2016616131451315110.1039/C5RA14841C
    [Google Scholar]
  138. YangL. WangZ. WangJ. JiangW. JiangX. BaiZ. HeY. JiangJ. WangD. YangL. Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy.Nanoscale20168126801680910.1039/C6NR00247A26957191
    [Google Scholar]
  139. PandeyS. GeddaG.R. ThakurM. BhaisareM.L. TalibA. KhanM.S. WuS.M. WuH.F. Theranostic carbon dots ‘clathrate-like’ nanostructures for targeted photo-chemotherapy and bioimaging of cancer.J. Ind. Eng. Chem.201756627310.1016/j.jiec.2017.06.008
    [Google Scholar]
  140. ZhangM. WangW. CuiY. ChuX. SunB. ZhouN. ShenJ. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual- modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents.Chem. Eng. J.201833852653810.1016/j.cej.2018.01.081
    [Google Scholar]
  141. PiktelE. OściłowskaI. SuprewiczŁ. DepciuchJ. MarcińczykN. ChabielskaE. WolakP. WollnyT. JanionM. WojtanP.M. BuckiR. ROS-mediated apoptosis and autophagy in ovarian cancer cells treated with peanut-shaped gold nanoparticles.Int. J. Nanomedicine2021161993201110.2147/IJN.S27701433727811
    [Google Scholar]
  142. LanT. ZhaoY. DuY. MaC. WangR. ZhangQ. WangS. WeiW. YuanH. HuangQ. Fabrication of a novel Au Star@AgAu yolk-shell nanostructure for ovarian cancer early diagnosis and targeted therapy.Int. J. Nanomedicine2023183813382410.2147/IJN.S41345737457800
    [Google Scholar]
  143. YimW. BorumR.M. ZhouJ. MantriY. WuZ. ZhouJ. JinZ. CreyerM. JokerstJ.V. Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window.Nanotheranostics202261799010.7150/ntno.6363434976582
    [Google Scholar]
  144. LedariT.R. ZhangW. RadmaneshM. CathcartN. MalekiA. KitaevV. Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy.J. Nanobiotechnol.202119123910.1186/s12951‑021‑00982‑634380469
    [Google Scholar]
  145. ChoeH.S. ShinM.J. KwonS.G. LeeH. KimD.K. ChoiK.U. KimJ.H. KimJ.H. Yolk–shell-type gold nanoaggregates for chemo- and photothermal combination therapy for drug-resistant cancers.ACS Appl. Mater. Interfaces20211345535195352910.1021/acsami.1c1003634730926
    [Google Scholar]
  146. WangZ. SunX. HuangT. SongJ. WangY. A sandwich nanostructure of gold nanoparticle coated reduced graphene oxide for photoacoustic imaging-guided photothermal therapy in the second NIR window.Front. Bioeng. Biotechnol.2020865510.3389/fbioe.2020.0065532695755
    [Google Scholar]
  147. LiuJ. MaW. KouW. ShangL. HuangR. ZhaoJ. Poly-amino acids coated gold nanorod and doxorubicin for synergistic photodynamic therapy and chemotherapy in ovarian cancer cells.Biosci. Rep.20193912BSR2019252110.1042/BSR2019252131742323
    [Google Scholar]
  148. LiuC. GongP. LiangY. WangZ. WangL. Application of gold nanorods for photothermal therapy.Medziagotyra202026324324810.5755/j01.ms.26.3.21577
    [Google Scholar]
  149. ZhouH. XuH. LiX. LvY. MaT. GuoS. HuangZ. WangX. XuP. Dual targeting hyaluronic acid - RGD mesoporous silica coated gold nanorods for chemo-photothermal cancer therapy.Mater. Sci. Eng. C20178126127010.1016/j.msec.2017.08.00228887972
    [Google Scholar]
  150. ZhouG. XiaoH. LiX. HuangY. SongW. SongL. ChenM. ChengD. ShuaiX. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging.Acta Biomater.20176422323610.1016/j.actbio.2017.10.01829030300
    [Google Scholar]
  151. LiW. GuoX. KongF. ZhangH. LuoL. LiQ. ZhuC. YangJ. DuY. YouJ. Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres.J. Control. Release201725817118110.1016/j.jconrel.2017.05.01528522192
    [Google Scholar]
  152. WangL. WangL. XuT. GuoC. LiuC. ZhangH. LiJ. LiangZ. Synthesis of 15P-conjugated PPy- modified gold nanoparticles and their application to photothermal therapy of ovarian cancer.Chem. Res. Chin. Univ.201430695996410.1007/s40242‑014‑4039‑5
    [Google Scholar]
  153. Van de BroekB. DevoogdtN. D’HollanderA. GijsH.L. JansK. LagaeL. MuyldermansS. MaesG. BorghsG. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.ACS Nano2011564319432810.1021/nn102336321609027
    [Google Scholar]
  154. YouJ. ZhangR. ZhangG. ZhongM. LiuY. Van PeltC.S. LiangD. WeiW. SoodA.K. LiC. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release.J. Control. Release2012158231932810.1016/j.jconrel.2011.10.02822063003
    [Google Scholar]
  155. ElaginV.V. SergeevaE.A. BugrovaM.L. IgnatovaN.I. YuzhakovaD.V. DenisovN.N. NadtochenkoV.A. ZagaynovaE.V. Selection of stabilizing agents to provide effective penetration of gold nanoparticles into cells.Photonics Lasers Med.20143435136210.1515/plm‑2014‑0016
    [Google Scholar]
  156. TaratulaO. TaratulaO. PatelM. SchumannC. NalewayM. HeH. PangA. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy.Int. J. Nanomedicine2015102347236210.2147/IJN.S8109725848255
    [Google Scholar]
  157. YanJ. ZhangY. ZhengL. WuY. WangT. JiangT. LiuX. PengD. LiuY. LiuZ. Let-7i miRNA and platinum loaded nano-graphene oxide platform for detection/reversion of drug resistance and synergetic chemical-photothermal inhibition of cancer cell.Chin. Chem. Lett.202233276777210.1016/j.cclet.2021.08.018
    [Google Scholar]
  158. MaheshwariR. SharmaM. EpCAM aptamer integrated graphene nanosystem for combined anti-ovarian cancer therapy.J. Drug Deliv. Sci. Technol.20249510559310.1016/j.jddst.2024.105593
    [Google Scholar]
  159. MarangonI. MoyonM.C. SilvaA.K.A. BiancoA. LucianiN. GazeauF. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes.Carbon20169711012310.1016/j.carbon.2015.08.023
    [Google Scholar]
  160. WangS. WuW. LiuY. WangC. XuQ. LvQ. HuangR. LiX. Targeted peptide-modified oxidized mesoporous carbon nanospheres for chemo-thermo combined therapy of ovarian cancer in vitro.Drug Deliv.20222911951195810.1080/10717544.2022.208929835758337
    [Google Scholar]
  161. YuH. HeX. ZhouL. ChenL. LuH. WangJ. GaoL. Exploring the potential of carbon-coated MoSe2 nanoparticles as a photothermal therapy for ovarian cancer.Arab. J. Chem.202417210549510.1016/j.arabjc.2023.105495
    [Google Scholar]
  162. LiX. KongL. HuW. ZhangC. PichA. ShiX. WangX. XingL. Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study.J. Adv. Res.20223725526610.1016/j.jare.2021.08.00435499043
    [Google Scholar]
  163. UpretyB. AbrahamseH. Semiconductor quantum dots for photodynamic therapy: Recent advances.Front Chem.20221094657410.3389/fchem.2022.94657436034651
    [Google Scholar]
  164. LiuJ.H. CaoL. LeCroyG.E. WangP. MezianiM.J. DongY. LiuY. LuoP.G. SunY.P. Carbon “Quantum” dots for fluorescence labeling of cells.ACS Appl. Mater. Interfaces2015734194391944510.1021/acsami.5b0566526262834
    [Google Scholar]
  165. GuoY. ShenM. ShiX. Construction of poly(amidoamine) Dendrimer/Carbon dot nanohybrids for biomedical applications.Macromol. Biosci.2021214210000710.1002/mabi.20210000733615730
    [Google Scholar]
  166. WuY.F. WuH.C. KuanC.H. LinC.J. WangL.W. ChangC.W. WangT.W. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy.Sci. Rep.2016612117010.1038/srep2117026880047
    [Google Scholar]
  167. WangP. LiuC. TangW. RenS. ChenZ. GuoY. RostamianR. ZhaoS. LiJ. LiuS. LiS. Molecular glue strategy: Large-scale conversion of clustering-induced emission luminogen to carbon dots.ACS Appl. Mater. Interfaces20191121193011930710.1021/acsami.8b2260531062574
    [Google Scholar]
  168. ZhangH. GuoX. JianK. FuL. ZhaoX. Rapid preparation of long-wavelength emissive carbon dots for information encryption using the microwave-assisted method.Inorg. Chem.20236234138471385610.1021/acs.inorgchem.3c0167737583357
    [Google Scholar]
  169. CayuelaA. SorianoM.L. CarriónC.C. ValcárcelM. Semiconductor and carbon-based fluorescent nanodots: The need for consistency.Chem. Commun.20165271311132610.1039/C5CC07754K26671042
    [Google Scholar]
  170. NocitoG. CalabreseG. ForteS. PetraliaS. PuglisiC. CampoloM. EspositoE. ConociS. Carbon dots as promising tools for cancer diagnosis and therapy.Cancers2021139199110.3390/cancers1309199133919096
    [Google Scholar]
  171. CalabreseG. De LucaG. NocitoG. RizzoM.G. LombardoS.P. ChisariG. ForteS. SciutoE.L. ConociS. Carbon dots: An innovative tool for drug delivery in brain tumors.Int. J. Mol. Sci.202122211178310.3390/ijms22211178334769212
    [Google Scholar]
  172. LiS. AmatD. PengZ. VanniS. RaskinS. De AnguloG. OthmanA.M. GrahamR.M. LeblancR.M. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells.Nanoscale2016837166621666910.1039/C6NR05055G27714111
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501347816241223065618
Loading
/content/journals/cdt/10.2174/0113894501347816241223065618
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test