Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8863
  • E-ISSN: 2212-3911

Abstract

Background

The COVID-19 pandemic has called for the rapid development and use of antiviral drugs to effectively control the disease. Nirmatrelvir/Ritonavir (Paxlovid), Molnupiravir, and Remdesivir have been pivotal in therapeutic approaches, although they raise concerns regarding adverse drug reactions (ADRs).

Objective

This study aimed to thoroughly assess the ADRs associated with these drugs by utilizing the Adverse Event Reporting System (FAERS) database of the Food and Drug Administration (FDA).

Methods

ADR reports for Paxlovid, Molnupiravir, and Remdesivir throughout the period of January 2022 to May 2023 were extracted and classified according to the severity, type of reaction, and demographic variables. Reporting Odds Ratios (RORs) with 95% confidence intervals were calculated to evaluate the relationship between antiviral medications and various ADRs.

Results

The study established notable correlations between Paxlovid and the recurrence of the disease (40.08%) and dysgeusia (16.29%). Molnupiravir was linked to gastrointestinal (16.73%) and skin reactions (9.47%), while Remdesivir had impairments in the liver (25.21%) and kidneys (13.34%). ADRs were more commonly observed in female patients treated with Paxlovid (57.95%) and Molnupiravir (49.40%), whereas Remdesivir ADRs were mostly reported in males (58.56%). Paxlovid and Remdesivir ADRs were frequently reported in adults between the ages of 18 and 64 (46.01% and 45.01%), while Molnupiravir ADRs were more common in older individuals aged 65 to 85 (40.38%).

Conclusion

This thorough assessment emphasizes the importance of careful surveillance and control of ADRs linked to COVID-19 antiviral therapies. It is essential to customize treatments by considering specific patient histories, particularly for pre-existing diseases.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863334598241203073907
2025-01-03
2025-07-26
Loading full text...

Full text loading...

References

  1. BrüssowH. TimmisK. COVID-19: Long covid and its societal consequences.Environ. Microbiol.20212384077409110.1111/1462‑2920.1563434110078
    [Google Scholar]
  2. TrindadeG.G. CaxitoS.M.C. XavierA.R.O. XavierM.A.S. BrandãoF. COVID-19: therapeutic approaches description and discussion.An. Acad. Bras. Cienc.2020922e2020046610.1590/0001‑376520202020046632556054
    [Google Scholar]
  3. JordanR.E. AdabP. ChengK.K. Covid-19: risk factors for severe disease and death.BMJ2020368m119810.1136/bmj.m119832217618
    [Google Scholar]
  4. ForniG. MantovaniA. COVID-19 vaccines: where we stand and challenges ahead.Cell Death Differ.202128262663910.1038/s41418‑020‑00720‑933479399
    [Google Scholar]
  5. HafeezA. AhmadS. SiddquiS. AhmadM. MishraS. A review of COVID-19 (Coronavirus Disease-2019) diagnosis, treatments and prevention.EJMO202042116125
    [Google Scholar]
  6. SaravolatzL.D. DepcinskiS. SharmaM. Molnupiravir and nirmatrelvir-ritonavir: Oral coronavirus disease 2019 antiviral drugs.Clin. Infect. Dis.202376116517110.1093/cid/ciac18035245942
    [Google Scholar]
  7. JiangY. RubinL. ZhouZ. ZhangH. SuQ. HouS.T. LazaroviciP. ZhengW. Pharmacological therapies and drug development targeting SARS-CoV-2 infection.Cytokine Growth Factor Rev.202268132410.1016/j.cytogfr.2022.10.00336266222
    [Google Scholar]
  8. International drug monitoring: the role of national centres. Report of a WHO meeting.World Health Organ. Tech. Rep. Ser.19724981254625548
    [Google Scholar]
  9. ChakrabortyB. Pharmacovigilance: A data mining approach to signal detection.Indian J. Pharmacol.201547324124210.4103/0253‑7613.15710226069358
    [Google Scholar]
  10. MontastrucJ.L. SommetA. BagheriH. Lapeyre-MestreM. Benefits and strengths of the disproportionality analysis for identification of adverse drug reactions in a pharmacovigilance database.Br. J. Clin. Pharmacol.201172690590810.1111/j.1365‑2125.2011.04037.x21658092
    [Google Scholar]
  11. LiM. ZhangQ.S. LiuX.L. WangH.L. LiuW. Adverse events associated with nirmatrelvir/ritonavir: A pharmacovigilance analysis based on FAERS.Pharmaceuticals20221512145510.3390/ph1512145536558906
    [Google Scholar]
  12. WenW. ChenC. TangJ. WangC. ZhouM. ChengY. ZhouX. WuQ. ZhangX. FengZ. WangM. MaoQ. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis.Ann. Med.202254151652310.1080/07853890.2022.203493635118917
    [Google Scholar]
  13. Coronavirus Disease 2019 (COVID-19) Treatment GuidelinesBethesda (MD): National Institutes of Health (US)2019
    [Google Scholar]
  14. CarlinA.F. ClarkA.E. ChaillonA. GarretsonA.F. BrayW. PorrachiaM. SantosA.T. RanaT.M. SmithD.M. Virologic and immunologic characterization of coronavirus disease 2019 recrudescence after nirmatrelvir/ritonavir treatment.Clin. Infect. Dis.2023763e530e53210.1093/cid/ciac49635723411
    [Google Scholar]
  15. BoucauJ. UddinR. MarinoC. ReganJ. FlynnJ.P. ChoudharyM.C. ChenG. StuckwischA.M. MathewsJ. LiewM.Y. SinghA. ReynoldsZ. IyerS.L. ChamberlinG.C. VyasT.D. VyasJ.M. TurbettS.E. LiJ.Z. LemieuxJ.E. BarczakA.K. SiednerM.J. Characterization of virologic rebound following nirmatrelvir-ritonavir treatment for coronavirus disease 2019 (COVID-19).Clin. Infect. Dis.2023763e526e52910.1093/cid/ciac51235737946
    [Google Scholar]
  16. SmithD.M. LiJ.Z. MoserC. YehE. CurrierJ.S. ChewK.W. HughesM.D. DaarE. WohlD. EronJ. JavanA.C. GigantiM. RitzJ. HoseyL. RoaJ. PatelN. ColshK. RwakazinaI. BeckJ. SeigS. FletcherC. FischerW. EveringT. BenderR. CardosoS. CoradoK. JagannathanP. JilgN. PerelsonA. PillayS. RiviereC. SinghU. TaiwoB. GottesmanJ. NewellM. PedersonS. DragavonJ. JenningsC. GreenfelderB. MurtaughW. KosmynaJ. GaparaM. ShahkolahiA. KimP. ErhardtW. Recurrence of symptoms following a 2-day symptom free period in patients with COVID-19.JAMA Netw. Open2022510e223886710.1001/jamanetworkopen.2022.3886736301549
    [Google Scholar]
  17. BingA. HuY. PragueM. HillA.L. LiJ.Z. BoschR.J. DeGruttolaV. WangR. Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption.Stat. Commun. Infect. Dis.202012s12019002110.1515/scid‑2019‑002134158910
    [Google Scholar]
  18. SatoT. YamamotoT. AoyamaY. Varicella zoster virus-associated meningitis as a rebound varicella zoster disease after antiviral discontinuation.Case Rep. Dermatol.202113114815310.1159/00051271033790759
    [Google Scholar]
  19. TsuchiyaH. Treatments of COVID-19-associated taste and saliva secretory disorders.Dent. J.202311614010.3390/dj1106014037366663
    [Google Scholar]
  20. ZaharuddinZ. Md HussinN.S. KaruppannanM. Evaluating nirmatrelvir-ritonavir (paxlovid®) in outpatient COVID-19 treatment: Safety, tolerability, and adherence insights from primary healthcare clinics.Res. Sq.202410.21203/rs.3.rs‑3968833/v1
    [Google Scholar]
  21. CvancaraD.J. BaertschH.C. LehmannA.E. HumphreysI.M. FarrellN.F. MarshallT.B. BhattN.K. AbuzeidW.M. JafariA. Postmarketing reporting of paxlovid-related dysgeusia: A real-world pharmacovigilance study.Otolaryngol. Head Neck Surg.20231691556110.1002/ohn.27836821807
    [Google Scholar]
  22. RehwaldtM. WickhamR. PurlS. TarimanJ. BlendowskiC. ShottS. LappeM. Self-care strategies to cope with taste changes after chemotherapy.Oncol. Nurs. Forum2009362E47E5610.1188/09.ONF.E47‑E5619273394
    [Google Scholar]
  23. AzizM. PerisettiA. Lee-SmithW.M. GajendranM. BansalP. GoyalH. Taste changes (Dysgeusia) in COVID-19: A systematic review and meta-analysis.Gastroenterology202015931132113310.1053/j.gastro.2020.05.00332387496
    [Google Scholar]
  24. HovanA.J. WilliamsP.M. Stevenson-MooreP. WahlinY.B. OhrnK.E. EltingL.S. SpijkervetF.K. BrennanM.T. Dysgeusia section, oral care study group, Multinational Association of Supportive Care in Cancer (MASCC)/International Society of Oral Oncology (ISOO). A systematic review of dysgeusia induced by cancer therapies.Support Care Cancer.20101881081710.1007/s00520‑010‑0902‑1
    [Google Scholar]
  25. ChangC.T. OngS.Y. LimX.J. ChewL.S. RajanP. Managing nirmatrelvir/ritonavir during COVID-19: pharmacists’ experiences from the Perak state of Malaysia.J. Pharm. Policy Pract.20221517010.1186/s40545‑022‑00469‑136274169
    [Google Scholar]
  26. BihanK. LipszycL. LemaitreF. DautricheA. FédrizziS. AtzenhofferM. VitoresA. PageA. Lebrun-VignesB. Nirmatrelvir/ritonavir (Paxlovid®): French pharmacovigilance survey 2022.Therapie202378553154710.1016/j.therap.2023.03.00137012153
    [Google Scholar]
  27. MaliK.R. EerikeM. RajG.M. BisoiD. PriyadarshiniR. RaviG. ChaliserryL.F. JantiS.S. Efficacy and safety of Molnupiravir in COVID-19 patients: a systematic review.Ir. J. Med. Sci.202319241665167810.1007/s11845‑022‑03139‑y36087236
    [Google Scholar]
  28. De VitoA. ColpaniA. BittiA. ZauliB. MeloniM.C. FoisM. DentiL. BacciuS. MarciaC. MaidaI. BabudieriS. MadedduG. Safety and efficacy of molnupiravir in SARS-CoV-2-infected patients: A real-life experience.J. Med. Virol.202294115582558810.1002/jmv.2801135855627
    [Google Scholar]
  29. Santi LauriniG. MontanaroN. MotolaD. Safety profile of molnupiravir in the treatment of COVID-19: A descriptive study based on FAERS data.J. Clin. Med.20221213410.3390/jcm1201003436614834
    [Google Scholar]
  30. BellandiT. Romani-VidalA. SousaP. TanziniM. Adverse Event Investigation and Risk Assessment.Textbook of Patient Safety and Clinical Risk Management. DonaldsonL. Springer2020129142
    [Google Scholar]
  31. VitielloA. La PortaR. D'AiutoV. FerraraF. The risks of liver injury in COVID-19 patients and pharmacological management to reduce or prevent the damage induced.Egypt Liver J.202111111110.1186/s43066‑021‑00082‑y
    [Google Scholar]
  32. AleemA. MahadevaiahG. ShariffN. KothadiaJ.P. Hepatic manifestations of COVID-19 and effect of remdesivir on liver function in patients with COVID-19 illness.Proc. Bayl. Univ. Med. Cent.202134447347710.1080/08998280.2021.188528934219928
    [Google Scholar]
  33. WongG.L.H. WongV.W.S. ThompsonA. JiaJ. HouJ. LesmanaC.R.A. SusiloA. TanakaY. ChanW.K. GaneE. Ong-GoA.K. LimS.G. AhnS.H. YuM.L. PiratvisuthT. ChanH.L.Y. Management of patients with liver derangement during the COVID-19 pandemic: an Asia-Pacific position statement.Lancet Gastroenterol. Hepatol.20205877678710.1016/S2468‑1253(20)30190‑432585136
    [Google Scholar]
  34. CharanJ. KaurR.J. BhardwajP. HaqueM. SharmaP. MisraS. GodmanB. Rapid review of suspected adverse drug events due to remdesivir in the WHO database; findings and implications.Expert Rev. Clin. Pharmacol.20211419510310.1080/17512433.2021.185665533252992
    [Google Scholar]
  35. LavertuA. VoraB. GiacominiK.M. AltmanR. RensiS. A new era in pharmacovigilance: Toward real-world data and digital monitoring.Clin. Pharmacol. Ther.202110951197120210.1002/cpt.217233492663
    [Google Scholar]
/content/journals/cds/10.2174/0115748863334598241203073907
Loading
/content/journals/cds/10.2174/0115748863334598241203073907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test