Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic chronic wounds and amputations are very serious complications of diabetes mellitus (DM) that result from an integration factor, including oxygen deprivation, elevated reactive oxygen species (ROS), reduced angiogenesis, and microbial invasion. These causative factors lead to tenacious wounds in an inflammatory state, which eventually results in tissue aging and necrosis. Wound healing in DM potentially targets C-X-C chemokine receptor type 4 (CXCR4) regulates several signalling pathways. The CXCR4 signalling pathway integrated with phospholipase C (PLC)/protein kinase-C (PKC) Ca2+ pathways, stromal cell-derived factor-1 (SDF-1), and mitogen-activated protein kinases (MAPKs) pathway for enhancing cell chemotaxis, proliferation, and survival. The dysregulated CXCR4 pathway is connected with poor wound healing in DM patients. Therapeutic strategies targeting CXCR4-based molecules such as UCUF-728, UCUF-965, and AMD3100 have been shown to enhance diabetic wound healing by altering miRNA expression, promoting angiogenesis, and accelerating wound closure. This study indicates that CXCR4 participation in various signalling pathways makes it essential for understanding the healing of diabetic wounds. Using specific compounds to target CXCR4 offers a potentially effective treatment strategy to improve wound healing in diabetes. Our understanding of CXCR4 signalling and its regulation processes will enable us to develop more potent wound care solutions for diabetic chronic wounds. This report concludes that CXCR4's potential therapeutic targeting shows improvements in diabetic wound repair. This review will demonstrate that CXCR4 plays a major role in wound healing through its various signalling pathways. Targeting CXCR4 with certain agonist molecules shows a therapeutic approach to potentially increasing wound healing in diabetes. By enhancing our understanding of the CXCR4 signalling mechanism in future studies, we can develop more potential treatments for chronic diabetic wounds.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998335873241012161428
2024-11-29
2026-02-14
Loading full text...

Full text loading...

/deliver/fulltext/cdr/22/1/CDR-22-1-04.html?itemId=/content/journals/cdr/10.2174/0115733998335873241012161428&mimeType=html&fmt=ahah

References

  1. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina (Kaunas)20215710107210.3390/medicina5710107234684109
    [Google Scholar]
  2. EdmondsM. ManuC. VasP. The current burden of diabetic foot disease.J. Clin. Orthop. Trauma202117889310.1016/j.jcot.2021.01.01733680841
    [Google Scholar]
  3. KavithaK.V. PatilV.S. SanjeeviC.B. UnnikrishnanA.G. New concepts in the management of charcot neuroarthropathy in diabetes.Diabetes: From Research to Clinical PracticeSpringerCham IslamM.S. 202039141510.1007/5584_2020_498
    [Google Scholar]
  4. MiyanZ. BoultonA.J.M. PedrosaH.C. Chapter 12 - Diabetic foot.BIDE' s Diabetes Desk Book2024Elsevier24928210.1016/B978‑0‑443‑22106‑4.00026‑7
    [Google Scholar]
  5. LimJ.Z.M. NgN.S.L. ThomasC. Prevention and treatment of diabetic foot ulcers.J. R. Soc. Med.2017110310410910.1177/014107681668834628116957
    [Google Scholar]
  6. JeyaramanK. Diabetic-foot complications in American and Australian continents.Diabetic Foot Ulcer. ZubairM. AhmadJ. MalikA. TalluriM.R. SingaporeSpringer2021415910.1007/978‑981‑15‑7639‑3_3
    [Google Scholar]
  7. LoZ.J. SurendraN.K. SaxenaA. CarJ. Clinical and economic burden of diabetic foot ulcers: A 5-year longitudinal multi-ethnic cohort study from the tropics.Int. Wound J.202118337538610.1111/iwj.1354033497545
    [Google Scholar]
  8. ManuC. LacopiE. BouilletB. VouillarmetJ. AhluwaliaR. LüdemannC. Garcia-KlepzigJ.L. MeloniM. De BuruagaV.R.S. Sánchez-RíosJ.P. EdmondsM. ApelqvistJ. Lázaro-MartínezJ.L. Van AckerK. Delayed referral of patients with diabetic foot ulcers across Europe: Patterns between primary care and specialised units.J. Wound Care201827318619210.12968/jowc.2018.27.3.18629509115
    [Google Scholar]
  9. ZhangP. LuJ. JingY. TangS. ZhuD. BiY. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis.Ann. Med.201749210611610.1080/07853890.2016.123193227585063
    [Google Scholar]
  10. TayebKA. BatemanSD. HamptonS. MaloneM. MaloneM. FletcherJ. Managing infection: A holistic approach.J. Wound Care2015245 Suppl 2203010.12968/jowc.2015.24.Sup5b.20
    [Google Scholar]
  11. KwonK.T. ArmstrongD.G. Microbiology and antimicrobial therapy for diabetic foot infections.Infect. Chemother.2018501112010.3947/ic.2018.50.1.1129637748
    [Google Scholar]
  12. DharY. HanY. Current developments in biofilm treatments: Wound and implant infections.Engineered Regeneration20201647510.1016/j.engreg.2020.07.003
    [Google Scholar]
  13. WangA. LvG. ChengX. MaX. WangW. GuiJ. HuJ. LuM. ChuG. ChenJ. ZhangH. JiangY. ChenY. YangW. JiangL. GengH. ZhengR. LiY. FengW. JohnsonB. WangW. ZhuD. HuY. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition).Burns Trauma20208tkaa01710.1093/burnst/tkaa01732685563
    [Google Scholar]
  14. Muhammad IbrahimA. Diabetic foot ulcer: Synopsis of the epidemiology and pathophysiology.Int. J. Diabetes Endocrinol.2018322310.11648/j.ijde.20180302.11
    [Google Scholar]
  15. BeyazS. GülerÜ.Ö. BağırG.Ş. Factors affecting lifespan following below-knee amputation in diabetic patients.Acta Orthop. Traumatol. Turc.201751539339710.1016/j.aott.2017.07.00128865844
    [Google Scholar]
  16. ZhaoR. LiangH. ClarkeE. JacksonC. XueM. Inflammation in chronic wounds.Int. J. Mol. Sci.20161712208510.3390/ijms1712208527973441
    [Google Scholar]
  17. DixonD. EdmondsM. Managing diabetic foot ulcers: Pharmacotherapy for wound healing.Drugs2021811295610.1007/s40265‑020‑01415‑833382445
    [Google Scholar]
  18. Bernabé-GarcíaÁ. Armero-BarrancoD. LiarteS. Ruzafa- MartínezM. Ramos-MorcilloA.J. NicolásF.J. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation.PLoS One2017122e017257410.1371/journal.pone.0172574
    [Google Scholar]
  19. YangF. BaiX. DaiX. LiY. The biological processes during wound healing.Regen. Med.202116437339010.2217/rme‑2020‑006633787319
    [Google Scholar]
  20. MillerR.J. BanisadrG. BhattacharyyaB.J. CXCR4 signaling in the regulation of stem cell migration and development.J. Neuroimmunol.20081981-2313810.1016/j.jneuroim.2008.04.00818508132
    [Google Scholar]
  21. ChenH. LiG. LiuY. JiS. LiY. XiangJ. ZhouL. GaoH. ZhangW. SunX. FuX. LiB. Pleiotropic roles of CXCR4 in wound repair and regeneration.Front. Immunol.20211266875810.3389/fimmu.2021.66875834122427
    [Google Scholar]
  22. LiuZ. DumvilleJ.C. HinchliffeR.J. Negative pressure wound therapy for treating foot wounds in people with diabetes mellitus.Cochrane Database Syst. Rev.20181010CD01031810.1002/14651858.CD010318.pub330328611
    [Google Scholar]
  23. JiS. LiuX. HuangJ. BaoJ. ChenZ. HanC. HaoD. HongJ. HuD. JiangY. JuS. LiH. LiZ. LiangG. LiuY. LuoG. LvG. RanX. ShiZ. TangJ. WangA. WangG. WangJ. WangX. WenB. WuJ. XuH. XuM. YeX. YuanL. ZhangY. XiaoS. XiaZ. Consensus on the application of negative pressure wound therapy of diabetic foot wounds.Burns Trauma20219tkab01810.1093/burnst/tkab01834212064
    [Google Scholar]
  24. WangG. SwerenE. LiuH. WierE. AlphonseM.P. ChenR. IslamN. LiA. XueY. ChenJ. ParkS. ChenY. LeeS. WangY. WangS. ArcherN.K. AndrewsW. KaneM.A. DareE. ReddyS.K. HuZ. GriceE.A. MillerL.S. GarzaL.A. Bacteria induce skin regeneration via IL-1β signaling.Cell Host Microbe2021295777791.e610.1016/j.chom.2021.03.00333798492
    [Google Scholar]
  25. Di DomizioJ. BelkhodjaC. ChenuetP. FriesA. MurrayT. MondéjarP.M. DemariaO. ConradC. HomeyB. WernerS. SpeiserD.E. RyffelB. GillietM. The commensal skin microbiota triggers type I IFN–dependent innate repair responses in injured skin.Nat. Immunol.20202191034104510.1038/s41590‑020‑0721‑632661363
    [Google Scholar]
  26. LevensonS.M. Kan-GruberD. GruberC. MolnarJ. SeifterE. Wound healing accelerated by Staphylococcus aureus.Arch. Surg.1983118331032010.1001/archsurg.1983.013900300420076824431
    [Google Scholar]
  27. CamposL.F. TagliariE. CasagrandeT.A.C. NoronhaL. CamposA.C.L. MatiasJ.E.F. Effects of probiotics supplementation on skin wound healing in diabetic rats.Arq. Bras. Cir. Dig.2020331e149810.1590/0102‑672020190001e149832667528
    [Google Scholar]
  28. WuN. SunH. ZhaoX. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche.Nature2021592785560661010.1038/s41586‑021‑03283‑y33658717
    [Google Scholar]
  29. SeokJ. WarrenH.S. CuencaA.G. Genomic responses in mouse models poorly mimic human inflammatory diseases.Proc. Natl. Acad. Sci. USA201311093507351210.1073/pnas.122287811023401516
    [Google Scholar]
  30. FalangaV. IsseroffR.R. SoulikaA.M. RomanelliM. MargolisD. KappS. GranickM. HardingK. Chronic wounds.Nat. Rev. Dis. Primers2022815010.1038/s41572‑022‑00377‑335864102
    [Google Scholar]
  31. SangY. BlechaF. Porcine host defense peptides: Expanding repertoire and functions.Dev. Comp. Immunol.200933333434310.1016/j.dci.2008.05.00618579204
    [Google Scholar]
  32. BrandenburgK. HeinbockelL. CorreaW. LohnerK. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis.Biochim. Biophys. Acta Biomembr.20161858597197910.1016/j.bbamem.2016.01.01126801369
    [Google Scholar]
  33. NakagawaS. MatsumotoM. KatayamaY. OgumaR. WakabayashiS. NygaardT. SaijoS. InoharaN. OttoM. MatsueH. NúñezG. NakamuraY. Staphylococcus aureus Virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation.Cell Host Microbe2017225667677.e510.1016/j.chom.2017.10.00829120744
    [Google Scholar]
  34. WilliamsH. CromptonR.A. ThomasonH.A. CampbellL. SinghG. McBainA.J. CruickshankS.M. HardmanM.J. Cutaneous Nod2 expression regulates the skin microbiome and wound healing in a murine model.J. Invest. Dermatol.2017137112427243610.1016/j.jid.2017.05.02928647345
    [Google Scholar]
  35. MeiF. LiuJ. WuJ. DuanZ. ChenM. MengK. ChenS. ShenX. XiaG. ZhaoM. Collagen peptides isolated from Salmo salar and Tilapia nilotica skin accelerate wound healing by altering cutaneous microbiome colonization via upregulated NOD2 and BD14.J. Agric. Food Chem.20206861621163310.1021/acs.jafc.9b0800231967468
    [Google Scholar]
  36. ChatterjeeS. Behnam AzadB. NimmagaddaS. The intricate role of CXCR4 in cancer.Adv. Cancer Res.2014124318210.1016/B978‑0‑12‑411638‑2.00002‑125287686
    [Google Scholar]
  37. BianchiM.E. MezzapelleR. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration.Front. Immunol.202011210910.3389/fimmu.2020.0210932983169
    [Google Scholar]
  38. ChenP. CaiX. YangY. ChenZ. QiuJ. YuN. TangM. WangQ. GeJ. YuK. ZhuangJ. Nuclear respiratory factor-1 (NRF-1) regulates transcription of the CXC receptor 4 (CXCR4) in the rat retina.Invest. Ophthalmol. Vis. Sci.201758114662466910.1167/iovs.17‑2211528903152
    [Google Scholar]
  39. KatohM. KatohM. Integrative genomic analyses of CXCR4: Transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors.Int. J. Oncol.201036241542020043076
    [Google Scholar]
  40. WangS. GaoS. LiY. QianX. LuanJ. LvX. Emerging importance of chemokine receptor CXCR4 and its ligand in liver disease.Front. Cell Dev. Biol.2021971684210.3389/fcell.2021.71684234386499
    [Google Scholar]
  41. BusilloJ.M. ArmandoS. SenguptaR. MeucciO. BouvierM. BenovicJ.L. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling.J. Biol. Chem.2010285107805781710.1074/jbc.M109.09117320048153
    [Google Scholar]
  42. CioceA. CavaniA. CattaniC. ScopellitiF. Role of the skin immune system in wound healing.Cells202413762410.3390/cells1307062438607063
    [Google Scholar]
  43. BusilloJ.M. BenovicJ.L. Regulation of CXCR4 signaling.Biochim. Biophys. Acta Biomembr.20071768495296310.1016/j.bbamem.2006.11.00217169327
    [Google Scholar]
  44. LudemanJ.P. StoneM.J. The structural role of receptor tyrosine sulfation in chemokine recognition.Br. J. Pharmacol.201417151167117910.1111/bph.1245524116930
    [Google Scholar]
  45. García-CuestaE.M. MartínezP. SelvarajuK. Allosteric modulation of the CXCR4:CXCL12 axis by targeting receptor nanoclustering via the TMV-TMVI domain.Elife202413RP93968
    [Google Scholar]
  46. TamamisP. FloudasC.A. Elucidating a key component of cancer metastasis: CXCL12 (SDF-1α) binding to CXCR4.J. Chem. Inf. Model.20145441174118810.1021/ci500069y24660779
    [Google Scholar]
  47. ShiY. RieseD.J. ShenJ. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer.Front. Pharmacol.20201157466710.3389/fphar.2020.57466733363463
    [Google Scholar]
  48. MangmoolS. KuroseH. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX).Toxins (Basel)20113788489910.3390/toxins307088422069745
    [Google Scholar]
  49. LakeD. CorrêaS.A.L. MüllerJ. Negative feedback regulation of the ERK1/2 MAPK pathway.Cell. Mol. Life Sci.201673234397441310.1007/s00018‑016‑2297‑827342992
    [Google Scholar]
  50. BundaS. HeirP. SrikumarT. CookJ.D. BurrellK. KanoY. LeeJ.E. ZadehG. RaughtB. OhhM. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation.Proc. Natl. Acad. Sci. USA201411136E3785E379410.1073/pnas.140655911125157176
    [Google Scholar]
  51. DillonM. LopezA. LinE. SalesD. PeretsR. JainP. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers.Cancers (Basel)20211320505910.3390/cancers1320505934680208
    [Google Scholar]
  52. KankanamgeD. UbeysingheS. TennakoonM. PantulaP.D. MitraK. GiriL. KarunarathneA. Dissociation of the G protein βγ from the Gq–PLCβ complex partially attenuates PIP2 hydrolysis.J. Biol. Chem.202129610070210.1016/j.jbc.2021.10070233901492
    [Google Scholar]
  53. KimM.J. KimE. RyuS.H. SuhP.G. The mechanism of phospholipase C-γ1 regulation.Exp. Mol. Med.200032310110910.1038/emm.2000.1811048639
    [Google Scholar]
  54. NevesM. Perpiñá-VicianoC. PenelaP. HoffmannC. MayorF. Modulation of CXCR4-mediated Gi1 activation by EGF receptor and GRK2.ACS Pharmacol. Transl. Sci.20203462763410.1021/acsptsci.0c0002133073183
    [Google Scholar]
  55. ZhuoY. CreceliusJ.M. MarcheseA. G protein–coupled receptor kinase phosphorylation of distal C-tail sites specifies βarrestin1-mediated signaling by chemokine receptor CXCR4.J. Biol. Chem.2022298910235110.1016/j.jbc.2022.10235135940305
    [Google Scholar]
  56. Jean-CharlesP.Y. KaurS. ShenoyS.K. G protein–coupled receptor signaling through β-arrestin–dependent mechanisms.J. Cardiovasc. Pharmacol.201770314215810.1097/FJC.000000000000048228328745
    [Google Scholar]
  57. AbdelouahabH. ZhangY. WittnerM. OishiS. FujiiN. BesancenotR. PloI. RibragV. SolaryE. VainchenkerW. BarosiG. LouacheF. CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner.Oncotarget2017833540825409510.18632/oncotarget.1078928903325
    [Google Scholar]
  58. QinH. ZhaoX. HuY.J. WangS. MaY. HeS. ShenK. WanH. CuiZ. YuB. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis.BioMed Res. Int.2021202111310.1155/2021/885257434136574
    [Google Scholar]
  59. YellowleyC.E. ToupadakisC.A. VapniarskyN. WongA. Circulating progenitor cells and the expression of Cxcl12, Cxcr4 and angiopoietin-like 4 during wound healing in the murine ear.PLoS One2019149e022246210.1371/journal.pone.022246231513647
    [Google Scholar]
  60. RidiandriesA. TanJ.T.M. BursillC.A. The role of chemokines in wound healing.Int. J. Mol. Sci.20181910321710.3390/ijms1910321730340330
    [Google Scholar]
  61. LandénN.X. LiD. StåhleM. Transition from inflammation to proliferation: a critical step during wound healing.Cell. Mol. Life Sci.201673203861388510.1007/s00018‑016‑2268‑027180275
    [Google Scholar]
  62. SunZ. LiX. ZhengX. CaoP. YuB. WangW. Stromal cell-derived factor-1/CXC chemokine receptor 4 axis in injury repair and renal transplantation.J. Int. Med. Res.201947115426544010.1177/030006051987613831581874
    [Google Scholar]
  63. YangD. SunS. WangZ. ZhuP. YangZ. ZhangB. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas.Cell. Reprogram.201315320621510.1089/cell.2012.004623713431
    [Google Scholar]
  64. GuoR. ChaiL. ChenL. ChenW. GeL. LiX. LiH. LiS. CaoC. Stromal cell-derived factor 1 (SDF-1) accelerated skin wound healing by promoting the migration and proliferation of epidermal stem cells. In VitroCell. Dev. Biol. Anim.201551657858510.1007/s11626‑014‑9862‑y25636237
    [Google Scholar]
  65. WeiJ.N. CaiF. WangF. WuX.T. LiuL. HongX. TangW.H. Transplantation of CXCR4 overexpressed mesenchymal stem cells augments regeneration in degenerated intervertebral discs.DNA Cell Biol.201635524124810.1089/dna.2015.311826788981
    [Google Scholar]
  66. BusS.A. Priorities in offloading the diabetic foot.Diabetes Metab. Res. Rev.201228Suppl 1545910.1002/dmrr.224022271724
    [Google Scholar]
  67. BoultonA.J.M. KirsnerR.S. VileikyteL. Clinical practice. Neuropathic diabetic foot ulcers.N. Engl. J. Med.20043511485510.1056/NEJMcp03296615229307
    [Google Scholar]
  68. PalmerA.K. TchkoniaT. LeBrasseurN.K. ChiniE.N. XuM. KirklandJ.L. Cellular senescence in type 2 diabetes: A therapeutic opportunity.Diabetes20156472289229810.2337/db14‑182026106186
    [Google Scholar]
  69. RossoA. BalsamoA. GambinoR. DentelliP. FalcioniR. CassaderM. PegoraroL. PaganoG. BrizziM.F. p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes.J. Biol. Chem.200628174339434710.1074/jbc.M50929320016339764
    [Google Scholar]
  70. PrattichizzoF. De NigrisV. La SalaL. ProcopioA.D. OlivieriF. CerielloA. "Inflammaging" as a druggable target: A senescence-associated secretory phenotype-centered view of type 2 diabetes.Oxid. Med. Cell Longev.20162016181032710.1155/2016/181032727340505
    [Google Scholar]
  71. PintiM.V. FinkG.K. HathawayQ.A. DurrA.J. KunovacA. HollanderJ.M. Mitochondrial dysfunction in type 2 diabetes mellitus: An organ-based analysis.Am. J. Physiol. Endocrinol. Metab.20193162E268E28510.1152/ajpendo.00314.201830601700
    [Google Scholar]
  72. SahinE. CollaS. LiesaM. MoslehiJ. MüllerF.L. GuoM. CooperM. KottonD. FabianA.J. WalkeyC. MaserR.S. TononG. FoersterF. XiongR. WangY.A. ShuklaS.A. JaskelioffM. MartinE.S. HeffernanT.P. ProtopopovA. IvanovaE. MahoneyJ.E. Kost-AlimovaM. PerryS.R. BronsonR. LiaoR. MulliganR. ShirihaiO.S. ChinL. DePinhoR.A. Telomere dysfunction induces metabolic and mitochondrial compromise.Nature2011470733435936510.1038/nature0978721307849
    [Google Scholar]
  73. Rius-PérezS. Torres-CuevasI. MillánI. OrtegaÁ.L. PérezS. PGC-1 α, inflammation, and oxidative stress: An integrative view in metabolism.Oxid. Med. Cell. Longev.2020202012010.1155/2020/145269632215168
    [Google Scholar]
  74. Muñoz-EspínD. SerranoM. Cellular senescence: From physiology to pathology.Nat. Rev. Mol. Cell Biol.201415748249610.1038/nrm382324954210
    [Google Scholar]
  75. MaksimovaN.V. MichenkoA.V. KrasilnikovaO.A. KlabukovI.D. GadaevI.Y. KrasheninnikovM.E. BelkovP.A. LyundupA.V. Mesenchymal stromal cell therapy alone does not lead to complete restoration of skin parameters in diabetic foot patients within a 3-year follow-up period.Bioimpacts2022121515535087716
    [Google Scholar]
  76. QianD. GongJ. HeZ. HuaJ. LinS. XuC. MengH. SongZ. Bone marrow-derived mesenchymal stem cells repair necrotic pancreatic tissue and promote angiogenesis by secreting cellular growth factors involved in the SDF-1 α /CXCR4 axis in rats.Stem Cells Int.2015201512010.1155/2015/30683625810724
    [Google Scholar]
  77. WangX. KhalilR.A. Matrix metalloproteinases, vascular remodeling, and vascular disease.Adv. Pharmacol.20188124133010.1016/bs.apha.2017.08.00229310800
    [Google Scholar]
  78. SunX. ChengG. HaoM. ZhengJ. ZhouX. ZhangJ. TaichmanR.S. PientaK.J. WangJ. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression.Cancer Metastasis Rev.201029470972210.1007/s10555‑010‑9256‑x20839032
    [Google Scholar]
  79. ChengX. WangH. ZhangX. ZhaoS. ZhouZ. MuX. ZhaoC. TengW. The role of SDF-1/CXCR4/CXCR7 in neuronal regeneration after cerebral ischemia.Front. Neurosci.20171159010.3389/fnins.2017.0059029123467
    [Google Scholar]
  80. WilkinsonH.N. HardmanM.J. Wound healing: Cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.20022332993416
    [Google Scholar]
  81. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  82. BidkhoriH.R. BahramiA.R. FarshchianM. Heirani-tabasiA. MirahmadiM. HasanzadehH. AhmadiankiaN. FaridhosseiniR. DastpakM. ShabgahA.G. MatinM.M. Mesenchymal stem/stromal cells overexpressing CXCR4 R334X revealed enhanced migration: A lesson learned from the pathogenesis of WHIM syndrome.Cell Transplant.202130963689721105449810.1177/0963689721105449834807749
    [Google Scholar]
  83. De FilippoK. RankinSM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease.Eur. J. Clin. Invest.201848 Suppl 2Suppl Suppl 2e1294910.1111/eci.1294929734477
    [Google Scholar]
  84. RawatK. SyedaS. ShrivastavaA. Neutrophil-derived granule cargoes: Paving the way for tumor growth and progression.Cancer Metastasis Rev.202140122124410.1007/s10555‑020‑09951‑133438104
    [Google Scholar]
  85. LiH. WuM. ZhaoX. Role of chemokine systems in cancer and inflammatory diseases.MedComm202232e14710.1002/mco2.14735702353
    [Google Scholar]
  86. LaroucheJ. SheoranS. MaruyamaK. MartinoM.M. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets.Adv. Wound Care (New Rochelle)20187720923110.1089/wound.2017.076129984112
    [Google Scholar]
  87. NishimuraY. IiM. QinG. HamadaH. AsaiJ. TakenakaH. SekiguchiH. RenaultM.A. JujoK. KatohN. KishimotoS. ItoA. KamideC. KennyJ. MillayM. MisenerS. ThorneT. LosordoD.W. CXCR4 antagonist AMD3100 accelerates impaired wound healing in diabetic mice.J. Invest. Dermatol.2012132371172010.1038/jid.2011.35622048734
    [Google Scholar]
  88. PangK. WangW. QinJ.X. ShiZ.D. HaoL. MaY.Y. XuH. WuZ.X. PanD. ChenZ.S. HanC.H. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy.MedComm202234e17510.1002/mco2.17536349142
    [Google Scholar]
  89. BhattacharjeeB. SyedaA.F. RynjahD. HussainS.M. Chandra BoraS. PeguP. SahuR.K. KhanJ. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment.Front. Pharmacol.202314117433010.3389/fphar.2023.117433037205904
    [Google Scholar]
  90. HuangX. LiuG. GuoJ. SuZ. The PI3K/AKT pathway in obesity and type 2 diabetes.Int. J. Biol. Sci.201814111483149610.7150/ijbs.2717330263000
    [Google Scholar]
  91. BhattiJ.S. SehrawatA. MishraJ. SidhuI.S. NavikU. KhullarN. KumarS. BhattiG.K. ReddyP.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives.Free Radic. Biol. Med.202218411413410.1016/j.freeradbiomed.2022.03.01935398495
    [Google Scholar]
  92. HegaziS. AlyR. MesilhyR. AljoharyH. Diabetic foot ulcer wound healing and tissue regeneration: Signaling pathways and mechanisms.Diabetic Foot Ulcers - Pathogenesis, Innovative Treatments and AI ApplicationsIntechOpen ChowdhuryMEH. ZughaierSM. HasanA. AlfkeyR. 202410.5772/intechopen.1004267
    [Google Scholar]
  93. AbateM. CitroM. PisantiS. CaputoM. MartinelliR. Keratinocytes migration promotion, proliferation induction, and free radical injury prevention by 3-hydroxytirosol.Int. J. Mol. Sci.2021225243810.3390/ijms2205243833670966
    [Google Scholar]
  94. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑534916492
    [Google Scholar]
  95. JereS.W. HoureldN.N. AbrahamseH. Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing.Cytokine Growth Factor Rev.201950525910.1016/j.cytogfr.2019.03.00130890300
    [Google Scholar]
  96. DengS. LeongH.C. DattaA. GopalV. KumarA.P. YapC.T. PI3K/AKT signaling tips the balance of cytoskeletal forces for cancer progression.Cancers (Basel)2022147165210.3390/cancers1407165235406424
    [Google Scholar]
  97. TóthováZ. ŠemelákováM. SolárováZ. TomcJ. DebeljakN. SolárP. The role of PI3K/AKT and MAPK signaling pathways in erythropoietin signalization.Int. J. Mol. Sci.20212214768210.3390/ijms2214768234299300
    [Google Scholar]
  98. CargnelloM. RouxP.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol. Mol. Biol. Rev.2011751508310.1128/MMBR.00031‑1021372320
    [Google Scholar]
  99. PiipponenM. LiD. LandénN.X. The immune functions of keratinocytes in skin wound healing.Int. J. Mol. Sci.20202122879010.3390/ijms2122879033233704
    [Google Scholar]
  100. ZulkefliN. Che ZahariC.N.M. SayutiN.H. KamarudinA.A. SaadN. HamezahH.S. BunawanH. BaharumS.N. MedianiA. AhmedQ.U. IsmailA.F.H. SarianM.N. Flavonoids as potential wound-healing molecules: Emphasis on pathways perspective.Int. J. Mol. Sci.2023245460710.3390/ijms2405460736902038
    [Google Scholar]
  101. Hosseini MansoubN. The role of keratinocyte function on the defected diabetic wound healing.Int. J. Burns Trauma202111643044135111377
    [Google Scholar]
  102. MolnarV. MatišićV. KodvanjI. BjelicaR. JelečŽ. HudetzD. RodE. ČukeljF. VrdoljakT. VidovićD. StarešinićM. SabalićS. DobričićB. PetrovićT. AntičevićD. BorićI. KoširR. ZmrzljakU.P. PrimoracD. Cytokines and chemokines involved in osteoarthritis pathogenesis.Int. J. Mol. Sci.20212217920810.3390/ijms2217920834502117
    [Google Scholar]
  103. WorsleyA.L. LuiD.H. Ntow-BoaheneW. SongW. GoodL. TsuiJ. The importance of inflammation control for the treatment of chronic diabetic wounds.Int. Wound J.20232062346235910.1111/iwj.1404836564054
    [Google Scholar]
  104. JiaoY.R. ChenK.X. TangX. TangY.L. YangH.L. YinY.L. LiC.J. Exosomes derived from mesenchymal stem cells in diabetes and diabetic complications.Cell Death Dis.202415427110.1038/s41419‑024‑06659‑w38632264
    [Google Scholar]
  105. ChenJ. ChenJ. ChengY. FuY. ZhaoH. TangM. ZhaoH. LinN. ShiX. LeiY. WangS. HuangL. WuW. TanJ. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation.Stem Cell Res. Ther.20201119710.1186/s13287‑020‑01610‑032127037
    [Google Scholar]
  106. ShenJ. ZhaoX. ZhongY. YangP. GaoP. WuX. WangX. AnW. Exosomal ncRNAs: The pivotal players in diabetic wound healing.Front. Immunol.202213100530710.3389/fimmu.2022.100530736420273
    [Google Scholar]
  107. QiangL. YangS. CuiY.H. HeY.Y. Keratinocyte autophagy enables the activation of keratinocytes and fibroblasts and facilitates wound healing.Autophagy20211792128214310.1080/15548627.2020.181634232866426
    [Google Scholar]
  108. DengZ. FanT. XiaoC. TianH. ZhengY. LiC. HeJ. TGF-β signaling in health, disease and therapeutics.Signal Transduct. Target. Ther.2024916110.1038/s41392‑024‑01764‑w38514615
    [Google Scholar]
  109. NohH. KingG.L. The role of protein kinase C activation in diabetic nephropathy.Kidney Int.200772106S49S5310.1038/sj.ki.500238617653211
    [Google Scholar]
  110. Rask-MadsenC. KingG.L. Vascular complications of diabetes: Mechanisms of injury and protective factors.Cell Metab.2013171203310.1016/j.cmet.2012.11.01223312281
    [Google Scholar]
  111. KrycerJ.R. QuekL.E. FrancisD. ZadoorianA. WeissF.C. CookeK.C. NelsonM.E. Diaz-VegasA. HumphreyS.J. ScalzoR. HirayamaA. IkedaS. ShojiF. SuzukiK. HuynhK. GilesC. VarneyB. NagarajanS.R. HoyA.J. SogaT. MeikleP.J. CooneyG.J. FazakerleyD.J. JamesD.E. Insulin signaling requires glucose to promote lipid anabolism in adipocytes.J. Biol. Chem.202029538132501326610.1074/jbc.RA120.01490732723868
    [Google Scholar]
  112. YuJ. LohK. SongZ. YangH. ZhangY. LinS. Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance.Nutr. Diabetes2018813410.1038/s41387‑018‑0045‑x29799006
    [Google Scholar]
  113. ShettyS. KumariS. Fatty acids and their role in type-2 diabetes (Review).Exp. Ther. Med.202122170610.3892/etm.2021.1013834007315
    [Google Scholar]
  114. XueC. ChenK. GaoZ. BaoT. DongL. ZhaoL. TongX. LiX. Common mechanisms underlying diabetic vascular complications: Focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction.Cell Commun. Signal.202321129810.1186/s12964‑022‑01016‑w37904236
    [Google Scholar]
  115. GumedeD.B. AbrahamseH. HoureldN.N. Targeting Wnt/β- catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds.Cell Commun. Signal.202422124410.1186/s12964‑024‑01623‑938671406
    [Google Scholar]
  116. ZhangH. NieX. ShiX. ZhaoJ. ChenY. YaoQ. SunC. YangJ. Regulatory mechanisms of the Wnt/β-catenin pathway in diabetic cutaneous ulcers.Front. Pharmacol.20189111410.3389/fphar.2018.0111430386236
    [Google Scholar]
  117. BonniciL. SuleimanS. Schembri-WismayerP. CassarA. Targeting signalling pathways in chronic wound healing.Int. J. Mol. Sci.20232515010.3390/ijms2501005038203220
    [Google Scholar]
  118. WangX. LiR. ZhaoH. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing.Biomed. Pharmacother.202417011603510.1016/j.biopha.2023.11603538113622
    [Google Scholar]
  119. MieczkowskiM. Mrozikiewicz-RakowskaB. KowaraM. KleibertM. CzupryniakL. The problem of wound healing in diabetes — From molecular pathways to the design of an animal model.Int. J. Mol. Sci.20222314793010.3390/ijms2314793035887276
    [Google Scholar]
  120. FeldmanE.L. CallaghanB.C. Pop-BusuiR. ZochodneD.W. WrightD.E. BennettD.L. BrilV. RussellJ.W. ViswanathanV. Diabetic neuropathy.Nat. Rev. Dis. Primers2019514110.1038/s41572‑019‑0092‑131197183
    [Google Scholar]
  121. RiwaldtS. CorydonT.J. PantaloneD. SahanaJ. WiseP. WehlandM. KrügerM. MelnikD. KoppS. InfangerM. GrimmD. Role of apoptosis in wound healing and apoptosis alterations in microgravity.Front. Bioeng. Biotechnol.2021967965010.3389/fbioe.2021.67965034222218
    [Google Scholar]
  122. YiJ. GaoZ.F. MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4.Int. J. Biol. Macromol.20191301910.1016/j.ijbiomac.2019.02.00330716366
    [Google Scholar]
  123. WangW. ZhangY. LiuW. XiaoH. ZhangQ. WangJ. LuoB. LMP1–miR-146a–CXCR4 axis regulates cell proliferation, apoptosis and metastasis.Virus Res.201927019765410.1016/j.virusres.2019.19765431299195
    [Google Scholar]
  124. HuX. liJ. FuM. ZhaoX. WangW. The JAK/STAT signaling pathway: From bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑134824210
    [Google Scholar]
  125. HaqueN. FareezI.M. FongL.F. MandalC. KasimN.H.A. KacharajuK.R. SoesilawatiP. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs.World J. Stem Cells202012993895110.4252/wjsc.v12.i9.93833033556
    [Google Scholar]
  126. LingL. HouJ. LiuD. TangD. ZhangY. ZengQ. PanH. FanL. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI).Stem Cell Res. Ther.20221317910.1186/s13287‑022‑02759‑635197118
    [Google Scholar]
  127. HuynhC. DingemanseJ. Meyer zu SchwabedissenH.E. SidhartaP.N. Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions.Pharmacol. Res.202016110509210.1016/j.phrs.2020.10509232758634
    [Google Scholar]
  128. XuZ. SunJ. TongQ. LinQ. QianL. ParkY. ZhengY. The role of ERK1/2 in the development of diabetic cardiomyopathy.Int. J. Mol. Sci.20161712200110.3390/ijms1712200127941647
    [Google Scholar]
  129. JeongY.M. ChengX.W. LeeS. LeeK.H. ChoH. KangJ.H. KimW. Preconditioning with far-infrared irradiation enhances proliferation, cell survival, and migration of rat bone marrow-derived stem cells via CXCR4-ERK pathways.Sci. Rep.2017711371810.1038/s41598‑017‑14219‑w29057951
    [Google Scholar]
  130. LongZ. QuaifeB. SalmanH. OltvaiZ.N. Cell-cell communication enhances bacterial chemotaxis toward external attractants.Sci. Rep.2017711285510.1038/s41598‑017‑13183‑928993669
    [Google Scholar]
  131. SenGuptaS. ParentC.A. BearJ.E. The principles of directed cell migration.Nat. Rev. Mol. Cell Biol.202122852954710.1038/s41580‑021‑00366‑633990789
    [Google Scholar]
  132. BalajiS. WatsonC.L. RanjanR. KingA. BollykyP.L. KeswaniS.G. Chemokine involvement in fetal and adult wound healing.Adv. Wound Care (New Rochelle)201541166067210.1089/wound.2014.056426543680
    [Google Scholar]
  133. SharmaR.K. JohnJ.R. Role of stem cells in the management of chronic wounds.Indian J. Plast. Surg.201245223724310.4103/0970‑0358.10128623162222
    [Google Scholar]
  134. ChengM. HuangK. ZhouJ. YanD. TangY.L. ZhaoT.C. MillerR.J. KishoreR. LosordoD.W. QinG. A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart.J. Mol. Cell. Cardiol.201581495310.1016/j.yjmcc.2015.01.02425655934
    [Google Scholar]
  135. LiJ. ChenH. ZhangD. XieJ. ZhouX. The role of stromal cell-derived factor 1 on cartilage development and disease.Osteoarthritis Cartilage202129331332210.1016/j.joca.2020.10.01033253889
    [Google Scholar]
  136. HanY. YangJ. FangJ. ZhouY. CandiE. WangJ. HuaD. ShaoC. ShiY. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases.Signal Transduct. Target. Ther.2022719210.1038/s41392‑022‑00932‑035314676
    [Google Scholar]
  137. YuY. WuR.X. GaoL.N. XiaY. TangH.N. ChenF.M. Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli.Cell Adhes. Migr.201610411810.1080/19336918.2016.113928726745021
    [Google Scholar]
  138. Zieger-naumannK. KuhlF. EngeleJ. G protein-mediated EGFR transactivation is a common mechanism through which the CXCL12 receptors, CXCR4 and CXCR7, control human cancer cell migration.Oncol. Rep.20235122410.3892/or.2023.868338099418
    [Google Scholar]
  139. Perpiñá-VicianoC. IşbilirA. ZarcaA. CasparB. KilpatrickL.E. HillS.J. SmitM.J. LohseM.J. HoffmannC. Kinetic analysis of the early signaling steps of the human chemokine receptor CXCR4.Mol. Pharmacol.2020982728710.1124/mol.119.11844832474443
    [Google Scholar]
  140. NgaiJ. InngjerdingenM. BergeT. TaskénK. Interplay between the heterotrimeric G-protein subunits Gαq and Gαi2 sets the threshold for chemotaxis and TCR activation.BMC Immunol.20091012710.1186/1471‑2172‑10‑2719426503
    [Google Scholar]
  141. KumarA. KremerK.N. DominguezD. TadiM. HedinK.E. Gα13 and Rho mediate endosomal trafficking of CXCR4 into Rab11+ vesicles upon stromal cell-derived factor-1 stimulation.J. Immunol.2011186295195810.4049/jimmunol.100201921148034
    [Google Scholar]
  142. SunY. MaoX. FanC. LiuC. GuoA. GuanS. JinQ. LiB. YaoF. JinF. CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis.Tumour Biol.20143587765777310.1007/s13277‑014‑1816‑124810923
    [Google Scholar]
  143. D’AgostinoG. ArtingerM. LocatiM. PerezL. LeglerD.F. BianchiM.E. RüeggC. ThelenM. MarcheseA. RocchiM.B.L. CecchinatoV. UguccioniM. β-arrestin1 and β-arrestin2 are required to support the activity of the CXCL12/HMGB1 heterocomplex on CXCR4.Front. Immunol.20201155082410.3389/fimmu.2020.55082433072091
    [Google Scholar]
  144. van GastelJ. HendrickxJ.O. LeysenH. Santos-OtteP. LuttrellL.M. MartinB. MaudsleyS. β-arrestin based receptor signaling paradigms: Potential therapeutic targets for complex age-related disorders.Front. Pharmacol.20189136910.3389/fphar.2018.0136930546309
    [Google Scholar]
  145. SmithJ.S. RajagopalS. The β-arrestins: Multifunctional regulators of G protein-coupled receptors.J. Biol. Chem.2016291178969897710.1074/jbc.R115.71331326984408
    [Google Scholar]
  146. BharadwajU. KasembeliM.M. RobinsonP. TweardyD.J. Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: Rationale, progress, and caution.Pharmacol. Rev.202072248652610.1124/pr.119.01844032198236
    [Google Scholar]
  147. RajagopalS. ShenoyS.K. GPCR desensitization: Acute and prolonged phases.Cell. Signal.20184191610.1016/j.cellsig.2017.01.02428137506
    [Google Scholar]
  148. SeyedabadiM. GharghabiM. GurevichE.V. GurevichV.V. Receptor-arrestin interactions: The GPCR perspective.Biomolecules202111221810.3390/biom1102021833557162
    [Google Scholar]
  149. BrittonC. PoznanskyM.C. ReevesP. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases.FASEB J.2021354e2126010.1096/fj.202001273R33715207
    [Google Scholar]
  150. PawigL. KlasenC. WeberC. BernhagenJ. NoelsH. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: Molecular perspectives.Front. Immunol.2015642910.3389/fimmu.2015.0042926347749
    [Google Scholar]
  151. EnglishE.J. MahnS.A. MarcheseA. Endocytosis is required for CXC chemokine receptor type 4 (CXCR4)-mediated Akt activation and antiapoptotic signaling.J. Biol. Chem.201829329114701148010.1074/jbc.RA118.00187229899118
    [Google Scholar]
  152. MalikR. MarcheseA. Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4.Mol. Biol. Cell201021142529254110.1091/mbc.e10‑02‑016920505072
    [Google Scholar]
  153. CialdaiF. RisalitiC. MoniciM. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space.Front. Bioeng. Biotechnol.20221095838110.3389/fbioe.2022.95838136267456
    [Google Scholar]
  154. Rønnov-JessenL. PetersenO.W. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia.Lab. Invest.19936866967078515656
    [Google Scholar]
  155. StrutzF. OkadaH. LoC.W. DanoffT. CaroneR.L. TomaszewskiJ.E. NeilsonE.G. Identification and characterization of a fibroblast marker: FSP1.J. Cell Biol.1995130239340510.1083/jcb.130.2.3937615639
    [Google Scholar]
  156. LiuS. Shi-wenX. BlumbachK. EastwoodM. DentonC.P. EckesB. KriegT. AbrahamD.J. LeaskA. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo.J. Cell Sci.2010123213674368210.1242/jcs.07067220940256
    [Google Scholar]
  157. ShiX. YoungC.D. ZhouH. WangX.J. Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts.Biomolecules20201012166610.3390/biom1012166633322749
    [Google Scholar]
  158. PakyariM. FarrokhiA. MaharlooeiM.K. GhaharyA. Critical role of transforming growth factor beta in different phases of wound healing.Adv. Wound Care (New Rochelle)20132521522410.1089/wound.2012.040624527344
    [Google Scholar]
  159. RestivoT.E. MaceK.A. HarkenA.H. YoungD.M. Application of the chemokine CXCL12 expression plasmid restores wound healing to near normal in a diabetic mouse model.J. Trauma201069239239810.1097/TA.0b013e3181e772b020699749
    [Google Scholar]
  160. ReesP.A. GreavesN.S. BaguneidM. BayatA. Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring.Adv. Wound Care (New Rochelle)201541168770310.1089/wound.2014.056826543682
    [Google Scholar]
  161. XuJ. HuJ. Idlett-AliS. ZhangL. CaplesK. PeddibhotlaS. ReevesM. ZgheibC. MalanyS. LiechtyK.W. Discovery of small molecule activators of chemokine receptor CXCR4 that improve diabetic wound healing.Int. J. Mol. Sci.2022234219610.3390/ijms2304219635216311
    [Google Scholar]
  162. PeddibhotlaS. CaplesK. MehtaA. ChenQ.Y. HuJ. Idlett-AliS. ZhangL. ZgheibC. XuJ. LiechtyK.W. MalanyS. Triazolothiadiazine derivative positively modulates CXCR4 signaling and improves diabetic wound healing.Biochem. Pharmacol.202321611576410.1016/j.bcp.2023.11576437634595
    [Google Scholar]
  163. WangY. ZhuJ. ChenJ. XuR. GrothT. WanH. ZhouG. The signaling pathways induced by exosomes in promoting diabetic wound healing: A mini-review.Curr. Issues Mol. Biol.202244104960497610.3390/cimb4410033736286052
    [Google Scholar]
  164. TianX. XieG. XiaoH. DingF. BaoW. ZhangM. CXCR4 knockdown prevents inflammatory cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways.Cell Biosci.2019915510.1186/s13578‑019‑0315‑x31304005
    [Google Scholar]
  165. HanS.H. ChaeD.S. KimS.W. Dual CXCR4/IL-10 gene-edited human amniotic mesenchymal stem cells exhibit robust therapeutic properties in chronic wound healing.Int. J. Mol. Sci.202223231533810.3390/ijms23231533836499667
    [Google Scholar]
  166. BillahM. RidiandriesA. AllahwalaU. MudaliarH. DonaA. HunyorS. KhachigianL.M. BhindiR. Circulating mediators of remote ischemic preconditioning: Search for the missing link between non-lethal ischemia and cardioprotection.Oncotarget201910221624410.18632/oncotarget.2653730719216
    [Google Scholar]
  167. SharmaP. KumarA. DeyA.D. BehlT. ChadhaS. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within.Life Sci.202126811893210.1016/j.lfs.2020.11893233400933
    [Google Scholar]
  168. LeungT.H. SnyderE.R. LiuY. WangJ. KimS.K. A cellular, molecular, and pharmacological basis for appendage regeneration in mice.Genes Dev.201529202097210710.1101/gad.267724.11526494786
    [Google Scholar]
  169. WynnR.F. HartC.A. Corradi-PeriniC. O’NeillL. EvansC.A. WraithJ.E. FairbairnL.J. BellantuonoI. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow.Blood200410492643264510.1182/blood‑2004‑02‑052615251986
    [Google Scholar]
  170. ZhangD. FanG.C. ZhouX. ZhaoT. PashaZ. XuM. ZhuY. AshrafM. WangY. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium.J. Mol. Cell. Cardiol.200844228129210.1016/j.yjmcc.2007.11.01018201717
    [Google Scholar]
  171. OchoaO. TorresF.M. ShiremanP.K. Chemokines and diabetic wound healing.Vascular200715635035510.2310/6670.2007.0005618053419
    [Google Scholar]
  172. ReyM. Valenzuela-FernándezA. UrzainquiA. Yáñez-MóM. Pérez-MartínezM. PenelaP. MayorF. Sánchez-MadridF. Myosin IIA is involved in the endocytosis of CXCR4 induced by SDF-1α.J. Cell Sci.200712061126113310.1242/jcs.0341517327270
    [Google Scholar]
  173. SadriF. RezaeiZ. FereidouniM. The significance of the SDF-1/CXCR4 signaling pathway in the normal development.Mol. Biol. Rep.20224943307332010.1007/s11033‑021‑07069‑335067815
    [Google Scholar]
  174. JujoK. IiM. SekiguchiH. KlyachkoE. MisenerS. TanakaT. TongersJ. RoncalliJ. RenaultM.A. ThorneT. ItoA. ClarkeT. KamideC. TsurumiY. HagiwaraN. QinG. AsahiM. LosordoD.W. CXC-chemokine receptor 4 antagonist AMD3100 promotes cardiac functional recovery after ischemia/reperfusion injury via endothelial nitric oxide synthase-dependent mechanism.Circulation20131271637310.1161/CIRCULATIONAHA.112.09924223204107
    [Google Scholar]
  175. WangJ. TannousB.A. PoznanskyM.C. ChenH. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent.Pharmacol. Res.202015910501010.1016/j.phrs.2020.10501032544428
    [Google Scholar]
  176. PatrussiL. BaldariC.T. The CXCL12/CXCR4 axis as a therapeutic target in cancer and HIV-1 infection.Curr. Med. Chem.201118449751210.2174/09298671179448015921143114
    [Google Scholar]
  177. RodriguesM. KosaricN. BonhamC.A. GurtnerG.C. Wound healing: A cellular perspective.Physiol. Rev.201999166570610.1152/physrev.00067.201730475656
    [Google Scholar]
  178. BermudezD.M. XuJ. HerdrichB.J. RaduA. MitchellM.E. LiechtyK.W. Inhibition of stromal cell-derived factor-1α further impairs diabetic wound healing.J. Vasc. Surg.201153377478410.1016/j.jvs.2010.10.05621211927
    [Google Scholar]
  179. JørgensenA.S. DaugvilaiteV. De FilippoK. BergC. MavriM. Benned-JensenT. JuzenaiteG. HjortøG. RankinS. VåbenøJ. RosenkildeM.M. Biased action of the CXCR4-targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization.Commun. Biol.20214156910.1038/s42003‑021‑02070‑933980979
    [Google Scholar]
  180. EmbilJ.M. NagaiM.K. Becaplermin: Recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers.Expert Opin. Biol. Ther.20022221121810.1517/14712598.2.2.21111849120
    [Google Scholar]
  181. MillerC.C. MillerM.K. GhaffariA. KunimotoB. Treatment of chronic nonhealing leg ulceration with gaseous nitric oxide: A case study.J. Cutan. Med. Surg.20048423323810.1007/s10227‑004‑0106‑816092001
    [Google Scholar]
  182. Moeen RezakhanlouA. MillerC. McMullinB. GhaffariA. GarciaR. GhaharyA. Gaseous nitric oxide exhibits minimal effect on skin fibroblast extracellular matrix gene expression and immune cell viability.Cell Biol. Int.201135440741510.1042/CBI2010042021155711
    [Google Scholar]
  183. ZhaoL. LiJ. XuX. A nature-based solution for regulating the inflammatory phase of diabetic wound healing using a cold atmospheric plasma.Cell Rep. Phys. Sci.20245910214710.1016/j.xcrp.2024.102147
    [Google Scholar]
  184. KalaniM. JörneskogG. NaderiN. LindF. BrismarK. Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers.J. Diabetes Complications200216215315810.1016/S1056‑8727(01)00182‑912039398
    [Google Scholar]
  185. SharmaR. SharmaS.K. MudgalS.K. JellyP. ThakurK. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials.Sci. Rep.2021111218910.1038/s41598‑021‑81886‑133500533
    [Google Scholar]
  186. HartC.E. Loewen-RodriguezA. LessemJ. Dermagraft: Use in the treatment of chronic wounds.Adv. Wound Care (New Rochelle)20121313814110.1089/wound.2011.028224527294
    [Google Scholar]
  187. YangH-Y. FierroF. SoM. Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice.Stem Cells Transl. Med.20209111353136410.1002/sctm.19‑038032720751
    [Google Scholar]
  188. ZubairM. AhmadJ. Role of growth factors and cytokines in diabetic foot ulcer healing: A detailed review.Rev. Endocr. Metab. Disord.201920220721710.1007/s11154‑019‑09492‑130937614
    [Google Scholar]
  189. TakahashiK. YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006126466367610.1016/j.cell.2006.07.02416904174
    [Google Scholar]
  190. YamanakaS. Strategies and new developments in the generation of patient-specific pluripotent stem cells.Cell Stem Cell200711394910.1016/j.stem.2007.05.01218371333
    [Google Scholar]
  191. Nourian DehkordiA. Mirahmadi BabaheydariF. ChehelgerdiM. Raeisi DehkordiS. Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies.Stem Cell Res. Ther.201910111110.1186/s13287‑019‑1212‑230922387
    [Google Scholar]
  192. AminA.H. Abd ElmageedZ.Y. NairD. PartykaM.I. KadowitzP.J. BelmadaniS. MatrouguiK. Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice.Lab. Invest.201090798599610.1038/labinvest.2010.8620440273
    [Google Scholar]
  193. TrzynaA. Banaś-ZąbczykA. Adipose-derived stem cells secretome and its potential application in “Stem Cell-Free Therapy”.Biomolecules202111687810.3390/biom1106087834199330
    [Google Scholar]
  194. LukerG.D. YangJ. RichmondA. ScalaS. FestucciaC. SchotteliusM. WesterH.J. ZimmermannJ. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer.J. Leukoc. Biol.2021109596998910.1002/JLB.2BT1018‑715RR33104270
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998335873241012161428
Loading
/content/journals/cdr/10.2174/0115733998335873241012161428
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): angiogenesis; CXCR4; diabetic wound; MAPKs; oxygen deprivation; SDF-1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test