Skip to content
2000
image of Adverse Events Associated with Antivirals for COVID-19: An Analysis Based on FDA Adverse Event Reporting System (FAERS)

Abstract

Background

The COVID-19 pandemic has called for the rapid development and use of antiviral drugs to effectively control the disease. Nirmatrelvir/Ritonavir (Paxlovid), Molnupiravir, and Remdesivir have been pivotal in therapeutic approaches, although they raise concerns regarding adverse drug reactions (ADRs).

Objective

This study aimed to thoroughly assess the ADRs associated with these drugs by utilizing the Adverse Event Reporting System (FAERS) database of the Food and Drug Administration (FDA).

Methods

ADR reports for Paxlovid, Molnupiravir, and Remdesivir throughout the period of January 2022 to May 2023 were extracted and classified according to the severity, type of reaction, and demographic variables. Reporting Odds Ratios (RORs) with 95% confidence intervals were calculated to evaluate the relationship between antiviral medications and various ADRs.

Results

The study established notable correlations between Paxlovid and the recurrence of the disease (40.08%) and dysgeusia (16.29%). Molnupiravir was linked to gastrointestinal (16.73%) and skin reactions (9.47%), while Remdesivir had impairments in the liver (25.21%) and kidneys (13.34%). ADRs were more commonly observed in female patients treated with Paxlovid (57.95%) and Molnupiravir (49.40%), whereas Remdesivir ADRs were mostly reported in males (58.56%). Paxlovid and Remdesivir ADRs were frequently reported in adults between the ages of 18 and 64 (46.01% and 45.01%), while Molnupiravir ADRs were more common in older individuals aged 65 to 85 (40.38%).

Conclusion

This thorough assessment emphasizes the importance of careful surveillance and control of ADRs linked to COVID-19 antiviral therapies. It is essential to customize treatments by considering specific patient histories, particularly for pre-existing diseases.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863334598241203073907
2025-01-03
2025-01-27
Loading full text...

Full text loading...

References

  1. Brüssow H. Timmis K. COVID-19: Long covid and its societal consequences. Environ. Microbiol. 2021 23 8 4077 4091 10.1111/1462‑2920.15634 34110078
    [Google Scholar]
  2. Trindade G.G. Caxito S.M.C. Xavier A.R.O. Xavier M.A.S. Brandão F. COVID-19: therapeutic approaches description and discussion. An. Acad. Bras. Cienc. 2020 92 2 e20200466 10.1590/0001‑3765202020200466 32556054
    [Google Scholar]
  3. Jordan R.E. Adab P. Cheng K.K. Covid-19: risk factors for severe disease and death. BMJ 2020 368 m1198 10.1136/bmj.m1198 32217618
    [Google Scholar]
  4. Forni G. Mantovani A. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 2021 28 2 626 639 10.1038/s41418‑020‑00720‑9 33479399
    [Google Scholar]
  5. Hafeez A. Ahmad S. Siddqui S. Ahmad M. Mishra S. A review of COVID-19 (Coronavirus Disease-2019) diagnosis, treatments and prevention. EJMO 2020 4 2 116 125
    [Google Scholar]
  6. Saravolatz L.D. Depcinski S. Sharma M. Molnupiravir and nirmatrelvir-ritonavir: Oral coronavirus disease 2019 antiviral drugs. Clin. Infect. Dis. 2023 76 1 165 171 10.1093/cid/ciac180 35245942
    [Google Scholar]
  7. Jiang Y. Rubin L. Zhou Z. Zhang H. Su Q. Hou S.T. Lazarovici P. Zheng W. Pharmacological therapies and drug development targeting SARS-CoV-2 infection. Cytokine Growth Factor Rev. 2022 68 13 24 10.1016/j.cytogfr.2022.10.003 36266222
    [Google Scholar]
  8. International drug monitoring: the role of national centres. Report of a WHO meeting. World Health Organ. Tech. Rep. Ser. 1972 498 1 25 4625548
    [Google Scholar]
  9. Chakraborty B. Pharmacovigilance: A data mining approach to signal detection. Indian J. Pharmacol. 2015 47 3 241 242 10.4103/0253‑7613.157102 26069358
    [Google Scholar]
  10. Montastruc J.L. Sommet A. Bagheri H. Lapeyre-Mestre M. Benefits and strengths of the disproportionality analysis for identification of adverse drug reactions in a pharmacovigilance database. Br. J. Clin. Pharmacol. 2011 72 6 905 908 10.1111/j.1365‑2125.2011.04037.x 21658092
    [Google Scholar]
  11. Li M. Zhang Q.S. Liu X.L. Wang H.L. Liu W. Adverse events associated with nirmatrelvir/ritonavir: A pharmacovigilance analysis based on FAERS. Pharmaceuticals 2022 15 12 1455 10.3390/ph15121455 36558906
    [Google Scholar]
  12. Wen W. Chen C. Tang J. Wang C. Zhou M. Cheng Y. Zhou X. Wu Q. Zhang X. Feng Z. Wang M. Mao Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022 54 1 516 523 10.1080/07853890.2022.2034936 35118917
    [Google Scholar]
  13. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines Bethesda (MD): National Institutes of Health (US) 2019
    [Google Scholar]
  14. Carlin A.F. Clark A.E. Chaillon A. Garretson A.F. Bray W. Porrachia M. Santos A.T. Rana T.M. Smith D.M. Virologic and immunologic characterization of coronavirus disease 2019 recrudescence after nirmatrelvir/ritonavir treatment. Clin. Infect. Dis. 2023 76 3 e530 e532 10.1093/cid/ciac496 35723411
    [Google Scholar]
  15. Boucau J. Uddin R. Marino C. Regan J. Flynn J.P. Choudhary M.C. Chen G. Stuckwisch A.M. Mathews J. Liew M.Y. Singh A. Reynolds Z. Iyer S.L. Chamberlin G.C. Vyas T.D. Vyas J.M. Turbett S.E. Li J.Z. Lemieux J.E. Barczak A.K. Siedner M.J. Characterization of virologic rebound following nirmatrelvir-ritonavir treatment for coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2023 76 3 e526 e529 10.1093/cid/ciac512 35737946
    [Google Scholar]
  16. Smith D.M. Li J.Z. Moser C. Yeh E. Currier J.S. Chew K.W. Hughes M.D. Daar E. Wohl D. Eron J. Javan A.C. Giganti M. Ritz J. Hosey L. Roa J. Patel N. Colsh K. Rwakazina I. Beck J. Seig S. Fletcher C. Fischer W. Evering T. Bender R. Cardoso S. Corado K. Jagannathan P. Jilg N. Perelson A. Pillay S. Riviere C. Singh U. Taiwo B. Gottesman J. Newell M. Pederson S. Dragavon J. Jennings C. Greenfelder B. Murtaugh W. Kosmyna J. Gapara M. Shahkolahi A. Kim P. Erhardt W. Recurrence of symptoms following a 2-day symptom free period in patients with COVID-19. JAMA Netw. Open 2022 5 10 e2238867 10.1001/jamanetworkopen.2022.38867 36301549
    [Google Scholar]
  17. Bing A. Hu Y. Prague M. Hill A.L. Li J.Z. Bosch R.J. DeGruttola V. Wang R. Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption. Stat. Commun. Infect. Dis. 2020 12 s1 20190021 10.1515/scid‑2019‑0021 34158910
    [Google Scholar]
  18. Sato T. Yamamoto T. Aoyama Y. Varicella zoster virus-associated meningitis as a rebound varicella zoster disease after antiviral discontinuation. Case Rep. Dermatol. 2021 13 1 148 153 10.1159/000512710 33790759
    [Google Scholar]
  19. Tsuchiya H. Treatments of COVID-19-associated taste and saliva secretory disorders. Dent. J. 2023 11 6 140 10.3390/dj11060140 37366663
    [Google Scholar]
  20. Zaharuddin Z. Md Hussin N.S. Karuppannan M. Evaluating nirmatrelvir-ritonavir (paxlovid®) in outpatient COVID-19 treatment: Safety, tolerability, and adherence insights from primary healthcare clinics. Res. Sq. 2024 10.21203/rs.3.rs‑3968833/v1
    [Google Scholar]
  21. Cvancara D.J. Baertsch H.C. Lehmann A.E. Humphreys I.M. Farrell N.F. Marshall T.B. Bhatt N.K. Abuzeid W.M. Jafari A. Postmarketing reporting of paxlovid-related dysgeusia: A real-world pharmacovigilance study. Otolaryngol. Head Neck Surg. 2023 169 1 55 61 10.1002/ohn.278 36821807
    [Google Scholar]
  22. Rehwaldt M. Wickham R. Purl S. Tariman J. Blendowski C. Shott S. Lappe M. Self-care strategies to cope with taste changes after chemotherapy. Oncol. Nurs. Forum 2009 36 2 E47 E56 10.1188/09.ONF.E47‑E56 19273394
    [Google Scholar]
  23. Aziz M. Perisetti A. Lee-Smith W.M. Gajendran M. Bansal P. Goyal H. Taste changes (Dysgeusia) in COVID-19: A systematic review and meta-analysis. Gastroenterology 2020 159 3 1132 1133 10.1053/j.gastro.2020.05.003 32387496
    [Google Scholar]
  24. Hovan A.J. Williams P.M. Stevenson-Moore P. Wahlin Y.B. Ohrn K.E. Elting L.S. Spijkervet F.K. Brennan M.T. Dysgeusia section, oral care study group, Multinational Association of Supportive Care in Cancer (MASCC)/International Society of Oral Oncology (ISOO). A systematic review of dysgeusia induced by cancer therapies. Support Care Cancer. 2010 18 8 1081 7 10.1007/s00520‑010‑0902‑1
    [Google Scholar]
  25. Chang C.T. Ong S.Y. Lim X.J. Chew L.S. Rajan P. Managing nirmatrelvir/ritonavir during COVID-19: pharmacists’ experiences from the Perak state of Malaysia. J. Pharm. Policy Pract. 2022 15 1 70 10.1186/s40545‑022‑00469‑1 36274169
    [Google Scholar]
  26. Bihan K. Lipszyc L. Lemaitre F. Dautriche A. Fédrizzi S. Atzenhoffer M. Vitores A. Page A. Lebrun-Vignes B. Nirmatrelvir/ritonavir (Paxlovid®): French pharmacovigilance survey 2022. Therapie 2023 78 5 531 547 10.1016/j.therap.2023.03.001 37012153
    [Google Scholar]
  27. Mali K.R. Eerike M. Raj G.M. Bisoi D. Priyadarshini R. Ravi G. Chaliserry L.F. Janti S.S. Efficacy and safety of Molnupiravir in COVID-19 patients: a systematic review. Ir. J. Med. Sci. 2023 192 4 1665 1678 10.1007/s11845‑022‑03139‑y 36087236
    [Google Scholar]
  28. De Vito A. Colpani A. Bitti A. Zauli B. Meloni M.C. Fois M. Denti L. Bacciu S. Marcia C. Maida I. Babudieri S. Madeddu G. Safety and efficacy of molnupiravir in SARS-CoV-2-infected patients: A real-life experience. J. Med. Virol. 2022 94 11 5582 5588 10.1002/jmv.28011 35855627
    [Google Scholar]
  29. Santi Laurini G. Montanaro N. Motola D. Safety profile of molnupiravir in the treatment of COVID-19: A descriptive study based on FAERS data. J. Clin. Med. 2022 12 1 34 10.3390/jcm12010034 36614834
    [Google Scholar]
  30. Bellandi T. Romani-Vidal A. Sousa P. Tanzini M. Adverse Event Investigation and Risk Assessment. Textbook of Patient Safety and Clinical Risk Management. Donaldson L. Springer 2020 129 142
    [Google Scholar]
  31. Vitiello A. La Porta R. D'Aiuto V. Ferrara F. The risks of liver injury in COVID-19 patients and pharmacological management to reduce or prevent the damage induced. Egypt Liver J. 2021 11 11 11 10.1186/s43066‑021‑00082‑y
    [Google Scholar]
  32. Aleem A. Mahadevaiah G. Shariff N. Kothadia J.P. Hepatic manifestations of COVID-19 and effect of remdesivir on liver function in patients with COVID-19 illness. Proc. Bayl. Univ. Med. Cent. 2021 34 4 473 477 10.1080/08998280.2021.1885289 34219928
    [Google Scholar]
  33. Wong G.L.H. Wong V.W.S. Thompson A. Jia J. Hou J. Lesmana C.R.A. Susilo A. Tanaka Y. Chan W.K. Gane E. Ong-Go A.K. Lim S.G. Ahn S.H. Yu M.L. Piratvisuth T. Chan H.L.Y. Management of patients with liver derangement during the COVID-19 pandemic: an Asia-Pacific position statement. Lancet Gastroenterol. Hepatol. 2020 5 8 776 787 10.1016/S2468‑1253(20)30190‑4 32585136
    [Google Scholar]
  34. Charan J. Kaur R.J. Bhardwaj P. Haque M. Sharma P. Misra S. Godman B. Rapid review of suspected adverse drug events due to remdesivir in the WHO database; findings and implications. Expert Rev. Clin. Pharmacol. 2021 14 1 95 103 10.1080/17512433.2021.1856655 33252992
    [Google Scholar]
  35. Lavertu A. Vora B. Giacomini K.M. Altman R. Rensi S. A new era in pharmacovigilance: Toward real-world data and digital monitoring. Clin. Pharmacol. Ther. 2021 109 5 1197 1202 10.1002/cpt.2172 33492663
    [Google Scholar]
/content/journals/cds/10.2174/0115748863334598241203073907
Loading
/content/journals/cds/10.2174/0115748863334598241203073907
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: FAERS ; COVID-19 ; molnupiravir ; remdesivir ; paxlovid ; adverse drug reaction ; Nirmatrelvir/ritonavir
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test