Skip to content
2000
image of Deciphering the Interlinked CXCR4-Mediated Feedback Loop Among Signaling Pathways in Diabetic Wound Healing

Abstract

Diabetic chronic wounds and amputations are very serious complications of diabetes mellitus (DM) that result from an integration factor, including oxygen deprivation, elevated reactive oxygen species (ROS), reduced angiogenesis, and microbial invasion. These causative factors lead to tenacious wounds in an inflammatory state, which eventually results in tissue aging and necrosis. Wound healing in DM potentially targets C-X-C chemokine receptor type 4 (CXCR4) regulates several signalling pathways. The CXCR4 signalling pathway integrated with phospholipase C (PLC)/protein kinase-C (PKC) Ca2+ pathways, stromal cell-derived factor-1 (SDF-1), and mitogen-activated protein kinases (MAPKs) pathway for enhancing cell chemotaxis, proliferation, and survival. The dysregulated CXCR4 pathway is connected with poor wound healing in DM patients. Therapeutic strategies targeting CXCR4-based molecules such as UCUF-728, UCUF-965, and AMD3100 have been shown to enhance diabetic wound healing by altering miRNA expression, promoting angiogenesis, and accelerating wound closure. This study indicates that CXCR4 participation in various signalling pathways makes it essential for Understanding the healing of diabetic wounds. Using specific compounds to target CXCR4 offers a potentially effective treatment strategy to improve wound healing in diabetes. Our understanding of CXCR4 signalling and its regulation processes will enable us to develop more potent wound care solutions for diabetic chronic wounds. This report concludes that CXCR4's potential therapeutic targeting shows improvements in diabetic wound repair. This review will demonstrate that CXCR4 plays a major role in wound healing through its various signalling pathways. Targeting CXCR4 with certain agonist molecules shows a therapeutic approach to potentially increasing wound healing in diabetes. By enhancing our understanding of the CXCR4 signalling mechanism in future studies, we can develop more potential treatments for chronic diabetic wounds.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998335873241012161428
2024-11-29
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cdr/10.2174/0115733998335873241012161428/BMS-CDR-2024-HT14-5823-6.html?itemId=/content/journals/cdr/10.2174/0115733998335873241012161428&mimeType=html&fmt=ahah

References

  1. Burgess J.L. Wyant W.A. Abdo Abujamra B. Kirsner R.S. Jozic I. Diabetic wound-healing science. Medicina (Kaunas) 2021 57 10 1072 10.3390/medicina57101072 34684109
    [Google Scholar]
  2. Edmonds M. Manu C. Vas P. The current burden of diabetic foot disease. J. Clin. Orthop. Trauma 2021 17 88 93 10.1016/j.jcot.2021.01.017 33680841
    [Google Scholar]
  3. Kavitha K.V. Patil V.S. Sanjeevi C.B. Unnikrishnan A.G. New concepts in the management of charcot neuroarthropathy in diabetes. Diabetes: From Research to Clinical Practice Springer Cham Islam M.S. 2020 391 415 10.1007/5584_2020_498
    [Google Scholar]
  4. Miyan Z. Boulton A.J.M. Pedrosa H.C. Chapter 12 - Diabetic foot. BIDE' s Diabetes Desk Book 2024 Elsevier 249 282 10.1016/B978‑0‑443‑22106‑4.00026‑7
    [Google Scholar]
  5. Lim J.Z.M. Ng N.S.L. Thomas C. Prevention and treatment of diabetic foot ulcers. J. R. Soc. Med. 2017 110 3 104 109 10.1177/0141076816688346 28116957
    [Google Scholar]
  6. Jeyaraman K. Diabetic-foot complications in American and Australian continents. Diabetic Foot Ulcer. Zubair M. Ahmad J. Malik A. Talluri M.R. Singapore Springer 2021 41 59 10.1007/978‑981‑15‑7639‑3_3
    [Google Scholar]
  7. Lo Z.J. Surendra N.K. Saxena A. Car J. Clinical and economic burden of diabetic foot ulcers: A 5-year longitudinal multi-ethnic cohort study from the tropics. Int. Wound J. 2021 18 3 375 386 10.1111/iwj.13540 33497545
    [Google Scholar]
  8. Manu C. Lacopi E. Bouillet B. Vouillarmet J. Ahluwalia R. Lüdemann C. Garcia-Klepzig J.L. Meloni M. De Buruaga V.R.S. Sánchez-Ríos J.P. Edmonds M. Apelqvist J. Lázaro-Martínez J.L. Van Acker K. Delayed referral of patients with diabetic foot ulcers across Europe: Patterns between primary care and specialised units. J. Wound Care 2018 27 3 186 192 10.12968/jowc.2018.27.3.186 29509115
    [Google Scholar]
  9. Zhang P. Lu J. Jing Y. Tang S. Zhu D. Bi Y. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis. Ann. Med. 2017 49 2 106 116 10.1080/07853890.2016.1231932 27585063
    [Google Scholar]
  10. Tayeb KA. Bateman SD. Hampton S. Malone M. Malone M. Fletcher J. Managing infection: A holistic approach. J. Wound Care 2015 24 5 Suppl 2 20 30 10.12968/jowc.2015.24.Sup5b.20
    [Google Scholar]
  11. Kwon K.T. Armstrong D.G. Microbiology and antimicrobial therapy for diabetic foot infections. Infect. Chemother. 2018 50 1 11 20 10.3947/ic.2018.50.1.11 29637748
    [Google Scholar]
  12. Dhar Y. Han Y. Current developments in biofilm treatments: Wound and implant infections. Engineered Regeneration 2020 1 64 75 10.1016/j.engreg.2020.07.003
    [Google Scholar]
  13. Wang A. Lv G. Cheng X. Ma X. Wang W. Gui J. Hu J. Lu M. Chu G. Chen J. Zhang H. Jiang Y. Chen Y. Yang W. Jiang L. Geng H. Zheng R. Li Y. Feng W. Johnson B. Wang W. Zhu D. Hu Y. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition). Burns Trauma 2020 8 tkaa017 10.1093/burnst/tkaa017 32685563
    [Google Scholar]
  14. Muhammad Ibrahim A. Diabetic foot ulcer: Synopsis of the epidemiology and pathophysiology. Int. J. Diabetes Endocrinol. 2018 3 2 23 10.11648/j.ijde.20180302.11
    [Google Scholar]
  15. Beyaz S. Güler Ü.Ö. Bağır G.Ş. Factors affecting lifespan following below-knee amputation in diabetic patients. Acta Orthop. Traumatol. Turc. 2017 51 5 393 397 10.1016/j.aott.2017.07.001 28865844
    [Google Scholar]
  16. Zhao R. Liang H. Clarke E. Jackson C. Xue M. Inflammation in chronic wounds. Int. J. Mol. Sci. 2016 17 12 2085 10.3390/ijms17122085 27973441
    [Google Scholar]
  17. Dixon D. Edmonds M. Managing diabetic foot ulcers: Pharmacotherapy for wound healing. Drugs 2021 81 1 29 56 10.1007/s40265‑020‑01415‑8 33382445
    [Google Scholar]
  18. Bernabé-García Á. Armero-Barranco D. Liarte S. Ruzafa-Martínez M. Ramos-Morcillo A.J. Nicolás F.J. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation. PLoS One 2017 12 2 e0172574 10.1371/journal.pone.0172574
    [Google Scholar]
  19. Yang F. Bai X. Dai X. Li Y. The biological processes during wound healing. Regen. Med. 2021 16 4 373 390 10.2217/rme‑2020‑0066 33787319
    [Google Scholar]
  20. Miller R.J. Banisadr G. Bhattacharyya B.J. CXCR4 signaling in the regulation of stem cell migration and development. J. Neuroimmunol. 2008 198 1-2 31 38 10.1016/j.jneuroim.2008.04.008 18508132
    [Google Scholar]
  21. Chen H. Li G. Liu Y. Ji S. Li Y. Xiang J. Zhou L. Gao H. Zhang W. Sun X. Fu X. Li B. Pleiotropic Roles of CXCR4 in Wound Repair and Regeneration. Front. Immunol. 2021 12 668758 10.3389/fimmu.2021.668758 34122427
    [Google Scholar]
  22. Liu Z. Dumville J.C. Hinchliffe R.J. Cullum N. Game F. Stubbs N. Negative pressure wound therapy for treating foot wounds in people with diabetes mellitus. Cochrane Database Syst. Rev. 2018 10 CD010318 10 10.1002/14651858.CD010318.pub3 30328611
    [Google Scholar]
  23. Ji S. Liu X. Huang J. Bao J. Chen Z. Han C. Hao D. Hong J. Hu D. Jiang Y. Ju S. Li H. Li Z. Liang G. Liu Y. Luo G. Lv G. Ran X. Shi Z. Tang J. Wang A. Wang G. Wang J. Wang X. Wen B. Wu J. Xu H. Xu M. Ye X. Yuan L. Zhang Y. Xiao S. Xia Z. Consensus on the application of negative pressure wound therapy of diabetic foot wounds. Burns Trauma 2021 9 tkab018 10.1093/burnst/tkab018 34212064
    [Google Scholar]
  24. Wang G. Sweren E. Liu H. Wier E. Alphonse M.P. Chen R. Islam N. Li A. Xue Y. Chen J. Park S. Chen Y. Lee S. Wang Y. Wang S. Archer N.K. Andrews W. Kane M.A. Dare E. Reddy S.K. Hu Z. Grice E.A. Miller L.S. Garza L.A. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe 2021 29 5 777 791.e6 10.1016/j.chom.2021.03.003 33798492
    [Google Scholar]
  25. Di Domizio J. Belkhodja C. Chenuet P. Fries A. Murray T. Mondéjar P.M. Demaria O. Conrad C. Homey B. Werner S. Speiser D.E. Ryffel B. Gilliet M. The commensal skin microbiota triggers type I IFN–dependent innate repair responses in injured skin. Nat. Immunol. 2020 21 9 1034 1045 10.1038/s41590‑020‑0721‑6 32661363
    [Google Scholar]
  26. Levenson S.M. Kan-Gruber D. Gruber C. Molnar J. Seifter E. Wound healing accelerated by Staphylococcus aureus. Arch. Surg. 1983 118 3 310 320 10.1001/archsurg.1983.01390030042007 6824431
    [Google Scholar]
  27. Campos L.F. Tagliari E. Casagrande T.A.C. Noronha L. Campos A.C.L. Matias J.E.F. Effects of probiotics supplementation on skin wound healing in diabetic rats. Arq. Bras. Cir. Dig. 2020 33 1 e1498 10.1590/0102‑672020190001e1498 32667528
    [Google Scholar]
  28. Wu N. Sun H. Zhao X. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature 2021 592 7855 606 610 10.1038/s41586‑021‑03283‑y 33658717
    [Google Scholar]
  29. Seok J. Warren H.S. Cuenca A.G. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 2013 110 9 3507 3512 10.1073/pnas.1222878110 23401516
    [Google Scholar]
  30. Falanga V. Isseroff R.R. Soulika A.M. Romanelli M. Margolis D. Kapp S. Granick M. Harding K. Chronic wounds. Nat. Rev. Dis. Primers 2022 8 1 50 10.1038/s41572‑022‑00377‑3 35864102
    [Google Scholar]
  31. Sang Y. Blecha F. Porcine host defense peptides: Expanding repertoire and functions. Dev. Comp. Immunol. 2009 33 3 334 343 10.1016/j.dci.2008.05.006 18579204
    [Google Scholar]
  32. Brandenburg K. Heinbockel L. Correa W. Lohner K. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis. Biochim. Biophys. Acta Biomembr. 2016 1858 5 971 979 10.1016/j.bbamem.2016.01.011 26801369
    [Google Scholar]
  33. Nakagawa S. Matsumoto M. Katayama Y. Oguma R. Wakabayashi S. Nygaard T. Saijo S. Inohara N. Otto M. Matsue H. Núñez G. Nakamura Y. Staphylococcus aureus Virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe 2017 22 5 667 677.e5 10.1016/j.chom.2017.10.008 29120744
    [Google Scholar]
  34. Williams H. Crompton R.A. Thomason H.A. Campbell L. Singh G. McBain A.J. Cruickshank S.M. Hardman M.J. Cutaneous Nod2 expression regulates the skin microbiome and wound healing in a murine model. J. Invest. Dermatol. 2017 137 11 2427 2436 10.1016/j.jid.2017.05.029 28647345
    [Google Scholar]
  35. Mei F. Liu J. Wu J. Duan Z. Chen M. Meng K. Chen S. Shen X. Xia G. Zhao M. Collagen peptides isolated from Salmo salar and Tilapia nilotica skin accelerate wound healing by altering cutaneous microbiome colonization via upregulated NOD2 and BD14. J. Agric. Food Chem. 2020 68 6 1621 1633 10.1021/acs.jafc.9b08002 31967468
    [Google Scholar]
  36. Chatterjee S. Behnam Azad B. Nimmagadda S. The intricate role of CXCR4 in cancer. Adv. Cancer Res. 2014 124 31 82 10.1016/B978‑0‑12‑411638‑2.00002‑1 25287686
    [Google Scholar]
  37. Bianchi M.E. Mezzapelle R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front. Immunol. 2020 11 2109 10.3389/fimmu.2020.02109 32983169
    [Google Scholar]
  38. Chen P. Cai X. Yang Y. Chen Z. Qiu J. Yu N. Tang M. Wang Q. Ge J. Yu K. Zhuang J. Nuclear respiratory factor-1 (NRF-1) regulates transcription of the CXC receptor 4 (CXCR4) in the rat retina. Invest. Ophthalmol. Vis. Sci. 2017 58 11 4662 4669 10.1167/iovs.17‑22115 28903152
    [Google Scholar]
  39. Katoh M. Katoh M. Integrative genomic analyses of CXCR4: Transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. Int. J. Oncol. 2010 36 2 415 420 20043076
    [Google Scholar]
  40. Wang S. Gao S. Li Y. Qian X. Luan J. Lv X. Emerging importance of chemokine receptor CXCR4 and its ligand in liver disease. Front. Cell Dev. Biol. 2021 9 716842 10.3389/fcell.2021.716842 34386499
    [Google Scholar]
  41. Busillo J.M. Armando S. Sengupta R. Meucci O. Bouvier M. Benovic J.L. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J. Biol. Chem. 2010 285 10 7805 7817 10.1074/jbc.M109.091173 20048153
    [Google Scholar]
  42. Cioce A. Cavani A. Cattani C. Scopelliti F. Role of the skin immune system in wound healing. Cells 2024 13 7 624 10.3390/cells13070624 38607063
    [Google Scholar]
  43. Busillo J.M. Benovic J.L. Regulation of CXCR4 signaling. Biochim. Biophys. Acta Biomembr. 2007 1768 4 952 963 10.1016/j.bbamem.2006.11.002 17169327
    [Google Scholar]
  44. Ludeman J.P. Stone M.J. The structural role of receptor tyrosine sulfation in chemokine recognition. Br. J. Pharmacol. 2014 171 5 1167 1179 10.1111/bph.12455 24116930
    [Google Scholar]
  45. García-Cuesta E.M. Martínez P. Selvaraju K. Gómez Pozo A.M. D’Agostino G. Gardeta S. Allosteric modulation of the CXCR4:CXCL12 axis by targeting receptor nanoclustering via the TMV-TMVI domain Internet 2024
  46. Tamamis P. Floudas C.A. Elucidating a key component of cancer metastasis: CXCL12 (SDF-1α) binding to CXCR4. J. Chem. Inf. Model. 2014 54 4 1174 1188 10.1021/ci500069y 24660779
    [Google Scholar]
  47. Shi Y. Riese D.J. Shen J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front. Pharmacol. 2020 11 574667 10.3389/fphar.2020.574667 33363463
    [Google Scholar]
  48. Mangmool S. Kurose H. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX). Toxins (Basel) 2011 3 7 884 899 10.3390/toxins3070884 22069745
    [Google Scholar]
  49. Lake D. Corrêa S.A.L. Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 2016 73 23 4397 4413 10.1007/s00018‑016‑2297‑8 27342992
    [Google Scholar]
  50. Bunda S. Heir P. Srikumar T. Cook J.D. Burrell K. Kano Y. Lee J.E. Zadeh G. Raught B. Ohh M. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Proc. Natl. Acad. Sci. USA 2014 111 36 E3785 E3794 10.1073/pnas.1406559111 25157176
    [Google Scholar]
  51. Dillon M. Lopez A. Lin E. Sales D. Perets R. Jain P. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers. Cancers (Basel) 2021 13 20 5059 10.3390/cancers13205059 34680208
    [Google Scholar]
  52. Kankanamge D. Ubeysinghe S. Tennakoon M. Pantula P.D. Mitra K. Giri L. Karunarathne A. Dissociation of the G protein βγ from the Gq–PLCβ complex partially attenuates PIP2 hydrolysis. J. Biol. Chem. 2021 296 100702 10.1016/j.jbc.2021.100702 33901492
    [Google Scholar]
  53. Kim M.J. Kim E. Ryu S.H. Suh P.G. The mechanism of phospholipase C-γ1 regulation. Exp. Mol. Med. 2000 32 3 101 109 10.1038/emm.2000.18 11048639
    [Google Scholar]
  54. Neves M. Perpiñá-Viciano C. Penela P. Hoffmann C. Mayor F. Modulation of CXCR4-mediated Gi1 activation by EGF receptor and GRK2. ACS Pharmacol. Transl. Sci. 2020 3 4 627 634 10.1021/acsptsci.0c00021 33073183
    [Google Scholar]
  55. Zhuo Y. Crecelius J.M. Marchese A. G protein–coupled receptor kinase phosphorylation of distal C-tail sites specifies βarrestin1-mediated signaling by chemokine receptor CXCR4. J. Biol. Chem. 2022 298 9 102351 10.1016/j.jbc.2022.102351 35940305
    [Google Scholar]
  56. Jean-Charles P.Y. Kaur S. Shenoy S.K. G protein–coupled receptor signaling through β-arrestin–dependent mechanisms. J. Cardiovasc. Pharmacol. 2017 70 3 142 158 10.1097/FJC.0000000000000482 28328745
    [Google Scholar]
  57. Abdelouahab H. Zhang Y. Wittner M. Oishi S. Fujii N. Besancenot R. Plo I. Ribrag V. Solary E. Vainchenker W. Barosi G. Louache F. CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner. Oncotarget 2017 8 33 54082 54095 10.18632/oncotarget.10789 28903325
    [Google Scholar]
  58. Qin H. Zhao X. Hu Y.J. Wang S. Ma Y. He S. Shen K. Wan H. Cui Z. Yu B. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis. BioMed Res. Int. 2021 2021 1 13 10.1155/2021/8852574 34136574
    [Google Scholar]
  59. Yellowley C.E. Toupadakis C.A. Vapniarsky N. Wong A. Circulating progenitor cells and the expression of Cxcl12, Cxcr4 and angiopoietin-like 4 during wound healing in the murine ear. PLoS One 2019 14 9 e0222462 10.1371/journal.pone.0222462 31513647
    [Google Scholar]
  60. Ridiandries A. Tan J.T.M. Bursill C.A. The role of chemokines in wound healing. Int. J. Mol. Sci. 2018 19 10 3217 10.3390/ijms19103217 30340330
    [Google Scholar]
  61. Landén N.X. Li D. Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 2016 73 20 3861 3885 10.1007/s00018‑016‑2268‑0 27180275
    [Google Scholar]
  62. Sun Z. Li X. Zheng X. Cao P. Yu B. Wang W. Stromal cell-derived factor-1/CXC chemokine receptor 4 axis in injury repair and renal transplantation. J. Int. Med. Res. 2019 47 11 5426 5440 10.1177/0300060519876138 31581874
    [Google Scholar]
  63. Yang D. Sun S. Wang Z. Zhu P. Yang Z. Zhang B. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas. Cell. Reprogram. 2013 15 3 206 215 10.1089/cell.2012.0046 23713431
    [Google Scholar]
  64. Guo R. Chai L. Chen L. Chen W. Ge L. Li X. Li H. Li S. Cao C. Stromal cell-derived factor 1 (SDF-1) accelerated skin wound healing by promoting the migration and proliferation of epidermal stem cells. In Vitro Cell. Dev. Biol. Anim. 2015 51 6 578 585 10.1007/s11626‑014‑9862‑y 25636237
    [Google Scholar]
  65. Wei J.N. Cai F. Wang F. Wu X.T. Liu L. Hong X. Tang W.H. Transplantation of CXCR4 overexpressed mesenchymal stem cells augments regeneration in degenerated intervertebral discs. DNA Cell Biol. 2016 35 5 241 248 10.1089/dna.2015.3118 26788981
    [Google Scholar]
  66. Bus S.A. Priorities in offloading the diabetic foot. Diabetes Metab. Res. Rev. 2012 28 Suppl 1 54 59 10.1002/dmrr.2240 22271724
    [Google Scholar]
  67. Boulton A.J.M. Kirsner R.S. Vileikyte L. Clinical practice. Neuropathic diabetic foot ulcers. N. Engl. J. Med. 2004 351 1 48 55 10.1056/NEJMcp032966 15229307
    [Google Scholar]
  68. Palmer A.K. Tchkonia T. LeBrasseur N.K. Chini E.N. Xu M. Kirkland J.L. Cellular senescence in type 2 diabetes: A therapeutic opportunity. Diabetes 2015 64 7 2289 2298 10.2337/db14‑1820 26106186
    [Google Scholar]
  69. Rosso A. Balsamo A. Gambino R. Dentelli P. Falcioni R. Cassader M. Pegoraro L. Pagano G. Brizzi M.F. p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J. Biol. Chem. 2006 281 7 4339 4347 10.1074/jbc.M509293200 16339764
    [Google Scholar]
  70. Prattichizzo F. De Nigris V. La Sala L. Procopio A.D. Olivieri F. Ceriello A. 2016 "Inflammaging" as a druggable target: A senescence-associated secretory phenotype-centered view of type 2 diabetes. Oxid. Med. Cell Longev. 2016 1810327 10.1155/2016/1810327 27340505
    [Google Scholar]
  71. Pinti M.V. Fink G.K. Hathaway Q.A. Durr A.J. Kunovac A. Hollander J.M. Mitochondrial dysfunction in type 2 diabetes mellitus: An organ-based analysis. Am. J. Physiol. Endocrinol. Metab. 2019 316 2 E268 E285 10.1152/ajpendo.00314.2018 30601700
    [Google Scholar]
  72. Sahin E. Colla S. Liesa M. Moslehi J. Müller F.L. Guo M. Cooper M. Kotton D. Fabian A.J. Walkey C. Maser R.S. Tonon G. Foerster F. Xiong R. Wang Y.A. Shukla S.A. Jaskelioff M. Martin E.S. Heffernan T.P. Protopopov A. Ivanova E. Mahoney J.E. Kost-Alimova M. Perry S.R. Bronson R. Liao R. Mulligan R. Shirihai O.S. Chin L. DePinho R.A. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011 470 7334 359 365 10.1038/nature09787 21307849
    [Google Scholar]
  73. Rius-Pérez S. Torres-Cuevas I. Millán I. Ortega Á.L. Pérez S. PGC-1 α, inflammation, and oxidative stress: An integrative view in metabolism. Oxid. Med. Cell. Longev. 2020 2020 1 20 10.1155/2020/1452696 32215168
    [Google Scholar]
  74. Muñoz-Espín D. Serrano M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014 15 7 482 496 10.1038/nrm3823 24954210
    [Google Scholar]
  75. Maksimova N.V. Michenko A.V. Krasilnikova O.A. Klabukov I.D. Gadaev I.Y. Krasheninnikov M.E. Belkov P.A. Lyundup A.V. Mesenchymal stromal cell therapy alone does not lead to complete restoration of skin parameters in diabetic foot patients within a 3-year follow-up period. Bioimpacts 2022 12 1 51 55 35087716
    [Google Scholar]
  76. Qian D. Gong J. He Z. Hua J. Lin S. Xu C. Meng H. Song Z. Bone marrow-derived mesenchymal stem cells repair necrotic pancreatic tissue and promote angiogenesis by secreting cellular growth factors involved in the SDF-1α /CXCR4 axis in rats. Stem Cells Int. 2015 2015 1 20 10.1155/2015/306836 25810724
    [Google Scholar]
  77. Wang X. Khalil R.A. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol. 2018 81 241 330 10.1016/bs.apha.2017.08.002 29310800
    [Google Scholar]
  78. Sun X. Cheng G. Hao M. Zheng J. Zhou X. Zhang J. Taichman R.S. Pienta K.J. Wang J. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010 29 4 709 722 10.1007/s10555‑010‑9256‑x 20839032
    [Google Scholar]
  79. Cheng X. Wang H. Zhang X. Zhao S. Zhou Z. Mu X. Zhao C. Teng W. The role of SDF-1/CXCR4/CXCR7 in neuronal regeneration after cerebral ischemia. Front. Neurosci. 2017 11 590 10.3389/fnins.2017.00590 29123467
    [Google Scholar]
  80. Wilkinson H.N. Hardman M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020 10 9 200223 10.1098/rsob.200223 32993416
    [Google Scholar]
  81. Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. Li Y. Wang X. Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  82. Bidkhori H.R. Bahrami A.R. Farshchian M. Heirani-tabasi A. Mirahmadi M. Hasanzadeh H. Ahmadiankia N. Faridhosseini R. Dastpak M. Shabgah A.G. Matin M.M. Mesenchymal stem/stromal cells overexpressing CXCR4 R334X revealed enhanced migration: A lesson learned from the pathogenesis of WHIM syndrome. Cell Transplant. 2021 30 10.1177/09636897211054498 34807749
    [Google Scholar]
  83. De Filippo K. Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur. J. Clin. Invest. 2018 48 Suppl 2 Suppl Suppl 2 e12949 29734477 10.1111/eci.12949
    [Google Scholar]
  84. Rawat K. Syeda S. Shrivastava A. Neutrophil-derived granule cargoes: Paving the way for tumor growth and progression. Cancer Metastasis Rev. 2021 40 1 221 244 10.1007/s10555‑020‑09951‑1 33438104
    [Google Scholar]
  85. Li H. Wu M. Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm 2022 3 2 e147 10.1002/mco2.147 35702353
    [Google Scholar]
  86. Larouche J. Sheoran S. Maruyama K. Martino M.M. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv. Wound Care (New Rochelle) 2018 7 7 209 231 10.1089/wound.2017.0761 29984112
    [Google Scholar]
  87. Nishimura Y. Ii M. Qin G. Hamada H. Asai J. Takenaka H. Sekiguchi H. Renault M.A. Jujo K. Katoh N. Kishimoto S. Ito A. Kamide C. Kenny J. Millay M. Misener S. Thorne T. Losordo D.W. CXCR4 antagonist AMD3100 accelerates impaired wound healing in diabetic mice. J. Invest. Dermatol. 2012 132 3 711 720 10.1038/jid.2011.356 22048734
    [Google Scholar]
  88. Pang K. Wang W. Qin J.X. Shi Z.D. Hao L. Ma Y.Y. Xu H. Wu Z.X. Pan D. Chen Z.S. Han C.H. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm 2022 3 4 e175 10.1002/mco2.175 36349142
    [Google Scholar]
  89. Bhattacharjee B. Syeda A.F. Rynjah D. Hussain S.M. Chandra Bora S. Pegu P. Sahu R.K. Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front. Pharmacol. 2023 14 1174330 10.3389/fphar.2023.1174330 37205904
    [Google Scholar]
  90. Huang X. Liu G. Guo J. Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018 14 11 1483 1496 10.7150/ijbs.27173 30263000
    [Google Scholar]
  91. Bhatti J.S. Sehrawat A. Mishra J. Sidhu I.S. Navik U. Khullar N. Kumar S. Bhatti G.K. Reddy P.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022 184 114 134 10.1016/j.freeradbiomed.2022.03.019 35398495
    [Google Scholar]
  92. Hegazi S. Aly R. Mesilhy R. Aljohary H. Diabetic foot ulcer wound healing and tissue regeneration: Signaling pathways and mechanisms. Diabetic Foot Ulcers - Pathogenesis, Innovative Treatments and AI Applications IntechOpen Chowdhury MEH. Zughaier SM. Hasan A. Alfkey R. 2024 10.5772/intechopen.1004267
    [Google Scholar]
  93. Abate M. Citro M. Pisanti S. Caputo M. Martinelli R. Keratinocytes migration promotion, proliferation induction, and free radical injury prevention by 3-hydroxytirosol. Int. J. Mol. Sci. 2021 22 5 2438 10.3390/ijms22052438 33670966
    [Google Scholar]
  94. He Y. Sun M.M. Zhang G.G. Yang J. Chen K.S. Xu W.W. Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 425 10.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  95. Jere S.W. Houreld N.N. Abrahamse H. Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine Growth Factor Rev. 2019 50 52 59 10.1016/j.cytogfr.2019.03.001 30890300
    [Google Scholar]
  96. Deng S. Leong H.C. Datta A. Gopal V. Kumar A.P. Yap C.T. PI3K/AKT signaling tips the balance of cytoskeletal forces for cancer progression. Cancers (Basel) 2022 14 7 1652 10.3390/cancers14071652 35406424
    [Google Scholar]
  97. Tóthová Z. Šemeláková M. Solárová Z. Tomc J. Debeljak N. Solár P. The role of PI3K/AKT and MAPK signaling pathways in erythropoietin signalization. Int. J. Mol. Sci. 2021 22 14 7682 10.3390/ijms22147682 34299300
    [Google Scholar]
  98. Cargnello M. Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011 75 1 50 83 10.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  99. Piipponen M. Li D. Landén N.X. The immune functions of keratinocytes in skin wound healing. Int. J. Mol. Sci. 2020 21 22 8790 10.3390/ijms21228790 33233704
    [Google Scholar]
  100. Zulkefli N. Che Zahari C.N.M. Sayuti N.H. Kamarudin A.A. Saad N. Hamezah H.S. Bunawan H. Baharum S.N. Mediani A. Ahmed Q.U. Ismail A.F.H. Sarian M.N. Flavonoids as potential wound-healing molecules: Emphasis on pathways perspective. Int. J. Mol. Sci. 2023 24 5 4607 10.3390/ijms24054607 36902038
    [Google Scholar]
  101. Hosseini Mansoub N. The role of keratinocyte function on the defected diabetic wound healing. Int. J. Burns Trauma 2021 11 6 430 441 35111377
    [Google Scholar]
  102. Molnar V. Matišić V. Kodvanj I. Bjelica R. Jeleč Ž. Hudetz D. Rod E. Čukelj F. Vrdoljak T. Vidović D. Starešinić M. Sabalić S. Dobričić B. Petrović T. Antičević D. Borić I. Košir R. Zmrzljak U.P. Primorac D. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int. J. Mol. Sci. 2021 22 17 9208 10.3390/ijms22179208 34502117
    [Google Scholar]
  103. Worsley A.L. Lui D.H. Ntow-Boahene W. Song W. Good L. Tsui J. The importance of inflammation control for the treatment of chronic diabetic wounds. Int. Wound J. 2023 20 6 2346 2359 10.1111/iwj.14048 36564054
    [Google Scholar]
  104. Jiao Y.R. Chen K.X. Tang X. Tang Y.L. Yang H.L. Yin Y.L. Li C.J. Exosomes derived from mesenchymal stem cells in diabetes and diabetic complications. Cell Death Dis. 2024 15 4 271 10.1038/s41419‑024‑06659‑w 38632264
    [Google Scholar]
  105. Chen J. Chen J. Cheng Y. Fu Y. Zhao H. Tang M. Zhao H. Lin N. Shi X. Lei Y. Wang S. Huang L. Wu W. Tan J. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res. Ther. 2020 11 1 97 10.1186/s13287‑020‑01610‑0 32127037
    [Google Scholar]
  106. Shen J. Zhao X. Zhong Y. Yang P. Gao P. Wu X. Wang X. An W. Exosomal ncRNAs: The pivotal players in diabetic wound healing. Front. Immunol. 2022 13 1005307 10.3389/fimmu.2022.1005307 36420273
    [Google Scholar]
  107. Qiang L. Yang S. Cui Y.H. He Y.Y. Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing. Autophagy 2021 17 9 2128 2143 10.1080/15548627.2020.1816342 32866426
    [Google Scholar]
  108. Deng Z. Fan T. Xiao C. Tian H. Zheng Y. Li C. He J. TGF-β signaling in health, disease and therapeutics. Signal Transduct. Target. Ther. 2024 9 1 61 10.1038/s41392‑024‑01764‑w 38514615
    [Google Scholar]
  109. Noh H. King G.L. The role of protein kinase C activation in diabetic nephropathy. Kidney Int. 2007 72 106 S49 S53 10.1038/sj.ki.5002386 17653211
    [Google Scholar]
  110. Rask-Madsen C. King G.L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab. 2013 17 1 20 33 10.1016/j.cmet.2012.11.012 23312281
    [Google Scholar]
  111. Krycer J.R. Quek L.E. Francis D. Zadoorian A. Weiss F.C. Cooke K.C. Nelson M.E. Diaz-Vegas A. Humphrey S.J. Scalzo R. Hirayama A. Ikeda S. Shoji F. Suzuki K. Huynh K. Giles C. Varney B. Nagarajan S.R. Hoy A.J. Soga T. Meikle P.J. Cooney G.J. Fazakerley D.J. James D.E. Insulin signaling requires glucose to promote lipid anabolism in adipocytes. J. Biol. Chem. 2020 295 38 13250 13266 10.1074/jbc.RA120.014907 32723868
    [Google Scholar]
  112. Yu J. Loh K. Song Z. Yang H. Zhang Y. Lin S. Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr. Diabetes 2018 8 1 34 10.1038/s41387‑018‑0045‑x 29799006
    [Google Scholar]
  113. Shetty S. Kumari S. Fatty acids and their role in type-2 diabetes (Review). Exp. Ther. Med. 2021 22 1 706 10.3892/etm.2021.10138 34007315
    [Google Scholar]
  114. Xue C. Chen K. Gao Z. Bao T. Dong L. Zhao L. Tong X. Li X. Common mechanisms underlying diabetic vascular complications: Focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun. Signal. 2023 21 1 298 10.1186/s12964‑022‑01016‑w 37904236
    [Google Scholar]
  115. Gumede D.B. Abrahamse H. Houreld N.N. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun. Signal. 2024 22 1 244 10.1186/s12964‑024‑01623‑9 38671406
    [Google Scholar]
  116. Zhang H. Nie X. Shi X. Zhao J. Chen Y. Yao Q. Sun C. Yang J. Regulatory mechanisms of the Wnt/β-catenin pathway in diabetic cutaneous ulcers. Front. Pharmacol. 2018 9 1114 10.3389/fphar.2018.01114 30386236
    [Google Scholar]
  117. Bonnici L. Suleiman S. Schembri-Wismayer P. Cassar A. Targeting signalling pathways in chronic wound healing. Int. J. Mol. Sci. 2023 25 1 50 10.3390/ijms25010050 38203220
    [Google Scholar]
  118. Wang X. Li R. Zhao H. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomed. Pharmacother. 2024 170 116035 10.1016/j.biopha.2023.116035 38113622
    [Google Scholar]
  119. Mieczkowski M. Mrozikiewicz-Rakowska B. Kowara M. Kleibert M. Czupryniak L. The problem of wound healing in diabetes — From molecular pathways to the design of an animal model. Int. J. Mol. Sci. 2022 23 14 7930 10.3390/ijms23147930 35887276
    [Google Scholar]
  120. Feldman E.L. Callaghan B.C. Pop-Busui R. Zochodne D.W. Wright D.E. Bennett D.L. Bril V. Russell J.W. Viswanathan V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019 5 1 41 10.1038/s41572‑019‑0092‑1 31197183
    [Google Scholar]
  121. Riwaldt S. Corydon T.J. Pantalone D. Sahana J. Wise P. Wehland M. Krüger M. Melnik D. Kopp S. Infanger M. Grimm D. Role of apoptosis in wound healing and apoptosis alterations in microgravity. Front. Bioeng. Biotechnol. 2021 9 679650 10.3389/fbioe.2021.679650 34222218
    [Google Scholar]
  122. Yi J. Gao Z.F. MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4. Int. J. Biol. Macromol. 2019 130 1 9 10.1016/j.ijbiomac.2019.02.003 30716366
    [Google Scholar]
  123. Wang W. Zhang Y. Liu W. Xiao H. Zhang Q. Wang J. Luo B. LMP1–miR-146a–CXCR4 axis regulates cell proliferation, apoptosis and metastasis. Virus Res. 2019 270 197654 10.1016/j.virusres.2019.197654 31299195
    [Google Scholar]
  124. Hu X. li J. Fu M. Zhao X. Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021 6 1 402 10.1038/s41392‑021‑00791‑1 34824210
    [Google Scholar]
  125. Haque N. Fareez I.M. Fong L.F. Mandal C. Kasim N.H.A. Kacharaju K.R. Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J. Stem Cells 2020 12 9 938 951 10.4252/wjsc.v12.i9.938 33033556
    [Google Scholar]
  126. Ling L. Hou J. Liu D. Tang D. Zhang Y. Zeng Q. Pan H. Fan L. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI). Stem Cell Res. Ther. 2022 13 1 79 10.1186/s13287‑022‑02759‑6 35197118
    [Google Scholar]
  127. Huynh C. Dingemanse J. Meyer zu Schwabedissen H.E. Sidharta P.N. Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol. Res. 2020 161 105092 10.1016/j.phrs.2020.105092 32758634
    [Google Scholar]
  128. Xu Z. Sun J. Tong Q. Lin Q. Qian L. Park Y. Zheng Y. The role of ERK1/2 in the development of diabetic cardiomyopathy. Int. J. Mol. Sci. 2016 17 12 2001 10.3390/ijms17122001 27941647
    [Google Scholar]
  129. Jeong Y.M. Cheng X.W. Lee S. Lee K.H. Cho H. Kang J.H. Kim W. Preconditioning with far-infrared irradiation enhances proliferation, cell survival, and migration of rat bone marrow-derived stem cells via CXCR4-ERK pathways. Sci. Rep. 2017 7 1 13718 10.1038/s41598‑017‑14219‑w 29057951
    [Google Scholar]
  130. Long Z. Quaife B. Salman H. Oltvai Z.N. Cell-cell communication enhances bacterial chemotaxis toward external attractants. Sci. Rep. 2017 7 1 12855 10.1038/s41598‑017‑13183‑9 28993669
    [Google Scholar]
  131. SenGupta S. Parent C.A. Bear J.E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 2021 22 8 529 547 10.1038/s41580‑021‑00366‑6 33990789
    [Google Scholar]
  132. Balaji S. Watson C.L. Ranjan R. King A. Bollyky P.L. Keswani S.G. Chemokine involvement in fetal and adult wound healing. Adv. Wound Care (New Rochelle) 2015 4 11 660 672 10.1089/wound.2014.0564 26543680
    [Google Scholar]
  133. Sharma R.K. John J.R. Role of stem cells in the management of chronic wounds. Indian J. Plast. Surg. 2012 45 2 237 243 10.4103/0970‑0358.101286 23162222
    [Google Scholar]
  134. Cheng M. Huang K. Zhou J. Yan D. Tang Y.L. Zhao T.C. Miller R.J. Kishore R. Losordo D.W. Qin G. A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. J. Mol. Cell. Cardiol. 2015 81 49 53 10.1016/j.yjmcc.2015.01.024 25655934
    [Google Scholar]
  135. Li J. Chen H. Zhang D. Xie J. Zhou X. The role of stromal cell-derived factor 1 on cartilage development and disease. Osteoarthritis Cartilage 2021 29 3 313 322 10.1016/j.joca.2020.10.010 33253889
    [Google Scholar]
  136. Han Y. Yang J. Fang J. Zhou Y. Candi E. Wang J. Hua D. Shao C. Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther. 2022 7 1 92 10.1038/s41392‑022‑00932‑0 35314676
    [Google Scholar]
  137. Yu Y. Wu R.X. Gao L.N. Xia Y. Tang H.N. Chen F.M. Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli. Cell Adhes. Migr. 2016 10 4 1 18 10.1080/19336918.2016.1139287 26745021
    [Google Scholar]
  138. Zieger-naumann K. Kuhl F. Engele J. G protein-mediated EGFR transactivation is a common mechanism through which the CXCL12 receptors, CXCR4 and CXCR7, control human cancer cell migration. Oncol. Rep. 2023 51 2 24 10.3892/or.2023.8683 38099418
    [Google Scholar]
  139. Perpiñá-Viciano C. Işbilir A. Zarca A. Caspar B. Kilpatrick L.E. Hill S.J. Smit M.J. Lohse M.J. Hoffmann C. Kinetic analysis of the early signaling steps of the human chemokine receptor CXCR4. Mol. Pharmacol. 2020 98 2 72 87 10.1124/mol.119.118448 32474443
    [Google Scholar]
  140. Ngai J. Inngjerdingen M. Berge T. Taskén K. Interplay between the heterotrimeric G-protein subunits Gαq and Gαi2 sets the threshold for chemotaxis and TCR activation. BMC Immunol. 2009 10 1 27 10.1186/1471‑2172‑10‑27 19426503
    [Google Scholar]
  141. Kumar A. Kremer K.N. Dominguez D. Tadi M. Hedin K.E. Gα13 and Rho mediate endosomal trafficking of CXCR4 into Rab11+ vesicles upon stromal cell-derived factor-1 stimulation. J. Immunol. 2011 186 2 951 958 10.4049/jimmunol.1002019 21148034
    [Google Scholar]
  142. Sun Y. Mao X. Fan C. Liu C. Guo A. Guan S. Jin Q. Li B. Yao F. Jin F. CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis. Tumour Biol. 2014 35 8 7765 7773 10.1007/s13277‑014‑1816‑1 24810923
    [Google Scholar]
  143. D’Agostino G. Artinger M. Locati M. Perez L. Legler D.F. Bianchi M.E. Rüegg C. Thelen M. Marchese A. Rocchi M.B.L. Cecchinato V. Uguccioni M. β-arrestin1 and β-arrestin2 are required to support the activity of the CXCL12/HMGB1 heterocomplex on CXCR4. Front. Immunol. 2020 11 550824 10.3389/fimmu.2020.550824 33072091
    [Google Scholar]
  144. van Gastel J. Hendrickx J.O. Leysen H. Santos-Otte P. Luttrell L.M. Martin B. Maudsley S. β-arrestin based receptor signaling paradigms: Potential therapeutic targets for complex age-related disorders. Front. Pharmacol. 2018 9 1369 10.3389/fphar.2018.01369 30546309
    [Google Scholar]
  145. Smith J.S. Rajagopal S. The β-arrestins: Multifunctional regulators of G protein-coupled receptors. J. Biol. Chem. 2016 291 17 8969 8977 10.1074/jbc.R115.713313 26984408
    [Google Scholar]
  146. Bharadwaj U. Kasembeli M.M. Robinson P. Tweardy D.J. Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: Rationale, progress, and caution. Pharmacol. Rev. 2020 72 2 486 526 10.1124/pr.119.018440 32198236
    [Google Scholar]
  147. Rajagopal S. Shenoy S.K. GPCR desensitization: Acute and prolonged phases. Cell. Signal. 2018 41 9 16 10.1016/j.cellsig.2017.01.024 28137506
    [Google Scholar]
  148. Seyedabadi M. Gharghabi M. Gurevich E.V. Gurevich V.V. Receptor-arrestin interactions: The GPCR perspective. Biomolecules 2021 11 2 218 10.3390/biom11020218 33557162
    [Google Scholar]
  149. Britton C. Poznansky M.C. Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J. 2021 35 4 e21260 10.1096/fj.202001273R 33715207
    [Google Scholar]
  150. Pawig L. Klasen C. Weber C. Bernhagen J. Noels H. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: Molecular perspectives. Front. Immunol. 2015 6 429 10.3389/fimmu.2015.00429 26347749
    [Google Scholar]
  151. English E.J. Mahn S.A. Marchese A. Endocytosis is required for CXC chemokine receptor type 4 (CXCR4)-mediated Akt activation and antiapoptotic signaling. J. Biol. Chem. 2018 293 29 11470 11480 10.1074/jbc.RA118.001872 29899118
    [Google Scholar]
  152. Malik R. Marchese A. Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4. Mol. Biol. Cell 2010 21 14 2529 2541 10.1091/mbc.e10‑02‑0169 20505072
    [Google Scholar]
  153. Cialdai F. Risaliti C. Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front. Bioeng. Biotechnol. 2022 10 958381 10.3389/fbioe.2022.958381 36267456
    [Google Scholar]
  154. Rønnov-Jessen L. Petersen O.W. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab. Invest. 1993 68 6 696 707 8515656
    [Google Scholar]
  155. Strutz F. Okada H. Lo C.W. Danoff T. Carone R.L. Tomaszewski J.E. Neilson E.G. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 1995 130 2 393 405 10.1083/jcb.130.2.393 7615639
    [Google Scholar]
  156. Liu S. Shi-wen X. Blumbach K. Eastwood M. Denton C.P. Eckes B. Krieg T. Abraham D.J. Leask A. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo. J. Cell Sci. 2010 123 21 3674 3682 10.1242/jcs.070672 20940256
    [Google Scholar]
  157. Shi X. Young C.D. Zhou H. Wang X.J. Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules 2020 10 12 1666 10.3390/biom10121666 33322749
    [Google Scholar]
  158. Pakyari M. Farrokhi A. Maharlooei M.K. Ghahary A. Critical role of transforming growth factor beta in different phases of wound healing. Adv. Wound Care (New Rochelle) 2013 2 5 215 224 10.1089/wound.2012.0406 24527344
    [Google Scholar]
  159. Restivo T.E. Mace K.A. Harken A.H. Young D.M. Application of the chemokine CXCL12 expression plasmid restores wound healing to near normal in a diabetic mouse model. J. Trauma 2010 69 2 392 398 10.1097/TA.0b013e3181e772b0 20699749
    [Google Scholar]
  160. Rees P.A. Greaves N.S. Baguneid M. Bayat A. Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring. Adv. Wound Care (New Rochelle) 2015 4 11 687 703 10.1089/wound.2014.0568 26543682
    [Google Scholar]
  161. Xu J. Hu J. Idlett-Ali S. Zhang L. Caples K. Peddibhotla S. Reeves M. Zgheib C. Malany S. Liechty K.W. Discovery of small molecule activators of chemokine receptor CXCR4 that improve diabetic wound healing. Int. J. Mol. Sci. 2022 23 4 2196 10.3390/ijms23042196 35216311
    [Google Scholar]
  162. Peddibhotla S. Caples K. Mehta A. Chen Q.Y. Hu J. Idlett-Ali S. Zhang L. Zgheib C. Xu J. Liechty K.W. Malany S. Triazolothiadiazine derivative positively modulates CXCR4 signaling and improves diabetic wound healing. Biochem. Pharmacol. 2023 216 115764 10.1016/j.bcp.2023.115764 37634595
    [Google Scholar]
  163. Wang Y. Zhu J. Chen J. Xu R. Groth T. Wan H. Zhou G. The signaling pathways induced by exosomes in promoting diabetic wound healing: A mini-review. Curr. Issues Mol. Biol. 2022 44 10 4960 4976 10.3390/cimb44100337 36286052
    [Google Scholar]
  164. Tian X. Xie G. Xiao H. Ding F. Bao W. Zhang M. CXCR4 knockdown prevents inflammatory cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways. Cell Biosci. 2019 9 1 55 10.1186/s13578‑019‑0315‑x 31304005
    [Google Scholar]
  165. Han S.H. Chae D.S. Kim S.W. Dual CXCR4/IL-10 gene-edited human amniotic mesenchymal stem cells exhibit robust therapeutic properties in chronic wound healing. Int. J. Mol. Sci. 2022 23 23 15338 10.3390/ijms232315338 36499667
    [Google Scholar]
  166. Billah M. Ridiandries A. Allahwala U. Mudaliar H. Dona A. Hunyor S. Khachigian L.M. Bhindi R. Circulating mediators of remote ischemic preconditioning: Search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019 10 2 216 244 10.18632/oncotarget.26537 30719216
    [Google Scholar]
  167. Sharma P. Kumar A. Dey A.D. Behl T. Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci. 2021 268 118932 10.1016/j.lfs.2020.118932 33400933
    [Google Scholar]
  168. Leung T.H. Snyder E.R. Liu Y. Wang J. Kim S.K. A cellular, molecular, and pharmacological basis for appendage regeneration in mice. Genes Dev. 2015 29 20 2097 2107 10.1101/gad.267724.115 26494786
    [Google Scholar]
  169. Wynn R.F. Hart C.A. Corradi-Perini C. O’Neill L. Evans C.A. Wraith J.E. Fairbairn L.J. Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004 104 9 2643 2645 10.1182/blood‑2004‑02‑0526 15251986
    [Google Scholar]
  170. Zhang D. Fan G.C. Zhou X. Zhao T. Pasha Z. Xu M. Zhu Y. Ashraf M. Wang Y. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol. 2008 44 2 281 292 10.1016/j.yjmcc.2007.11.010 18201717
    [Google Scholar]
  171. Ochoa O. Torres F.M. Shireman P.K. Chemokines and diabetic wound healing. Vascular 2007 15 6 350 355 10.2310/6670.2007.00056 18053419
    [Google Scholar]
  172. Rey M. Valenzuela-Fernández A. Urzainqui A. Yáñez-Mó M. Pérez-Martínez M. Penela P. Mayor F. Sánchez-Madrid F. Myosin IIA is involved in the endocytosis of CXCR4 induced by SDF-1α. J. Cell Sci. 2007 120 6 1126 1133 10.1242/jcs.03415 17327270
    [Google Scholar]
  173. Sadri F. Rezaei Z. Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol. Biol. Rep. 2022 49 4 3307 3320 10.1007/s11033‑021‑07069‑3 35067815
    [Google Scholar]
  174. Jujo K. Ii M. Sekiguchi H. Klyachko E. Misener S. Tanaka T. Tongers J. Roncalli J. Renault M.A. Thorne T. Ito A. Clarke T. Kamide C. Tsurumi Y. Hagiwara N. Qin G. Asahi M. Losordo D.W. CXC-chemokine receptor 4 antagonist AMD3100 promotes cardiac functional recovery after ischemia/reperfusion injury via endothelial nitric oxide synthase-dependent mechanism. Circulation 2013 127 1 63 73 10.1161/CIRCULATIONAHA.112.099242 23204107
    [Google Scholar]
  175. Wang J. Tannous B.A. Poznansky M.C. Chen H. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacol. Res. 2020 159 105010 10.1016/j.phrs.2020.105010 32544428
    [Google Scholar]
  176. Patrussi L. Baldari C.T. The CXCL12/CXCR4 axis as a therapeutic target in cancer and HIV-1 infection. Curr. Med. Chem. 2011 18 4 497 512 10.2174/092986711794480159 21143114
    [Google Scholar]
  177. Rodrigues M. Kosaric N. Bonham C.A. Gurtner G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019 99 1 665 706 10.1152/physrev.00067.2017 30475656
    [Google Scholar]
  178. Bermudez D.M. Xu J. Herdrich B.J. Radu A. Mitchell M.E. Liechty K.W. Inhibition of stromal cell-derived factor-1α further impairs diabetic wound healing. J. Vasc. Surg. 2011 53 3 774 784 10.1016/j.jvs.2010.10.056 21211927
    [Google Scholar]
  179. Jørgensen A.S. Daugvilaite V. De Filippo K. Berg C. Mavri M. Benned-Jensen T. Juzenaite G. Hjortø G. Rankin S. Våbenø J. Rosenkilde M.M. Biased action of the CXCR4-targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization. Commun. Biol. 2021 4 1 569 10.1038/s42003‑021‑02070‑9 33980979
    [Google Scholar]
  180. Embil J.M. Nagai M.K. Becaplermin: Recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin. Biol. Ther. 2002 2 2 211 218 10.1517/14712598.2.2.211 11849120
    [Google Scholar]
  181. Miller C.C. Miller M.K. Ghaffari A. Kunimoto B. Treatment of chronic nonhealing leg ulceration with gaseous nitric oxide: A case study. J. Cutan. Med. Surg. 2004 8 4 233 238 10.1007/s10227‑004‑0106‑8 16092001
    [Google Scholar]
  182. Moeen Rezakhanlou A. Miller C. McMullin B. Ghaffari A. Garcia R. Ghahary A. Gaseous nitric oxide exhibits minimal effect on skin fibroblast extracellular matrix gene expression and immune cell viability. Cell Biol. Int. 2011 35 4 407 415 10.1042/CBI20100420 21155711
    [Google Scholar]
  183. Zhao L. Li J. Xu X. Zhang N. He T. Yuan Y. A nature-based solution for regulating the inflammatory phase of diabetic wound healing using a cold atmospheric plasma. Cell Rep. Phys. Sci. 2024 5 9 102147 10.1016/j.xcrp.2024.102147
    [Google Scholar]
  184. Kalani M. Jörneskog G. Naderi N. Lind F. Brismar K. Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers. J. Diabetes Complications 2002 16 2 153 158 10.1016/S1056‑8727(01)00182‑9 12039398
    [Google Scholar]
  185. Sharma R. Sharma S.K. Mudgal S.K. Jelly P. Thakur K. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Sci. Rep. 2021 11 1 2189 10.1038/s41598‑021‑81886‑1 33500533
    [Google Scholar]
  186. Hart C.E. Loewen-Rodriguez A. Lessem J. Dermagraft: Use in the treatment of chronic wounds. Adv. Wound Care (New Rochelle) 2012 1 3 138 141 10.1089/wound.2011.0282 24527294
    [Google Scholar]
  187. Yang H-Y. Fierro F. So M. Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice. Stem Cells Transl. Med. 2020 9 11 1353 1364 10.1002/sctm.19‑0380 32720751
    [Google Scholar]
  188. Zubair M. Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: A detailed review. Rev. Endocr. Metab. Disord. 2019 20 2 207 217 10.1007/s11154‑019‑09492‑1 30937614
    [Google Scholar]
  189. Takahashi K. Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 126 4 663 676 10.1016/j.cell.2006.07.024 16904174
    [Google Scholar]
  190. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007 1 1 39 49 10.1016/j.stem.2007.05.012 18371333
    [Google Scholar]
  191. Nourian Dehkordi A. Mirahmadi Babaheydari F. Chehelgerdi M. Raeisi Dehkordi S. Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res. Ther. 2019 10 1 111 10.1186/s13287‑019‑1212‑2 30922387
    [Google Scholar]
  192. Amin A.H. Abd Elmageed Z.Y. Nair D. Partyka M.I. Kadowitz P.J. Belmadani S. Matrougui K. Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice. Lab. Invest. 2010 90 7 985 996 10.1038/labinvest.2010.86 20440273
    [Google Scholar]
  193. Trzyna A. Banaś-Ząbczyk A. Adipose-derived stem cells secretome and its potential application in “Stem Cell-Free Therapy”. Biomolecules 2021 11 6 878 10.3390/biom11060878 34199330
    [Google Scholar]
  194. Luker G.D. Yang J. Richmond A. Scala S. Festuccia C. Schottelius M. Wester H.J. Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J. Leukoc. Biol. 2021 109 5 969 989 10.1002/JLB.2BT1018‑715RR 33104270
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998335873241012161428
Loading
/content/journals/cdr/10.2174/0115733998335873241012161428
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: CXCR4 ; diabetic wound ; MAPKs ; SDF-1 ; angiogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test