Skip to content
2000
image of Unfurling the Potential of Antiviral Agents Aimed for RNA Virus Ailment

Abstract

Globally, high mortality is brought on by RNA viruses, which are linked to chronic human disorders. Viruses dominate the WHO's current ranking of the top 10 global health hazards, especially RNA viruses. RNA viruses, like HIV, SARS-CoV-2, and influenza, which are among the most prevalent and frequently encountered RNA viruses, use RNA as their genetic material, making them prone to quick changes. They adapt rapidly, complicating the body's immune responses. HIV, a significant retrovirus, infiltrates the immune system, causing AIDS by compromising defenses against infections. SARS-CoV-2, which led to COVID-19, sparked a worldwide pandemic with respiratory symptoms, emphasizing the need for research and therapeutic innovations. The COVID-19 pandemic has demonstrated the insufficiency of available resources in effectively addressing emerging viral infections. Influenza, a seasonal RNA virus, triggers flu outbreaks, impacting public health. Research is crucial to understanding how these viruses interact with hosts, aiding the development of effective treatments and strengthening our ability to face new viral threats. The most effective defenses against viral illnesses are virus-specific vaccinations and antiviral drugs. The present review emphasizes the prevalence of the three most pathogenic and widespread RNA viruses, namely HIV, influenza, and SARS-CoV2, their pathophysiology, and the current treatment with FDA-approved drugs. It also incorporates novel analogs that are under clinical trials as there is an urgent need for innovative antiviral medications, and enormous global efforts are required to find secure and efficient cures for these viral infections.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501336800250220051811
2025-02-24
2025-05-03
Loading full text...

Full text loading...

References

  1. Moelling K. Broecker F. Viruses, and evolution–viruses first? A personal perspective. Front. Microbiol. 2019 10 523 10.3389/fmicb.2019.00523 30941110
    [Google Scholar]
  2. Suttle C.A. Viruses in the sea. Nature 2005 437 7057 356 361 10.1038/nature04160 16163346
    [Google Scholar]
  3. Claus-Desbonnet H. Nikly E. Nalbantova V. Karcheva-Bahchevanska D. Ivanova S. Pierre G. Benbassat N. Katsarov P. Michaud P. Lukova P. Delattre C. Polysaccharides, and their derivatives as potential antiviral molecules. Viruses 2022 14 2 426 10.3390/v14020426 35216019
    [Google Scholar]
  4. Dinesh D.C. Tamilarasan S. Rajaram K. Bouřa E. Antiviral drug targets of single-stranded RNA viruses causing chronic human diseases. Curr. Drug Targets 2020 21 2 105 124 10.2174/1389450119666190920153247 31538891
    [Google Scholar]
  5. Kálai T. Pongrácz J.E. Mátyus P. Recent advances in influenza, HIV and SARS-CoV-2 infection prevention and drug treatment—The need for precision medicine. Chemistry (Basel) 2022 4 2 216 258 10.3390/chemistry4020019
    [Google Scholar]
  6. Perlman S. Another decade, another coronavirus. N. Engl. J. Med. 2020 382 8 760 762 10.1056/NEJMe2001126 31978944
    [Google Scholar]
  7. Joshi S. Parkar J. Ansari A. Vora A. Talwar D. Tiwaskar M. Patil S. Barkate H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021 102 501 508 10.1016/j.ijid.2020.10.069 33130203
    [Google Scholar]
  8. Lai C.C. Shih T.P. Ko W.C. Tang H.J. Hsueh P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020 55 3 105924 10.1016/j.ijantimicag.2020.105924 32081636
    [Google Scholar]
  9. Cheng S.C. Chang Y.C. Fan Chiang Y.L. Chien Y.C. Cheng M. Yang C.H. Huang C.H. Hsu Y.N. First case of coronavirus disease 2019 (COVID-19) pneumonia in Taiwan. J. Formos. Med. Assoc. 2020 119 3 747 751 10.1016/j.jfma.2020.02.007 32113824
    [Google Scholar]
  10. Cheng Y. Luo R. Wang K. Zhang M. Wang Z. Dong L. Li J. Yao Y. Ge S. Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020 97 5 829 838 10.1016/j.kint.2020.03.005 32247631
    [Google Scholar]
  11. Rauf A. Abu-Izneid T. Olatunde A. Ahmed Khalil A. Alhumaydhi F.A. Tufail T. Shariati M.A. Rebezov M. Almarhoon Z.M. Mabkhot Y.N. Alsayari A. Rengasamy K.R.R. COVID-19 pandemic: Epidemiology, etiology, conventional and non-conventional therapies. Int. J. Environ. Res. Public Health 2020 17 21 8155 10.3390/ijerph17218155 33158234
    [Google Scholar]
  12. Xu X. Chen P. Wang J. Feng J. Zhou H. Li X. Zhong W. Hao P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020 63 3 457 460 10.1007/s11427‑020‑1637‑5 32009228
    [Google Scholar]
  13. V’kovski P. Kratzel A. Steiner S. Stalder H. Thiel V. Coronavirus biology and replication: Implications for SARS-COV-2. Nat. Rev. Microbiol. 2021 19 3 155 170 10.1038/s41579‑020‑00468‑6 33116300
    [Google Scholar]
  14. Callaway E. The coronavirus is mutating — does it matter? Nature 2020 585 7824 174 177 10.1038/d41586‑020‑02544‑6 32901123
    [Google Scholar]
  15. van de Veerdonk F.L. Giamarellos-Bourboulis E. Pickkers P. Derde L. Leavis H. van Crevel R. Engel J.J. Wiersinga W.J. Vlaar A.P.J. Shankar-Hari M. van der Poll T. Bonten M. Angus D.C. van der Meer J.W.M. Netea M.G. A guide to immunotherapy for COVID-19. Nat. Med. 2022 28 1 39 50 10.1038/s41591‑021‑01643‑9 35064248
    [Google Scholar]
  16. Cannalire R Tramontano E Summa V. Focus on Severe Acute Respiratory Syndrome (SARS) Coronavirus (SARS-CoVs) 1 and 2. New Drug Development for Known and Emerging Viruses. Rübsamen-Schaeff H. Buschmann H. New York American Chemical Society 2022 65 2716 2746 10.1021/acs.jmedchem.0c01140
    [Google Scholar]
  17. National institutes of health the COVID-19 treatment guidelines panel's statement on therapies for high-risk Non-hospitalized Patients with Mild to Moderate COVID-19. 2023 Available from: https://www.omeditbretagne.fr/wp-content/uploads/2022/01/NIH_covid19treatmentguidelines_161221.pdf
  18. Warren T.K. Jordan R. Lo M.K. Ray A.S. Mackman R.L. Soloveva V. Siegel D. Perron M. Bannister R. Hui H.C. Larson N. Strickley R. Wells J. Stuthman K.S. Van Tongeren S.A. Garza N.L. Donnelly G. Shurtleff A.C. Retterer C.J. Gharaibeh D. Zamani R. Kenny T. Eaton B.P. Grimes E. Welch L.S. Gomba L. Wilhelmsen C.L. Nichols D.K. Nuss J.E. Nagle E.R. Kugelman J.R. Palacios G. Doerffler E. Neville S. Carra E. Clarke M.O. Zhang L. Lew W. Ross B. Wang Q. Chun K. Wolfe L. Babusis D. Park Y. Stray K.M. Trancheva I. Feng J.Y. Barauskas O. Xu Y. Wong P. Braun M.R. Flint M. McMullan L.K. Chen S.S. Fearns R. Swaminathan S. Mayers D.L. Spiropoulou Lee W.A. Nichol S.T. Cihlar T. Bavari S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016 531 7594 381 385 10.1038/nature17180 26934220
    [Google Scholar]
  19. Computational discovery of novel imidazole derivatives as inhibitors of SARS-CoV-2 main protease: An integrated approach combining molecular dynamics and binding affinity analysis. COVID 2016 4 6 672 695 10.3390/covid4060046
    [Google Scholar]
  20. Computational study of the therapeutic potential of novel heterocyclic derivatives against SARS-CoV-2. COVID 2021 1 4 757 774 10.3390/covid1040061
    [Google Scholar]
  21. Gordon C.J. Tchesnokov E.P. Woolner E. Perry J.K. Feng J.Y. Porter D.P. Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020 295 20 6785 6797 10.1074/jbc.RA120.013679 32284326
    [Google Scholar]
  22. Naydenova K. Muir K.W. Wu L.F. Zhang Z. Coscia F. Peet M.J. Castro-Hartmann P. Qian P. Sader K. Dent K. Kimanius D. Sutherland J.D. Löwe J. Barford D. Russo C.J. Structure of the SARS- CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc. Natl. Acad. Sci. USA 2021 118 7 e2021946118 10.1073/pnas.2021946118 33526596
    [Google Scholar]
  23. Padhi A.K. Dandapat J. Saudagar P. Uversky V.N. Tripathi T. Interface-based design of the favipiravir-binding site in SARS-CoV-2 RNA-dependent RNA polymerase reveals mutations conferring resistance to chain termination. FEBS Lett. 2021 595 18 2366 2382 10.1002/1873‑3468.14182 34409597
    [Google Scholar]
  24. Babalola B.A. Akinsuyi O.S. Folajimi E.O. Olujimi F. Chikere B. Adewumagun I.A. Adetobi T.E. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics Biomed. Pharmacother. 2023 12 115099 10.1016/j.biopha.2023.115099 37406505
    [Google Scholar]
  25. Owen D.R. Allerton C.M.N. Anderson A.S. Aschenbrenner L. Avery M. Berritt S. Boras B. Cardin R.D. Carlo A. Coffman K.J. Dantonio A. Di L. Eng H. Ferre R. Gajiwala K.S. Gibson S.A. Greasley S.E. Hurst B.L. Kadar E.P. Kalgutkar A.S. Lee J.C. Lee J. Liu W. Mason S.W. Noell S. Novak J.J. Obach R.S. Ogilvie K. Patel N.C. Pettersson M. Rai D.K. Reese M.R. Sammons M.F. Sathish J.G. Singh R.S.P. Steppan C.M. Stewart A.E. Tuttle J.B. Updyke L. Verhoest P.R. Wei L. Yang Q. Zhu Y. An oral SARS- CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 2021 374 6575 1586 1593 10.1126/science.abl4784 34726479
    [Google Scholar]
  26. Li P. Wang Y. Lavrijsen M. Lamers M.M. de Vries A.C. Rottier R.J. Bruno M.J. Peppelenbosch M.P. Haagmans B.L. Pan Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022 32 3 322 324 10.1038/s41422‑022‑00618‑w 35058606
    [Google Scholar]
  27. Takashita E. Kinoshita N. Yamayoshi S. Sakai-Tagawa Y. Fujisaki S. Ito M. Iwatsuki-Horimoto K. Chiba S. Halfmann P. Nagai H. Saito M. Adachi E. Sullivan D. Pekosz A. Watanabe S. Maeda K. Imai M. Yotsuyanagi H. Mitsuya H. Ohmagari N. Takeda M. Hasegawa H. Kawaoka Y. Efficacy of antibodies and antiviral drugs against Covid-19 Omicron variant. N. Engl. J. Med. 2022 386 10 995 998 10.1056/NEJMc2119407 35081300
    [Google Scholar]
  28. Rathnayake A.D. Zheng J. Kim Y. Perera K.D. Mackin S. Meyerholz D.K. Kashipathy M.M. Battaile K.P. Lovell S. Perlman S. Groutas W.C. Chang K.O. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Sci. Transl. Med. 2020 12 557 eabc5332 10.1126/scitranslmed.abc5332 32747425
    [Google Scholar]
  29. Rona G. Zeke A. Miwatani-Minter B. de Vries M. Kaur R. Schinlever A. Garcia S.F. Goldberg H.V. Wang H. Hinds T.R. Bailly F. Zheng N. Cotelle P. Desmaële D. Landau N.R. Dittmann M. Pagano M. The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target. Cell Death Differ. 2022 29 2 285 292 10.1038/s41418‑021‑00900‑1 34862481
    [Google Scholar]
  30. Tampere M. Pettke A. Salata C. Wallner O. Koolmeister T. Cazares-Körner A. Visnes T. Hesselman M.C. Kunold E. Wiita E. Kalderén C. Lightowler M. Jemth A.S. Lehtiö J. Rosenquist Å. Warpman-Berglund U. Helleday T. Mirazimi A. Jafari R. Puumalainen M.R. Novel broad-spectrum antiviral inhibitors targeting host factors essential for replication of pathogenic RNA viruses. Viruses 2020 12 12 1423 10.3390/v12121423 33322045
    [Google Scholar]
  31. Chitalia V.C. Munawar A.H. A painful lesson from the COVID-19 pandemic: The need for broad-spectrum, host-directed antivirals. J. Transl. Med. 2020 18 1 390 10.1186/s12967‑020‑02476‑9 33059719
    [Google Scholar]
  32. Mei M. Tan X. Current strategies of antiviral drug discovery for COVID-19. Front. Mol. Biosci. 2021 8 671263 10.3389/fmolb.2021.671263 34055887
    [Google Scholar]
  33. Hoffmann M. Hofmann-Winkler H. Smith J.C. Krüger N. Arora P. Sørensen L.K. Søgaard O.S. Hasselstrøm J.B. Winkler M. Hempel T. Raich L. Olsson S. Danov O. Jonigk D. Yamazoe T. Yamatsuta K. Mizuno H. Ludwig S. Noé F. Kjolby M. Braun A. Sheltzer J.M. Pöhlmann S. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 2021 65 103255 10.1016/j.ebiom.2021.103255 33676899
    [Google Scholar]
  34. Singh I. Arora R. Dhiman H. Pahwa R. Carbon quantum dots: Synthesis, characterization and biomedical applications. Turk. J. Pharm. Sci. 2018 15 2 219 230 10.4274/tjps.63497 32454664
    [Google Scholar]
  35. Breining P. Frølund A.L. Højen J.F. Gunst J.D. Staerke N.B. Saedder E. Cases-Thomas M. Little P. Nielsen L.P. Søgaard O.S. Kjolby M. Camostat mesylate against SARS-CoV-2 and COVID-19—Rationale, dosing and safety. Basic Clin. Pharmacol. Toxicol. 2021 128 2 204 212 10.1111/bcpt.13533 33176395
    [Google Scholar]
  36. Sukhatme V.P. Reiersen A.M. Vayttaden S.J. Sukhatme V.V. Fluvoxamine: A review of its mechanism of action and its role in COVID-19. Front. Pharmacol. 2021 12 652688 10.3389/fphar.2021.652688 33959018
    [Google Scholar]
  37. Hashimoto Y. Suzuki T. Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: A historical review. Mol. Psychiatry 2022 27 4 1898 1907 10.1038/s41380‑021‑01432‑3 34997196
    [Google Scholar]
  38. Chaccour C. Hammann F. Ramón-García S. Rabinovich N.R. Ivermectin and COVID-19: Keeping rigor in times of urgency. Am. J. Trop. Med. Hyg. 2020 102 6 1156 1157 10.4269/ajtmh.20‑0271 32314704
    [Google Scholar]
  39. Caly L. Druce J.D. Catton M.G. Jans D.A. Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020 178 104787 10.1016/j.antiviral.2020.104787 32251768
    [Google Scholar]
  40. Zaidi A.K. Dehgani-Mobaraki P. The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review. J. Antibiot. (Tokyo) 2022 75 2 60 71 10.1038/s41429‑021‑00491‑6 34931048
    [Google Scholar]
  41. Lytton J. Westlin M. Hanley M.R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem. 1991 266 26 17067 17071 10.1016/S0021‑9258(19)47340‑7 1832668
    [Google Scholar]
  42. Losada A. Muñoz-Alonso M.J. García C. Sánchez-Murcia P.A. Martínez-Leal J.F. Domínguez J.M. Lillo M.P. Gago F. Galmarini C.M. Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin. Sci. Rep. 2016 6 1 35100 10.1038/srep35100 27713531
    [Google Scholar]
  43. White K.M. Rosales R. Yildiz S. Kehrer T. Miorin L. Moreno E. Jangra S. Uccellini M.B. Rathnasinghe R. Coughlan L. Martinez-Romero C. Batra J. Rojc A. Bouhaddou M. Fabius J.M. Obernier K. Dejosez M. Guillén M.J. Losada A. Avilés P. Schotsaert M. Zwaka T. Vignuzzi M. Shokat K.M. Krogan N.J. García-Sastre A. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science 2021 371 6532 926 931 10.1126/science.abf4058 33495306
    [Google Scholar]
  44. Kumari P. Rawat K. Saha L. Pipeline pharmacological therapies in clinical trial for COVID-19 pandemic: A recent update. Curr. Pharmacol. Rep. 2020 6 5 228 240 10.1007/s40495‑020‑00226‑5 32837854
    [Google Scholar]
  45. Heesterbeek H. Anderson R.M. Andreasen V. Bansal S. De Angelis D. Dye C. Eames K.T.D. Edmunds W.J. Frost S.D.W. Funk S. Hollingsworth T.D. House T. Isham V. Klepac P. Lessler J. Lloyd-Smith J.O. Metcalf C.J.E. Mollison D. Pellis L. Pulliam J.R.C. Roberts M.G. Viboud C. Modeling infectious disease dynamics in the complex landscape of global health. Science 2015 347 6227 aaa4339 10.1126/science.aaa4339 25766240
    [Google Scholar]
  46. Mosnier A. Caini S. Daviaud I. Nauleau E. Bui T.T. Debost E. Bedouret B. Agius G. van der Werf S. Lina B. Cohen J.M. Clinical characteristics are similar across type A and B influenza virus infections. PLoS One 2015 10 9 e0136186 10.1371/journal.pone.0136186 26325069
    [Google Scholar]
  47. Poon L.L.M. Song T. Rosenfeld R. Lin X. Rogers M.B. Zhou B. Sebra R. Halpin R.A. Guan Y. Twaddle A. DePasse J.V. Stockwell T.B. Wentworth D.E. Holmes E.C. Greenbaum B. Peiris J.S.M. Cowling B.J. Ghedin E. Quantifying influenza virus diversity and transmission in humans. Nat. Genet. 2016 48 2 195 200 10.1038/ng.3479 26727660
    [Google Scholar]
  48. Turner D Wailoo A Nicholson K Cooper N Sutton A Abrams K Systematic review and economic decision modelling for the prevention and treatment of influenza A and B Winchester, England. Heal. Technol. Assess. 2003 7 35 iii v
    [Google Scholar]
  49. Fuller T.L. Gilbert M. Martin V. Cappelle J. Hosseini P. Njabo K.Y. Abdel Aziz S. Xiao X. Daszak P. Smith T.B. Predicting hotspots for influenza virus reassortment. Emerg. Infect. Dis. 2013 19 4 581 588 10.3201/eid1904.120903 23628436
    [Google Scholar]
  50. De Clercq E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov. 2006 5 12 1015 1025 10.1038/nrd2175 17139286
    [Google Scholar]
  51. Meseko C. Sanicas M. Asha K. Sulaiman L. Kumar B. Antiviral options and therapeutics against influenza: History, latest developments and future prospects. Front. Cell. Infect. Microbiol. 2023 13 1269344 10.3389/fcimb.2023.1269344 38094741
    [Google Scholar]
  52. Muthuri S.G. Myles P.R. Venkatesan S. Leonardi-Bee J. Nguyen- Van-Tam J.S. Impact of neuraminidase inhibitor treatment on outcomes of public health importance during the 2009-2010 influenza A(H1N1) pandemic: A systematic review and meta-analysis in hospitalized patients. J. Infect. Dis. 2013 207 4 553 563 10.1093/infdis/jis726 23204175
    [Google Scholar]
  53. Nicholson K.G. Wood J.M. Zambon M. Influenza. Lancet 2003 362 9397 1733 1745 10.1016/S0140‑6736(03)14854‑4 14643124
    [Google Scholar]
  54. Pellegrini F. Buonavoglia A. Omar A.H. Diakoudi G. Lucente M.S. Odigie A.E. Sposato A. Augelli R. Camero M. Decaro N. Elia G. Bányai K. Martella V. Lanave G. A cold case of equine influenza disentangled with nanopore sequencing. Animals (Basel) 2023 13 7 1153 10.3390/ani13071153 37048408
    [Google Scholar]
  55. Matsuda K. Hattori S. Kariya R. Komizu Y. Kudo E. Goto H. Taura M. Ueoka R. Kimura S. Okada S. Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity. Biochem. Biophys. Res. Commun. 2015 457 3 288 294 10.1016/j.bbrc.2014.12.102 25576356
    [Google Scholar]
  56. Liu J.W. Lin S.H. Wang L.C. Chiu H.Y. Lee J.A. Comparison of antiviral agents for seasonal influenza outcomes in healthy adults and children: A systematic review and network meta-analysis. JAMA Netw. Open 2021 4 8 e2119151 10.1001/jamanetworkopen.2021.19151 34387680
    [Google Scholar]
  57. Dufrasne F. Baloxavir marboxil: An original new drug against influenza. Pharmaceuticals (Basel) 2021 15 1 28 10.3390/ph15010028 35056085
    [Google Scholar]
  58. Kuo Y.C. Lai C.C. Wang Y.H. Chen C.H. Wang C.Y. Clinical efficacy and safety of baloxavir marboxil in the treatment of influenza: A systematic review and meta-analysis of randomized controlled trials. J. Microbiol. Immunol. Infect. 2021 54 5 865 875 10.1016/j.jmii.2021.04.002 34020891
    [Google Scholar]
  59. Fang Q. Wang D. Advanced researches on the inhibition of influenza virus by Favipiravir and Baloxavir. Biosaf. Heal. 2020 2 2 64 70 10.1016/j.bsheal.2020.04.004
    [Google Scholar]
  60. Furuta Y. Komeno T. Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2017 93 7 449 463 10.2183/pjab.93.027 28769016
    [Google Scholar]
  61. Zhirnov O Chernyshova A. Favipiravir: The hidden threat of mutagenic action. 2021 98 2 10.36233/0372‑9311‑114
    [Google Scholar]
  62. Pizzorno A. Padey B. Terrier O. Rosa-Calatrava M. Drug repurposing approaches for the treatment of influenza viral infection: Reviving old drugs to fight against a long-lived enemy. Front. Immunol. 2019 10 531 10.3389/fimmu.2019.00531 30941148
    [Google Scholar]
  63. Jennings M.R. Parks R.J. Curcumin as an antiviral agent. Viruses 2020 12 11 1242 10.3390/v12111242 33142686
    [Google Scholar]
  64. Terrier O. Dilly S. Pizzorno A. Chalupska D. Humpolickova J. Bouřa E. Berenbaum F. Quideau S. Lina B. Fève B. Adnet F. Sabbah M. Rosa-Calatrava M. Maréchal V. Henri J. Slama-Schwok A. Antiviral properties of the NSAID drug naproxen targeting the nucleoprotein of SARS-CoV-2 coronavirus. Molecules 2021 26 9 2593 10.3390/molecules26092593 33946802
    [Google Scholar]
  65. Yang F. Pang B. Lai K.K. Cheung N.N. Dai J. Zhang W. Zhang J. Chan K.H. Chen H. Sze K.H. Zhang H. Hao Q. Yang D. Yuen K.Y. Kao R.Y. Discovery of a novel specific inhibitor targeting influenza A virus nucleoprotein with pleiotropic inhibitory effects on various steps of the viral life cycle. J. Virol. 2021 95 9 e01432-20 10.1128/JVI.01432‑20 33627391
    [Google Scholar]
  66. Perwitasari O. Yan X. O’Donnell J. Johnson S. Tripp R.A. Repurposing kinase inhibitors as antiviral agents to control influenza a virus replication. Assay Drug Dev. Technol. 2015 13 10 638 649 10.1089/adt.2015.0003.drrr 26192013
    [Google Scholar]
  67. Schor S. Einav S. Repurposing of kinase inhibitors as broad-spectrum antiviral drugs. DNA Cell Biol. 2018 37 2 63 69 10.1089/dna.2017.4033 29148875
    [Google Scholar]
  68. Meineke R. Rimmelzwaan G.F. Elbahesh H. Influenza virus infections and cellular kinases. Viruses 2019 11 2 171 10.3390/v11020171 30791550
    [Google Scholar]
  69. Zhang J. Hu Y. Hau R. Musharrafieh R. Ma C. Zhou X. Chen Y. Wang J. Identification of NMS-873, an allosteric and specific p97 inhibitor, as a broad antiviral against both influenza A and B viruses. Eur. J. Pharm. Sci. 2019 133 86 94 10.1016/j.ejps.2019.03.020 30930289
    [Google Scholar]
  70. Bai Y. Jones J.C. Wong S.S. Zanin M. Antivirals targeting the surface glycoproteins of influenza virus: Mechanisms of action and resistance. Viruses 2021 13 4 624 10.3390/v13040624 33917376
    [Google Scholar]
  71. Pizzorno A. Terrier O. Nicolas de Lamballerie C. Julien T. Padey B. Traversier A. Roche M. Hamelin M.E. Rhéaume C. Croze S. Escuret V. Poissy J. Lina B. Legras-Lachuer C. Textoris J. Boivin G. Rosa-Calatrava M. Repurposing of drugs as novel influenza inhibitors from clinical gene expression infection signatures. Front. Immunol. 2019 10 60 10.3389/fimmu.2019.00060 30761132
    [Google Scholar]
  72. Haffizulla J. Hartman A. Hoppers M. Resnick H. Samudrala S. Ginocchio C. Bardin M. Rossignol J.F. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect. Dis. 2014 14 7 609 618 10.1016/S1473‑3099(14)70717‑0 24852376
    [Google Scholar]
  73. Beigel J.H. Bao Y. Beeler J. Manosuthi W. Slandzicki A. Dar S.M. Panuto J. Beasley R.L. Perez-Patrigeon S. Suwanpimolkul G. Losso M.H. McClure N. Bozzolo D.R. Myers C. Holley H.P. Jr Hoopes J. Lane H.C. Hughes M.D. Davey R.T. Winnie M. Dinh D.V. Seethala R. Garcia H. Pouzar J. Seep M. Riffer E. Bart B. Dar S. Hoppers M. Panuto J. Rowe H. Slandzicki A. Wolfe C. Desantis D. Baynton B. Beasley R.L. Markowitz N. Stearns Z.A. Cho J. Goisse M. Wolf T.A. Kay J. Dharan N. Fitzgibbons W. Woodruff M. Bell T. Lenzmeier T. Schooley R. Elie M-C. Winokur P. Finberg R. Hurt C. Tebas P. Sattler F.R. Ampajwala M. Batts D. Bloch M. Moore R. Dwyer D. Romo-Garcia J. Patrigeon S.P. Zulueta A.P.R. Manosuthi W. Chetchotisakd P. Ruxrungtham K. Avihingsanon A. Suwanpimolkul G. Ratanasuwan W. Lupo S. Trape L. Losso M.H. Macias L.M. Lopardo G. Barcelona L. Mykietuk A. Alzogaray M.F. Oseltamivir, amantadine, and ribavirin combination antiviral therapy versus oseltamivir monotherapy for the treatment of influenza: A multicentre, double-blind, randomised phase 2 trial. Lancet Infect. Dis. 2017 17 12 1255 1265 10.1016/S1473‑3099(17)30476‑0 28958678
    [Google Scholar]
  74. Xu L. Jiang W. Jia H. Zheng L. Xing J. Liu A. Du G. Discovery of multitarget-directed ligands against influenza a virus from compound yizhihao through a predictive system for compound-protein interactions. Front. Cell. Infect. Microbiol. 2020 10 16 10.3389/fcimb.2020.00016 32117796
    [Google Scholar]
  75. Wieczorek K. Szutkowska B. Kierzek E. Anti-influenza strategies based on nanoparticle applications. Pathogens 2020 9 12 1020 10.3390/pathogens9121020 33287259
    [Google Scholar]
  76. Chan Y. Ng S.W. Mehta M. Anand K. Kumar Singh S. Gupta G. Chellappan D.K. Dua K. Advanced drug delivery systems can assist in managing influenza virus infection: A hypothesis. Med. Hypotheses 2020 144 110298 10.1016/j.mehy.2020.110298 33254489
    [Google Scholar]
  77. Arias A. Thorne L. Goodfellow I. Favipiravir elicits antiviral mutagenesis during virus replication in vivo. eLife 2014 3 e03679 10.7554/eLife.03679 25333492
    [Google Scholar]
  78. Bai C.Q. Mu J.S. Kargbo D. Song Y.B. Niu W.K. Nie W.M. Kanu A. Liu W.W. Wang Y.P. Dafae F. Yan T. Hu Y. Deng Y.Q. Lu H.J. Yang F. Zhang X.G. Sun Y. Cao Y.X. Su H.X. Sun Y. Liu W.S. Wang C.Y. Qian J. Liu L. Wang H. Tong Y.G. Liu Z.Y. Chen Y.S. Wang H.Q. Kargbo B. Gao G.F. Jiang J.F. Clinical and virological characteristics of Ebola virus disease patients treated with favipiravir (T-705)—Sierra Leone, 2014. Clin. Infect. Dis. 2016 63 10 1288 1294 10.1093/cid/ciw571 27553371
    [Google Scholar]
  79. Li T. Chan M. Lee N. Clinical implications of antiviral resistance in influenza. Viruses 2015 7 9 4929 4944 10.3390/v7092850 26389935
    [Google Scholar]
  80. Merritt T. Hope K. Butler M. Durrheim D. Gupta L. Najjar Z. Conaty S. Boonwaat L. Fletcher S. Effect of antiviral prophylaxis on influenza outbreaks in aged care facilities in three local health districts in New South Wales, Australia, 2014. Western Pac. Surveill. Response J. 2016 7 1 14 20 10.5365/wpsar.2015.6.3.005 27757249
    [Google Scholar]
  81. Bresee JS Fiore AE Fry A Gubareva LV Shay DK Uyeki TM Antiviral agents for the treatment and chemoprophylaxis of influenza: Recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm. Rep. 2011 60 1 1 24 21248682
    [Google Scholar]
  82. Levy J.A. Pathogenesis of human immunodeficiency virus infection. Microbiol. Rev. 1993 57 1 183 289 10.1128/mr.57.1.183‑289.1993 8464405
    [Google Scholar]
  83. Haseltine W.A. Wong-Staal F. The molecular biology of the AIDS virus. Sci. Am. 1988 259 4 52 62 10.1038/scientificamerican1088‑52 3072673
    [Google Scholar]
  84. Justiz Vaillant A.A. Gulick P.G. HIV disease current practice. StatPearls. Treasure Island, FL Stat Pearls Publishing 2022 30521281
    [Google Scholar]
  85. Freed E.O. HIV-1 gag proteins: Diverse functions in the virus life cycle. Virology 1998 251 1 1 15 10.1006/viro.1998.9398 9813197
    [Google Scholar]
  86. Berkowitz R.D. Goff S.P. Analysis of binding elements in the human immunodeficiency virus type 1 genomic RNA and nucleocapsid protein. Virology 1994 202 1 233 246 10.1006/viro.1994.1339 8009834
    [Google Scholar]
  87. Berkowitz R.D. Ohagen A. Höglund S. Goff S.P. Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J. Virol. 1995 69 10 6445 6456 10.1128/jvi.69.10.6445‑6456.1995 7666546
    [Google Scholar]
  88. Babalola B.A. Sharma L. Olowokere O. Malik M. Folajimi O. Advancing drug discovery: Thiadiazole derivatives as multifaceted agents in medicinal chemistry and pharmacology Bioorg. Med. Chem. 2024 112 117876 10.1016/j.bmc.2024.117876 39163743
    [Google Scholar]
  89. Chahroudi A. Bosinger S.E. Vanderford T.H. Paiardini M. Silvestri G. Natural SIV hosts: Showing AIDS the door. Science 2012 335 6073 1188 1193 10.1126/science.1217550 22403383
    [Google Scholar]
  90. Babalola B.A. Malik M. Sharma L. Olowokere O. Folajimi O. Exploring the therapeutic potential of phenothiazine derivatives in medicinal chemistry. Resul. Chemi. 8 2024 101565 10.1016/j.rechem.2024.101565
    [Google Scholar]
  91. Pierson T. McArthur J. Siliciano R.F. Reservoirs for HIV-1: Mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu. Rev. Immunol. 2000 18 1 665 708 10.1146/annurev.immunol.18.1.665 10837072
    [Google Scholar]
  92. Xu W Li H Wang Q Hua C Zhang H Li W Jiang S Lu L Advancements in developing strategies for sterilizing and functional HIV cures. BioMed. Res. Int. 2017 2017 6096134 10.1155/2017/6096134
    [Google Scholar]
  93. U.S Food drug administration FDA approves first injectable treatment for hiv pre-exposure prevention. Patent NCT06101342, 2022
  94. Kozal M. Aberg J. Pialoux G. Cahn P. Thompson M. Molina J.M. Grinsztejn B. Diaz R. Castagna A. Kumar P. Latiff G. DeJesus E. Gummel M. Gartland M. Pierce A. Ackerman P. Llamoso C. Lataillade M. Fostemsavir in adults with multidrug-resistant HIV-1 infection. N. Engl. J. Med. 2020 382 13 1232 1243 10.1056/NEJMoa1902493 32212519
    [Google Scholar]
  95. Lataillade M. Lalezari J.P. Kozal M. Aberg J.A. Pialoux G. Cahn P. Thompson M. Molina J.M. Moreno S. Grinsztejn B. Diaz R.S. Castagna A. Kumar P.N. Latiff G.H. De Jesus E. Wang M. Chabria S. Gartland M. Pierce A. Ackerman P. Llamoso C. Safety and efficacy of the HIV-1 attachment inhibitor prodrug fostemsavir in heavily treatment-experienced individuals: week 96 results of the phase 3 brighte study. Lancet HIV 2020 7 11 e740 e751 10.1016/S2352‑3018(20)30240‑X 33128903
    [Google Scholar]
  96. Ackerman P. Thompson M. Molina J.M. Aberg J. Cassetti I. Kozal M. Castagna A. Martins M. Ramgopal M. Sprinz E. Treviño-Pérez S. Streinu-Cercel A. Latiff G.H. Pialoux G. Kumar P.N. Wang M. Chabria S. Pierce A. Llamoso C. Lataillade M. Long-term efficacy and safety of fostemsavir among subgroups of heavily treatment- experienced adults with HIV-1. AIDS 2021 35 7 1061 1072 10.1097/QAD.0000000000002851 33946085
    [Google Scholar]
  97. Turkova A. White E. Mujuru H.A. Kekitiinwa A.R. Kityo C.M. Violari A. Lugemwa A. Cressey T.R. Musoke P. Variava E. Cotton M.F. Archary M. Puthanakit T. Behuhuma O. Kobbe R. Welch S.B. Bwakura-Dangarembizi M. Amuge P. Kaudha E. Barlow-Mosha L. Makumbi S. Ramsagar N. Ngampiyaskul C. Musoro G. Atwine L. Liberty A. Musiime V. Bbuye D. Ahimbisibwe G.M. Chalermpantmetagul S. Ali S. Sarfati T. Wynne B. Shakeshaft C. Colbers A. Klein N. Bernays S. Saïdi Y. Coelho A. Grossele T. Compagnucci A. Giaquinto C. Rojo P. Ford D. Gibb D.M. Dolutegravir as first-or second-line treatment for HIV-1 infection in children. N. Engl. J. Med. 2021 385 27 2531 2543 10.1056/NEJMoa2108793 34965338
    [Google Scholar]
  98. Nickoloff-Bybel E.A. Festa L. Meucci O. Gaskill P.J. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021 18 1 24 10.1186/s12977‑021‑00569‑x 34429135
    [Google Scholar]
  99. Marin M. Du Y. Giroud C. Kim J.H. Qui M. Fu H. Melikyan G.B. High-throughput HIV–Cell fusion assay for discovery of virus entry inhibitors. Assay Drug Dev. Technol. 2015 13 3 155 166 10.1089/adt.2015.639 25871547
    [Google Scholar]
  100. Overeem N.J. van der Vries E. Huskens J. A dynamic, supramolecular view on the multivalent interaction between influenza virus and host cell. Small 2021 17 13 2007214 10.1002/smll.202007214 33682339
    [Google Scholar]
  101. Cunha R.F. Simões S. Carvalheiro M. Pereira J.M.A. Costa Q. Ascenso A. Novel antiretroviral therapeutic strategies for HIV. Molecules 2021 26 17 5305 10.3390/molecules26175305 34500737
    [Google Scholar]
  102. Judith S. Leronlimab FDA Approval Status. 2021 Available from: https://www.drugs.com/history/leronlimab.html (Accessed on: Jan 17 2022).
  103. Ivanov S. Lagunin A. Filimonov D. Tarasova O. Network-based analysis of OMICs data to understand HIV–host interaction. Front. Microbiol. 2020 11 1314 10.3389/fmicb.2020.01314 32625189
    [Google Scholar]
  104. Boltz D.A. Aldridge J.R. Jr Webster R.G. Govorkova E.A. Drugs in development for influenza. Drugs 2010 70 11 1349 1362 10.2165/11537960‑000000000‑00000 20614944
    [Google Scholar]
  105. Collins S. Pipeline report 2021: HIV drugs in development, published by HIV i-Base. 2021 Available from: https://i-base.info/htb/41142
/content/journals/cdt/10.2174/0113894501336800250220051811
Loading
/content/journals/cdt/10.2174/0113894501336800250220051811
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antiviral agents ; SARS-CoV-2 ; influenza virus ; HIV ; pathophysiology ; therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test