Skip to content
2000
image of The Role of Glycolipids and their Toxicity in the Context of Nanomaterials and Nanoparticles: A Review of the Literature

Abstract

Background

Diseases triggered by glucose and lipid metabolic disorders, such as hyperglycemia and hyperlipidemia, have become a global health threat. According to statistics, diabetic patients have exceeded 463 million worldwide, and the prevalence of hyperlipidemia is also continuously rising. These glycolipid metabolic diseases not only significantly increase the risk of complications such as cardiovascular disease, stroke, and kidney disease but also impose a huge economic burden on the global healthcare system. Despite the continuous emergence of treatment methods for glucose and lipid metabolic diseases with the advancement of research technology, existing therapies still face many challenges. In recent years, the rapid development of nanotechnology has injected new vitality into the medical field. As an emerging research field, nanomedicine has attracted much attention for its application prospects in the treatment of glycolipid metabolic diseases. Nanotechnology is expected to provide more precise and efficient solutions for the treatment of these diseases, thereby reducing global health and economic pressures.

Objective

The objective of this article is to comprehensively review the relationship between nanotechnology and glucose and lipid metabolism.

Methods

We have carried out a series of literature searches, focusing on glycolipid effects and toxicity of nano-materials.

Results

Nanoparticles as drug carriers or nanoparticles enhance bioavailability and activity. Nano-material-based optical reporters aid in detecting lysosome lipid content, facilitating treatment and drug development for glucose and lipid metabolism disorders. Additionally, nanomaterials find applications in glucose biofuel cells and microalgal lipid metabolism regulation. However, nanomaterials, such as polystyrene nanoplastics, may have toxic effects, inducing macrophage transformation and lipid accumulation in the liver.

Conclusion

The development of nanotechnology is still in its infancy, and many disease-based studies are still in the stage of animal experiments and have not yet been applied in clinical practice. However, the universality and multilateralism of the use of nanotechnology give it excellent development prospects and also provide a research direction for medical research.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501347158250305074908
2025-03-10
2025-05-04
Loading full text...

Full text loading...

References

  1. Veiseh O. Tang B.C. Whitehead K.A. Anderson D.G. Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015 14 1 45 57 10.1038/nrd4477 25430866
    [Google Scholar]
  2. Yu J. Wei Z. Li Q. Wan F. Chao Z. Zhang X. Lin L. Meng H. Tian L. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a MOF nanoplatform. Adv. Sci. 2021 8 19 2101467 10.1002/advs.202101467 34363341
    [Google Scholar]
  3. Lam P.L. Wong W.Y. Bian Z. Chui C.H. Gambari R. Recent advances in green nanoparticulate systems for drug delivery: Efficient delivery and safety concern. Nanomedicine 2017 12 4 357 385 10.2217/nnm‑2016‑0305 28078952
    [Google Scholar]
  4. Gourishetti K. Keni R. Nayak P.G. Jitta S.R. Bhaskaran N.A. Kumar L. Kumar N. Nandakumar K. Shenoy R. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats. Int. J. Nanomedicine 2020 15 9265 9282 10.2147/IJN.S268941 33262587
    [Google Scholar]
  5. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  6. Majdalawieh A.F. Mansour Z.R. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur. J. Pharmacol. 2019 855 75 89 10.1016/j.ejphar.2019.05.008 31063773
    [Google Scholar]
  7. Zhao S. Wang D. Li Y. Han L. Xiao X. Ma M. Wan D.C.C. Hong A. Ma Y. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects. Int. J. Nanomedicine 2017 12 2143 2160 10.2147/IJN.S130566 28356733
    [Google Scholar]
  8. Zhang J.S. Gao X.Y. Zhang L.D. Bao Y.P. Biological effects of a nano red elemental selenium. Biofactors 2001 15 1 27 38 10.1002/biof.5520150103 11673642
    [Google Scholar]
  9. Winzell M.S. Ahrén B. Role of VIP and PACAP in islet function. Peptides 2007 28 9 1805 1813 10.1016/j.peptides.2007.04.024 17559974
    [Google Scholar]
  10. Ossai E.C. Madueke A.C. Amadi B.E. Ogugofor M.O. Momoh A.M. Okpala C.O.R. Anosike C.A. Njoku O.U. Potential enhancement of metformin hydrochloride in lipid vesicles targeting therapeutic efficacy in diabetic treatment. Int. J. Mol. Sci. 2021 22 6 2852 10.3390/ijms22062852 33799652
    [Google Scholar]
  11. Viollet B. Guigas B. Garcia N.S. Leclerc J. Foretz M. Andreelli F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. 2012 122 6 253 270 10.1042/CS20110386 22117616
    [Google Scholar]
  12. Tesauro D. Accardo A. Diaferia C. Milano V. Guillon J. Ronga L. Rossi F. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives. Molecules 2019 24 2 351 10.3390/molecules24020351 30669445
    [Google Scholar]
  13. Li Y. Cui T. Kong X. Yi X. Kong D. Zhang J. Liu C. Gong M. Nanoparticles induced by embedding self-assembling cassette into glucagon-like peptide 1 for improving in vivo stability. FASEB J. 2018 32 6 2992 3004 10.1096/fj.201701033RRR 29401602
    [Google Scholar]
  14. Zhang Y. Wang Z. Gemeinhart R.A. Progress in microRNA delivery. J. Control. Release 2013 172 3 962 974 10.1016/j.jconrel.2013.09.015 24075926
    [Google Scholar]
  15. Zhao X. Zhang H. Li J. Tian M. Yang J. Sun S. Hu Q. Yang L. Zhang S. Orally administered saccharide-sequestering nanocomplex to manage carbohydrate metabolism disorders. Sci. Adv. 2021 7 14 eabf7311 10.1126/sciadv.abf7311 33789906
    [Google Scholar]
  16. Brownlee M. Cerami A. A glucose-controlled insulin-delivery system: Semisynthetic insulin bound to lectin. Science 1979 206 4423 1190 1191 10.1126/science.505005 505005
    [Google Scholar]
  17. Ravaine V. Ancla C. Catargi B. Chemically controlled closed-loop insulin delivery. J. Control. Release 2008 132 1 2 11 10.1016/j.jconrel.2008.08.009 18782593
    [Google Scholar]
  18. Owens D.R. Zinman B. Bolli G.B. Insulins today and beyond. Lancet 2001 358 9283 739 746 10.1016/S0140‑6736(01)05842‑1 11551598
    [Google Scholar]
  19. Bankar S.B. Bule M.V. Singhal R.S. Ananthanarayan L. Glucose oxidase — An overview. Biotechnol. Adv. 2009 27 4 489 501 10.1016/j.biotechadv.2009.04.003 19374943
    [Google Scholar]
  20. Bull S.D. Davidson M.G. van den Elsen J.M.H. Fossey J.S. Jenkins A.T.A. Jiang Y.B. Kubo Y. Marken F. Sakurai K. Zhao J. James T.D. Exploiting the reversible covalent bonding of boronic acids: Recognition, sensing, and assembly. Acc. Chem. Res. 2013 46 2 312 326 10.1021/ar300130w 23148559
    [Google Scholar]
  21. Gu Z. Dang T.T. Ma M. Tang B.C. Cheng H. Jiang S. Dong Y. Zhang Y. Anderson D.G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 2013 7 8 6758 6766 10.1021/nn401617u 23834678
    [Google Scholar]
  22. Gu Z. Aimetti A.A. Wang Q. Dang T.T. Zhang Y. Veiseh O. Cheng H. Langer R.S. Anderson D.G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 2013 7 5 4194 4201 10.1021/nn400630x 23638642
    [Google Scholar]
  23. Xia D. He H. Wang Y. Wang K. Zuo H. Gu H. Xu P. Hu Y. Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin. Acta Biomater. 2018 69 301 312 10.1016/j.actbio.2018.01.029 29421303
    [Google Scholar]
  24. Rickels M.R. Robertson R.P. Pancreatic islet transplantation in humans: Recent progress and future directions. Endocr. Rev. 2019 40 2 631 668 10.1210/er.2018‑00154 30541144
    [Google Scholar]
  25. Chatenoud L. Chemical immunosuppression in islet transplantation-Friend or foe? N. Engl. J. Med. 2008 358 11 1192 1193 10.1056/NEJMcibr0708067 18337609
    [Google Scholar]
  26. Syed F. Bugliani M. Novelli M. Olimpico F. Suleiman M. Marselli L. Boggi U. Filipponi F. Raffa V. Krol S. Campani D. Masiello P. De Tata V. Marchetti P. Conformal coating by multilayer nano-encapsulation for the protection of human pancreatic islets: in-vitro and in-vivo studies. Nanomedicine 2018 14 7 2191 2203 10.1016/j.nano.2018.06.013 30016718
    [Google Scholar]
  27. Zhang Q. Gonelle-Gispert C. Li Y. Geng Z. Gerber-Lemaire S. Wang Y. Buhler L. Islet encapsulation: New developments for the treatment of type 1 diabetes. Front. Immunol. 2022 13 869984 10.3389/fimmu.2022.869984 35493496
    [Google Scholar]
  28. Kozlovskaya V. Zavgorodnya O. Chen Y. Ellis K. Tse H.M. Cui W. Thompson J.A. Kharlampieva E. Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv. Funct. Mater. 2012 22 16 3389 3398 10.1002/adfm.201200138 23538331
    [Google Scholar]
  29. Zhang S. Xia F. Demoustier-Champagne S. Jonas A.M. Layer-by-layer assembly in nanochannels: Assembly mechanism and applications. Nanoscale 2021 13 16 7471 7497 10.1039/D1NR01113H 33870383
    [Google Scholar]
  30. Jafari H. Ghaffari-Bohlouli P. Niknezhad S.V. Abedi A. Izadifar Z. Mohammadinejad R. Varma R.S. Shavandi A. Tannic acid: A versatile polyphenol for design of biomedical hydrogels. J. Mater. Chem. B Mater. Biol. Med. 2022 10 31 5873 5912 10.1039/D2TB01056A 35880440
    [Google Scholar]
  31. Zhi Z. Kerby A. King A.J.F. Jones P.M. Pickup J.C. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia 2012 55 4 1081 1090 10.1007/s00125‑011‑2431‑y 22246376
    [Google Scholar]
  32. Zhao Y. Wang Y. Ran F. Cui Y. Liu C. Zhao Q. Gao Y. Wang D. Wang S. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep. 2017 7 1 4131 10.1038/s41598‑017‑03834‑2 28646143
    [Google Scholar]
  33. Slowing I. Trewyn B.G. Lin V.S.Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc. 2006 128 46 14792 14793 10.1021/ja0645943 17105274
    [Google Scholar]
  34. Di Pasqua A.J. Sharma K.K. Shi Y.L. Toms B.B. Ouellette W. Dabrowiak J.C. Asefa T. Cytotoxicity of mesoporous silica nanomaterials. J. Inorg. Biochem. 2008 102 7 1416 1423 10.1016/j.jinorgbio.2007.12.028 18279965
    [Google Scholar]
  35. Lai C.Y. Trewyn B.G. Jeftinija D.M. Jeftinija K. Xu S. Jeftinija S. Lin V.S.Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 2003 125 15 4451 4459 10.1021/ja028650l 12683815
    [Google Scholar]
  36. Tao Z. Morrow M.P. Asefa T. Sharma K.K. Duncan C. Anan A. Penefsky H.S. Goodisman J. Souid A.K. Mesoporous silica nanoparticles inhibit cellular respiration. Nano Lett. 2008 8 5 1517 1526 10.1021/nl080250u 18376867
    [Google Scholar]
  37. Karageorgis G. Reckzeh E.S. Ceballos J. Schwalfenberg M. Sievers S. Ostermann C. Pahl A. Ziegler S. Waldmann H. Chromopynones are pseudo natural product glucose uptake inhibitors targeting glucose transporters GLUT-1 and -3. Nat. Chem. 2018 10 11 1103 1111 10.1038/s41557‑018‑0132‑6 30202104
    [Google Scholar]
  38. Fu L.H. Hu Y.R. Qi C. He T. Jiang S. Jiang C. He J. Qu J. Lin J. Huang P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019 13 12 13985 13994 10.1021/acsnano.9b05836 31833366
    [Google Scholar]
  39. Sonveaux P. Végran F. Schroeder T. Wergin M.C. Verrax J. Rabbani Z.N. De Saedeleer C.J. Kennedy K.M. Diepart C. Jordan B.F. Kelley M.J. Gallez B. Wahl M.L. Feron O. Dewhirst M.W. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 2008 118 12 3930 3942 10.1172/JCI36843 19033663
    [Google Scholar]
  40. Ippolito L. Morandi A. Giannoni E. Chiarugi P. Lactate: A metabolic driver in the tumour landscape. Trends Biochem. Sci. 2019 44 2 153 166 10.1016/j.tibs.2018.10.011 30473428
    [Google Scholar]
  41. Faubert B. Li K.Y. Cai L. Hensley C.T. Kim J. Zacharias L.G. Yang C. Do Q.N. Doucette S. Burguete D. Li H. Huet G. Yuan Q. Wigal T. Butt Y. Ni M. Torrealba J. Oliver D. Lenkinski R.E. Malloy C.R. Wachsmann J.W. Young J.D. Kernstine K. DeBerardinis R.J. Lactate metabolism in human lung tumors. Cell 2017 171 2 358 371.e9 10.1016/j.cell.2017.09.019 28985563
    [Google Scholar]
  42. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  43. Li X. Jiang C. Wang Q. Yang S. Cao Y. Hao J.N. Niu D. Chen Y. Han B. Jia X. Zhang P. Li Y. A “valve-closing” starvation strategy for amplification of tumor-specific chemotherapy. Adv. Sci. 2022 9 8 2104671 10.1002/advs.202104671 35038243
    [Google Scholar]
  44. Gould G W Holman G D The glucose transporter family: Structure, function and tissue-specific expression. Biochem J. 1993 295 2 329 341
    [Google Scholar]
  45. Fan X. Wei X. Hu H. Zhang B. Yang D. Du H. Zhu R. Sun X. Oh Y. Gu N. Effects of oral administration of polystyrene nanoplastics on plasma glucose metabolism in mice. Chemosphere 2022 288 Pt 3 132607 10.1016/j.chemosphere.2021.132607 34678341
    [Google Scholar]
  46. Bedard K. Krause K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007 87 1 245 313 10.1152/physrev.00044.2005 17237347
    [Google Scholar]
  47. Lushchak V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011 101 1 13 30 10.1016/j.aquatox.2010.10.006 21074869
    [Google Scholar]
  48. Li J.B. Xi W.S. Tan S.Y. Liu Y.Y. Wu H. Liu Y. Cao A. Wang H. Effects of VO2 nanoparticles on human liver HepG2 cells: Cytotoxicity, genotoxicity, and glucose and lipid metabolism disorders. NanoImpact 2021 24 100351 10.1016/j.impact.2021.100351 35559810
    [Google Scholar]
  49. Moon R.J. Martini A. Nairn J. Simonsen J. Youngblood J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011 40 7 3941 3994 10.1039/c0cs00108b 21566801
    [Google Scholar]
  50. Papakostas D. Rancan F. Sterry W. Blume-Peytavi U. Vogt A. Nanoparticles in dermatology. Arch. Dermatol. Res. 2011 303 8 533 550 10.1007/s00403‑011‑1163‑7 21837474
    [Google Scholar]
  51. Mistry A. Stolnik S. Illum L. Nanoparticles for direct nose- to-brain delivery of drugs. Int. J. Pharm. 2009 379 1 146 157 10.1016/j.ijpharm.2009.06.019 19555750
    [Google Scholar]
  52. Akel H. Ismail R. Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2020 148 38 53 10.1016/j.ejpb.2019.12.014 31926222
    [Google Scholar]
  53. Liu Y. Zuckier L.S. Ghesani N.V. Dominant uptake of fatty acid over glucose by prostate cells: A potential new diagnostic and therapeutic approach. Anticancer Res. 2010 30 2 369 374 [J]. 20332441
    [Google Scholar]
  54. Li J. Cheng J.X. Direct visualization of de novo lipogenesis in single living cells. Sci. Rep. 2014 4 1 6807 10.1038/srep06807 25351207
    [Google Scholar]
  55. Caro P. Kishan A.U. Norberg E. Stanley I.A. Chapuy B. Ficarro S.B. Polak K. Tondera D. Gounarides J. Yin H. Zhou F. Green M.R. Chen L. Monti S. Marto J.A. Shipp M.A. Danial N.N. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012 22 4 547 560 10.1016/j.ccr.2012.08.014 23079663
    [Google Scholar]
  56. Pascual G. Avgustinova A. Mejetta S. Martín M. Castellanos A. Attolini C.S.O. Berenguer A. Prats N. Toll A. Hueto J.A. Bescós C. Di Croce L. Benitah S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2017 541 7635 41 45 10.1038/nature20791 27974793
    [Google Scholar]
  57. Yue S. Li J. Lee S.Y. Lee H.J. Shao T. Song B. Cheng L. Masterson T.A. Liu X. Ratliff T.L. Cheng J.X. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014 19 3 393 406 10.1016/j.cmet.2014.01.019 24606897
    [Google Scholar]
  58. Aldawsari H. Ahmed O. Alhakamy N. Neamatallah T. Fahmy U. Badr-Eldin S. Lipidic nano-sized emulsomes potentiates the cytotoxic and apoptotic effects of raloxifene hydrochloride in MCF-7 human breast cancer cells: Factorial analysis and in vitro anti-tumor activity assessment. Pharmaceutics 2021 13 6 783 10.3390/pharmaceutics13060783 34073780
    [Google Scholar]
  59. El-Zaafarany G.M. Soliman M.E. Mansour S. Awad G.A.S. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: in vitro and rat in vivo studies. Int. J. Pharm. 2016 503 1-2 127 140 10.1016/j.ijpharm.2016.02.038 26924357
    [Google Scholar]
  60. Vyas S.P. Subhedar R. Jain S. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. J. Pharm. Pharmacol. 2006 58 3 321 326 10.1211/jpp.58.3.0005 16536898
    [Google Scholar]
  61. Yang S. Chen B. Zhang B. Li C. Qiu Y. Yang H. Huang Z. miR‑204‑5p promotes apoptosis and inhibits migration of gastric cancer cells by targeting HER‑2. Mol. Med. Rep. 2020 22 4 2645 2654 10.3892/mmr.2020.11367 32945425
    [Google Scholar]
  62. Du B. Zhu W. Yu L. Wang Y. Zheng M. Huang J. Shen G. Zhou J. Yao H. TPGS2k-PLGA composite nanoparticles by depleting lipid rafts in colon cancer cells for overcoming drug resistance. Nanomedicine 2021 35 102307 10.1016/j.nano.2020.102307 32987192
    [Google Scholar]
  63. Ofri R. Ross M. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen. Res. 2021 16 9 1751 1759 10.4103/1673‑5374.306063 33510064
    [Google Scholar]
  64. Simons K. Sampaio J.L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 2011 3 10 a004697 10.1101/cshperspect.a004697 21628426
    [Google Scholar]
  65. Bonacina F. Pirillo A. Catapano A.L. Norata G.D. Cholesterol membrane content has a ubiquitous evolutionary function in immune cell activation: The role of HDL. Curr. Opin. Lipidol. 2019 30 6 462 469 10.1097/MOL.0000000000000642 31577612
    [Google Scholar]
  66. Raghavan V. Vijayaraghavalu S. Peetla C. Yamada M. Morisada M. Labhasetwar V. Sustained epigenetic drug delivery depletes cholesterol–sphingomyelin rafts from resistant breast cancer cells, influencing biophysical characteristics of membrane lipids. Langmuir 2015 31 42 11564 11573 10.1021/acs.langmuir.5b02601 26439800
    [Google Scholar]
  67. Vanić Z. Holaeter A.M. Skalko-Basnet N. (Phospho)lipid-based nanosystems for skin administration. Curr. Pharm. Des. 2015 21 29 4174 4192 10.2174/1381612821666150901095838 26323431
    [Google Scholar]
  68. Hay R.J. Johns N.E. Williams H.C. Bolliger I.W. Dellavalle R.P. Margolis D.J. Marks R. Naldi L. Weinstock M.A. Wulf S.K. Michaud C. J L Murray C. Naghavi M. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 2014 134 6 1527 1534 10.1038/jid.2013.446 24166134
    [Google Scholar]
  69. Couvreur P. Vauthier C. Nanotechnology: Intelligent design to treat complex disease. Pharm. Res. 2006 23 7 1417 1450 10.1007/s11095‑006‑0284‑8 16779701
    [Google Scholar]
  70. Gao H. Zhang Q. Yu Z. He Q. Cell-penetrating peptide-based intelligent liposomal systems for enhanced drug delivery. Curr. Pharm. Biotechnol. 2014 15 3 210 219 10.2174/1389201015666140617092552 24938896
    [Google Scholar]
  71. Riehemann K. Schneider S.W. Luger T.A. Godin B. Ferrari M. Fuchs H. Nanomedicine--Challenge and perspectives. Angew. Chem. Int. Ed. 2009 48 5 872 897 10.1002/anie.200802585 19142939
    [Google Scholar]
  72. Geusens B. Strobbe T. Bracke S. Dynoodt P. Sanders N. Gele M.V. Lambert J. Lipid-mediated gene delivery to the skin. Eur. J. Pharm. Sci. 2011 43 4 199 211 10.1016/j.ejps.2011.04.003 21515366
    [Google Scholar]
  73. Fireman S. Toledano O. Neimann K. Loboda N. Dayan N. A look at emerging delivery systems for topical drug products. Dermatol. Ther. 2011 24 5 477 488 10.1111/j.1529‑8019.2012.01464.x 22353154
    [Google Scholar]
  74. Zhao R. Lu Q. Yang R. Du J. Deng S. She Q. Comparative efficacy of sirolimus-eluting stents and paclitaxel-eluting stents in East Asian versus non-East Asian patients: A systematic review and meta-analysis. Minerva Cardioangiol. 2017 28146142
    [Google Scholar]
  75. Banerjee R. Overcoming the stratum corneum barrier: A nano approach. Drug Deliv. Transl. Res. 2013 3 3 205 208 10.1007/s13346‑013‑0149‑8 25788129
    [Google Scholar]
  76. Cevc G. Gebauer D. Stieber J. Schätzlein A. Blume G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta Biomembr. 1998 1368 2 201 215 10.1016/S0005‑2736(97)00177‑6 9459598
    [Google Scholar]
  77. Honeywell-Nguyen P.L. Wouter Groenink H.W. de Graaff A.M. Bouwstra J.A. The in vivo transport of elastic vesicles into human skin: Effects of occlusion, volume and duration of application. J. Control. Release 2003 90 2 243 255 10.1016/S0168‑3659(03)00202‑5 12810306
    [Google Scholar]
  78. Cevc G. Schätzlein A. Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta Biomembr. 2002 1564 1 21 30 10.1016/S0005‑2736(02)00401‑7 12100992
    [Google Scholar]
  79. Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin. Pharmacokinet. 2003 42 5 461 474 10.2165/00003088‑200342050‑00004 12739984
    [Google Scholar]
  80. Trotta M. Peira E. Carlotti M.E. Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int. J. Pharm. 2004 270 1-2 119 125 10.1016/j.ijpharm.2003.10.006 14726128
    [Google Scholar]
  81. Srisuk P. Thongnopnua P. Raktanonchai U. Kanokpanont S. Physico-chemical characteristics of methotrexate-entrapped oleic acid- containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int. J. Pharm. 2012 427 2 426 434 10.1016/j.ijpharm.2012.01.045 22310459
    [Google Scholar]
  82. Touitou E. Dayan N. Bergelson L. Godin B. Eliaz M. Ethosomes — Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000 65 3 403 418 10.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  83. Zhang Y.T. Feng N-P. Shen L-N. Zhao J-H. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int. J. Nanomedicine 2014 9 669 678 10.2147/IJN.S57314 24489470
    [Google Scholar]
  84. Pavelić Ž. Škalko-Basnet N. Jalšenjak I. Liposomes containing drugs for treatment of vaginal infections. Eur. J. Pharm. Sci. 1999 8 4 345 351 10.1016/S0928‑0987(99)00033‑0 10425385
    [Google Scholar]
  85. Pavelić Ž. Škalko-Basnet N. Filipović-Grčić J. Martinac A. Jalšenjak I. Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J. Control. Release 2005 106 1-2 34 43 10.1016/j.jconrel.2005.03.032 15979189
    [Google Scholar]
  86. Vanić Ž. Hurler J. Ferderber K. Golja Gašparović P. Škalko-Basnet N. Filipović-Grčić J. Novel vaginal drug delivery system: Deformable propylene glycol liposomes-in-hydrogel. J. Liposome Res. 2014 24 1 27 36 10.3109/08982104.2013.826242 23931627
    [Google Scholar]
  87. Palac Z. Engesland A. Flaten G.E. Škalko-Basnet N. Filipović- Grčić J. Vanić Ž. Liposomes for (trans)dermal drug delivery: The skin-PVPA as a novel in vitro stratum corneum model in formulation development. J. Liposome Res. 2014 24 4 313 322 10.3109/08982104.2014.899368 24646434
    [Google Scholar]
  88. Manconi M. Caddeo C. Sinico C. Valenti D. Mostallino M.C. Biggio G. Fadda A.M. ex-vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle–skin interaction. Eur. J. Pharm. Biopharm. 2011 78 1 27 35 10.1016/j.ejpb.2010.12.010 21167279
    [Google Scholar]
  89. Dragicevic-Curic N. Scheglmann D. Albrecht V. Fahr A. Development of different temoporfin-loaded invasomes—novel nanocarriers of temoporfin: Characterization, stability and in vitro skin penetration studies. Colloids Surf. B Biointerfaces 2009 70 2 198 206 10.1016/j.colsurfb.2008.12.030 19188048
    [Google Scholar]
  90. Wang S. Moustaid-Moussa N. Chen L. Mo H. Shastri A. Su R. Bapat P. Kwun I. Shen C.L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014 25 1 1 18 10.1016/j.jnutbio.2013.09.001 24314860
    [Google Scholar]
  91. Walle T. Hsieh F. DeLegge M.H. Oatis J.E. Jr Walle U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004 32 12 1377 1382 10.1124/dmd.104.000885 15333514
    [Google Scholar]
  92. Bonechi C. Martini S. Ciani L. Lamponi S. Rebmann H. Rossi C. Ristori S. Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol. PLoS One 2012 7 8 e41438 10.1371/journal.pone.0041438 22936976
    [Google Scholar]
  93. Zu Y. Overby H. Ren G. Fan Z. Zhao L. Wang S. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids Surf. B Biointerfaces 2018 164 414 423 10.1016/j.colsurfb.2017.12.044 29433059
    [Google Scholar]
  94. Zobeiri M. Belwal T. Parvizi F. Naseri R. Farzaei M.H. Nabavi S.F. Sureda A. Nabavi S.M. Naringenin and its nano-formulations for fatty liver: Cellular modes of action and clinical perspective. Curr. Pharm. Biotechnol. 2018 19 3 196 205 10.2174/1389201019666180514170122 29766801
    [Google Scholar]
  95. Wang S. Du L.B. Jin L. Wang Z. Peng J. Liao N. Zhao Y.Y. Zhang J.L. Pauluhn J. Hai C.X. Wang X. Li W.L. Nano-oleanolic acid alleviates metabolic dysfunctions in rats with high fat and fructose diet. Biomed. Pharmacother. 2018 108 1181 1187 10.1016/j.biopha.2018.09.150 30372819
    [Google Scholar]
  96. Sun Y. Shi F. Niu Y. Zhang Y. Xiong F. Fe3O4@OA@Poloxamer nanoparticles lower triglyceride in hepatocytes through liposuction effect and nano-enzyme effect. Colloids Surf. B Biointerfaces 2019 184 110528 10.1016/j.colsurfb.2019.110528 31590050
    [Google Scholar]
  97. Ismail N. Ismail M. Azmi N.H. Bakar M.F.A. Yida Z. Stanslas J. Sani D. Basri H. Abdullah M.A. Beneficial effects of TQRF and TQ nano- and conventional emulsions on memory deficit, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble Aβ levels in high fat-cholesterol diet-induced rats. Chem. Biol. Interact. 2017 275 61 73 10.1016/j.cbi.2017.07.014 28734741
    [Google Scholar]
  98. Al-Okbi S.Y. Hussein A.M.S. Elbakry H.F.H. Fouda K.A. Mahmoud K.F. Hassan M.E. Health benefits of fennel, rosemary volatile oils and their nano-forms in dyslipidemic rat model. Pak. J. Biol. Sci. 2018 21 7 348 358 10.3923/pjbs.2018.348.358 30417995
    [Google Scholar]
  99. Jena P.V. Roxbury D. Galassi T.V. Akkari L. Horoszko C.P. Iaea D.B. Budhathoki-Uprety J. Pipalia N. Haka A.S. Harvey J.D. Mittal J. Maxfield F.R. Joyce J.A. Heller D.A. A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 2017 11 11 10689 10703 10.1021/acsnano.7b04743 28898055
    [Google Scholar]
  100. Sadri S.S. Thompson R.C. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Mar. Pollut. Bull. 2014 81 1 55 60 10.1016/j.marpolbul.2014.02.020 24613232
    [Google Scholar]
  101. Mattsson K. Ekvall M.T. Hansson L.A. Linse S. Malmendal A. Cedervall T. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ. Sci. Technol. 2015 49 1 553 561 10.1021/es5053655 25380515
    [Google Scholar]
  102. Lundqvist M. Stigler J. Elia G. Lynch I. Cedervall T. Dawson K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. 2008 105 38 14265 14270 10.1073/pnas.0805135105 18809927
    [Google Scholar]
  103. Geim A.K. Graphene: Status and prospects. Science 2009 324 5934 1530 1534 10.1126/science.1158877 19541989
    [Google Scholar]
  104. Akhavan O. Ghaderi E. Rahighi R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 2012 6 4 2904 2916 10.1021/nn300261t 22385391
    [Google Scholar]
  105. Chang Y. Yang S.T. Liu J.H. Dong E. Wang Y. Cao A. Liu Y. Wang H. in vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011 200 3 201 210 10.1016/j.toxlet.2010.11.016 21130147
    [Google Scholar]
  106. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974 77 1 71 94 10.1093/genetics/77.1.71 4366476
    [Google Scholar]
  107. Gilst M.R.V. Hadjivassiliou H. Jolly A. Yamamoto K.R. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol. 2005 3 2 e53 10.1371/journal.pbio.0030053 15719061
    [Google Scholar]
  108. Brock T.J. Browse J. Watts J.L. Genetic regulation of unsaturated fatty acid composition in C. elegans. PLoS Genet. 2006 2 7 e108 10.1371/journal.pgen.0020108 16839188
    [Google Scholar]
  109. Kim Y. Jeong J. Yang J. Joo S.W. Hong J. Choi J. Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans. Toxicology 2018 410 83 95 10.1016/j.tox.2018.09.006 30218681
    [Google Scholar]
  110. Domenech J. Hernández A. Rubio L. Marcos R. Cortés C. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. Arch. Toxicol. 2020 94 9 2997 3012 10.1007/s00204‑020‑02805‑3 32592077
    [Google Scholar]
  111. Ding Y. Zhang R. Li B. Du Y. Li J. Tong X. Wu Y. Ji X. Zhang Y. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells. Environ. Pollut. 2021 280 116974 10.1016/j.envpol.2021.116974 33784569
    [Google Scholar]
  112. Florance I. Ramasubbu S. Mukherjee A. Chandrasekaran N. Polystyrene nanoplastics dysregulate lipid metabolism in murine macrophages in vitro. Toxicology 2021 458 152850 10.1016/j.tox.2021.152850 34217793
    [Google Scholar]
  113. Shi H. Mao X. Zhong Y. Liu Y. Zhao X. Yu K. Zhu R. Wei Y. Zhu J. Sun H. Mao Y. Zeng Q. Lanatoside C promotes foam cell formation and atherosclerosis. Sci. Rep. 2016 6 1 20154 10.1038/srep20154 26821916
    [Google Scholar]
  114. McLaren J.E. Michael D.R. Ashlin T.G. Ramji D.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res. 2011 50 4 331 347 10.1016/j.plipres.2011.04.002 21601592
    [Google Scholar]
  115. Yang H. Xu Y. Du L. Liu C. Zhao Q. Wei W. You Y. Quan Z. Chemokine SR-PSOX/CXCL16 expression in peripheral blood of patients with acute coronary syndrome. Chin. Med. J. 2008 121 2 112 117 10.1097/00029330‑200801020‑00004 18272035
    [Google Scholar]
  116. Zhang Y.N. Poon W. Tavares A.J. McGilvray I.D. Chan W.C.W. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016 240 332 348 10.1016/j.jconrel.2016.01.020 26774224
    [Google Scholar]
  117. Petrick L. Rosenblat M. Paland N. Aviram M. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ. Toxicol. 2016 31 6 713 723 10.1002/tox.22084 25448404
    [Google Scholar]
  118. Kong T. Zhang S.H. Zhang C. Zhang J.L. Yang F. Wang G.Y. Yang Z.J. Bai D.Y. Shi Y.Y. Liu T.Q. Li H.L. The effects of 50 nm unmodified nano-ZnO on lipid metabolism and semen quality in male mice. Biol. Trace Elem. Res. 2020 194 2 432 442 10.1007/s12011‑019‑01792‑6 31264129
    [Google Scholar]
  119. Jia J. Li F. Zhou H. Bai Y. Liu S. Jiang Y. Jiang G. Yan B. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environ. Sci. Technol. 2017 51 16 9334 9343 10.1021/acs.est.7b02752 28723108
    [Google Scholar]
  120. Ren D. Li Y. Xue Y. Tang X. Yong L. Li Y. A study using LC-MS/MS-based metabolomics to investigate the effects of iron oxide nanoparticles on rat liver. NanoImpact 2021 24 100360 10.1016/j.impact.2021.100360 35559819
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501347158250305074908
Loading
/content/journals/cdt/10.2174/0113894501347158250305074908
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: toxicity ; nanomaterial ; glucose metabolism ; lipid metabolism ; Glycolipid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test