Skip to content
2000
image of Diabetes Mellitus: Exploring Biomarkers, Complications, and Therapeutic Strategies with a Spotlight on Cyanobacterial Bioactive Compounds - A Comprehensive Review

Abstract

Diabetes, regarded as a prevalent metabolic disorder with multifactorial origins, contributes to a myriad of global complications. These cumulate an elevated susceptibility to kidney failure, nerve impairment, blindness, atherosclerosis, heart ailments, and even strokes. Recent investigations underscore the diverse roles of associated biomarkers in diabetes progression. Among these are biomarkers for diabetes mellitus such as DPP-4, PPAR-ϒ, SGLT-2, α-amylase, and α-glucosidase, which are linked to the onset of diabetes and its related problems. As a result of undesirable adverse consequences linked to extant synthetic antidiabetic medications, research attention is increasingly directed towards formulating natural antidiabetic drugs, aiming for enhanced efficacy and reduced complications. Cyanobacteria stand out as a pivotal repository of natural bioactive metabolites extensively harnessed for pharmaceutical and nutraceutical development. The potent bioactive compounds sourced from cyanobacteria hold substantial promise, kindling high expectations in scientific research and presenting vast prospects for drug discovery and advancement. Some of these bioactive compounds have demonstrated impressive effectiveness, displaying successful applications across various phases of clinical trials. This review strives to provide a more precise understanding of diabetes mellitus, encompassing its clinical manifestation, epidemiological data, complications, and prevailing treatment modalities. The objective of this review is to contribute researchers and readers an enhanced and accurate understanding of diabetes mellitus by covering its clinical manifestation, epidemiological evidence, difficulties, and prevailing therapeutics possibilities.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998307764240909114007
2024-11-29
2025-01-22
Loading full text...

Full text loading...

References

  1. Kooti W. Farokhipour M. Asadzadeh Z. Ashtary-Larky D. Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician 2016 8 1 1832 1842 10.19082/1832 26955456
    [Google Scholar]
  2. Ismail M.Y. Clinical evaluation of antidiabetic activity of Trigonella seeds and Aegle marmelos Leaves. World Appl. Sci. J. 2009 7 10 1231 1234
    [Google Scholar]
  3. Arora S. Ojha S.K. Vohora D. Characterisation of Streptozotocin induced diabetes mellitus in Swiss Albino mice. Glob. J. Pharmacol. 2009 3 2 81 84
    [Google Scholar]
  4. Jothivel N. Ponnusamy S.P. Appachi M. Singaravel S. Rasilingam D. Deivasigamani K. Thangavel S. Antidiabetic activities of methanol leaf extract of Costus pictus D. Don in alloxan-induced diabetic rats. J. Health Sci. 2007 53 6 655 663 10.1248/jhs.53.655
    [Google Scholar]
  5. Bastaki S S. Diabetes mellitus and its treatment. Int. J. Diabetes Metab. 2005 13 3 111 134 10.1159/000497580
    [Google Scholar]
  6. Dixit V.P. Joshi S.C. Antiatherosclerotic effects of alfalfa meal ingestion in chicks: A biochemical evaluation. Indian J. Physiol. Pharmacol. 1985 29 1 47 50 4055016
    [Google Scholar]
  7. Eshrat M.H. Effect ofCoccinia indica (L.) andAbroma augusta (L.) on glycemia, lipid profile and on indicators of end-organ damage in streptozotocin induced diabetic rats. Indian J. Clin. Biochem. 2003 18 2 54 63 10.1007/BF02867368 23105393
    [Google Scholar]
  8. Grover N. Bafna P.A. Rana A.C. Diabetes and methods to induce experimental diabetes. Int. J. Pharm. Biol. Sci. 2011 1 4 414 419
    [Google Scholar]
  9. Nasab S.B. Homaei A. Pletschke B.I. Salinas-Salazar C. Castillo-Zacarias C. Parra-Saldívar R. Marine resources effective in controlling and treating diabetes and its associated complications. Process Biochem. 2020 92 313 342 10.1016/j.procbio.2020.01.024
    [Google Scholar]
  10. Abo-Shady A.M. Gheda S.F. Ismail G.A. Cotas J. Pereira L. Abdel-Karim O.H. Antioxidant and antidiabetic activity of algae. Life (Basel) 2023 13 2 460 10.3390/life13020460 36836817
    [Google Scholar]
  11. Scharp D.W. Marchetti P. Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Adv. Drug Deliv. Rev. 2014 67-68 35 73 10.1016/j.addr.2013.07.018 23916992
    [Google Scholar]
  12. Jun H.S. Yoon J.W. A new look at viruses in type 1 diabetes. Diabetes Metab. Res. Rev. 2003 19 1 8 31 10.1002/dmrr.337 12592641
    [Google Scholar]
  13. Wassmuth R. Lernmark Å. The genetics of susceptibility to diabetes. Clin. Immunol. Immunopathol. 1989 53 3 358 399 10.1016/0090‑1229(89)90002‑0 2680191
    [Google Scholar]
  14. World Health Organization Diabetes mellitus. Report of a WHO Study Group World Health Organ Tech Rep Ser. 1985 727 113
    [Google Scholar]
  15. American Diabetes Association 2014
  16. Alberti K.G.M.M. Zimmet P.Z. The WHO Consultation. Definition, diagnosis and classification of diabetes mellitus and its complications. Diabet. Med. 1998 15 539 553 10.1002/(SICI)1096‑9136(199807)15:7<539::AID‑DIA668>3.0.CO;2‑S 9686693
    [Google Scholar]
  17. Leonardo Jacob S. Pharmacology (The National Medical Series for Independent Study) Hong Kong, London Williams & Wilkins 1987
    [Google Scholar]
  18. Bloom A. Hayes T.M. Gamble D.R. Register of newly diagnosed diabetic children. BMJ 1975 3 5983 580 583 10.1136/bmj.3.5983.580 1174829
    [Google Scholar]
  19. Kumar C.R. Basic Pathology. 5th ed Bangalore Prism PVT 1992 569 587
    [Google Scholar]
  20. Wilson R. Anatomy and Pathophysiology in Health and Illness. 11th ed London, United Kingdom Churchill Livingstone Elsevier 2010 227 229
    [Google Scholar]
  21. Tripathi K.D. Essentials Medicals Pharmacology. 7th ed New Delhi (India) Jaypee Brothers Medical Publisher 2013 258 281
    [Google Scholar]
  22. Dyck P.J. Kratz K.M. Karnes J.L. Litchy W.J. Klein R. Pach J.M. Wilson D.M. O’Brien P.C. Melton L.J. III Service F.J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population‐based cohort. Neurology 1993 43 4 817 824 10.1212/WNL.43.4.817 8469345
    [Google Scholar]
  23. Harris M.I. Undiagnosed NIDDM: Clinical and public health issues. Diabetes Care 1993 16 4 642 652 10.2337/diacare.16.4.642 8462395
    [Google Scholar]
  24. Nguyen N.D.T. Le L.T. Targeted proteins for diabetes drug design. Adv Nat Sci Nanosci Nanotechnol 2012 3 1 9
    [Google Scholar]
  25. Liu Q. Chen L. Hu L. Guo Y. Shen X. Small molecules from natural sources, targeting signaling pathways in diabetes. Biochim. Biophys. Acta. Gene Regul. Mech. 2010 1799 10-12 854 865 10.1016/j.bbagrm.2010.06.004 20601278
    [Google Scholar]
  26. Patil S.R. Chavan A.B. Patel A.M. Chavan P.D. Bhopale J.V. A review on diabetes mellitus its types, pathophysiology, epidermiology and its global burden. J. Res. Appl. Sci. Biotechnol. 2023 2 4 73 79 10.55544/jrasb.2.4.9
    [Google Scholar]
  27. Hu F.B. Globalization of Diabetes. Diabetes Care 2011 34 6 1249 1257 10.2337/dc11‑0442 21617109
    [Google Scholar]
  28. Ley S.H. Hamdy O. Mohan V. Hu F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014 383 9933 1999 2007 10.1016/S0140‑6736(14)60613‑9 24910231
    [Google Scholar]
  29. Barnett A.H. Eff C. Leslie R.D.G. Pyke D.A. Diabetes in identical twins. Diabetologia 1981 20 2 87 93 10.1007/BF00262007 7193616
    [Google Scholar]
  30. Wang Y.C. McPherson K. Marsh T. Gortmaker S.L. Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011 378 9793 815 825 10.1016/S0140‑6736(11)60814‑3 21872750
    [Google Scholar]
  31. DeFronzo R.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The Claude Bernard Lecture 2009. Diabetologia 2010 53 7 1270 1287 10.1007/s00125‑010‑1684‑1 20361178
    [Google Scholar]
  32. Hemminki K. Li X. Sundquist K. Sundquist J. Familial risks for type 2 diabetes in Sweden. Diabetes Care 2010 33 2 293 297 10.2337/dc09‑0947 19903751
    [Google Scholar]
  33. Groop L. Forsblom C. Lehtovirta M. Tuomi T. Karanko S. Nissén M. Ehrnström B.O. Forsén B. Isomaa B. Snickars B. Taskinen M.R. Metabolic consequences of a family history of NIDDM (the Botnia study): Evidence for sex-specific parental effects. Diabetes 1996 45 11 1585 1593 10.2337/diab.45.11.1585 8866565
    [Google Scholar]
  34. Lyssenko V. Almgren P. Anevski D. Perfekt R. Lahti K. Nissén M. Isomaa B. Forsen B. Homström N. Saloranta C. Taskinen M.R. Groop L. Tuomi T. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes 2005 54 1 166 174 10.2337/diabetes.54.1.166 15616025
    [Google Scholar]
  35. Grant S.F.A. Thorleifsson G. Reynisdottir I. Benediktsson R. Manolescu A. Sainz J. Helgason A. Stefansson H. Emilsson V. Helgadottir A. Styrkarsdottir U. Magnusson K.P. Walters G.B. Palsdottir E. Jonsdottir T. Gudmundsdottir T. Gylfason A. Saemundsdottir J. Wilensky R.L. Reilly M.P. Rader D.J. Bagger Y. Christiansen C. Gudnason V. Sigurdsson G. Thorsteinsdottir U. Gulcher J.R. Kong A. Stefansson K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006 38 3 320 323 10.1038/ng1732 16415884
    [Google Scholar]
  36. Lyssenko V. Lupi R. Marchetti P. Del Guerra S. Orho-Melander M. Almgren P. Sjögren M. Ling C. Eriksson K.F. Lethagen L. Mancarella R. Berglund G. Tuomi T. Nilsson P. Del Prato S. Groop L. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J. Clin. Invest. 2007 117 8 2155 2163 10.1172/JCI30706 17671651
    [Google Scholar]
  37. Sladek R. Rocheleau G. Rung J. Dina C. Shen L. Serre D. Boutin P. Vincent D. Belisle A. Hadjadj S. Balkau B. Heude B. Charpentier G. Hudson T.J. Montpetit A. Pshezhetsky A.V. Prentki M. Posner B.I. Balding D.J. Meyre D. Polychronakos C. Froguel P. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007 445 7130 881 885 10.1038/nature05616 17293876
    [Google Scholar]
  38. Saxena R. Voight B.F. Lyssenko V. Burtt N.P. de Bakker P.I.W. Chen H. Roix J.J. Kathiresan S. Hirschhorn J.N. Daly M.J. Hughes T.E. Groop L. Altshuler D. Almgren P. Florez J.C. Meyer J. Ardlie K. Bengtsson Boström K. Isomaa B. Lettre G. Lindblad U. Lyon H.N. Melander O. Newton-Cheh C. Nilsson P. Orho-Melander M. Råstam L. Speliotes E.K. Taskinen M.R. Tuomi T. Guiducci C. Berglund A. Carlson J. Gianniny L. Hackett R. Hall L. Holmkvist J. Laurila E. Sjögren M. Sterner M. Surti A. Svensson M. Svensson M. Tewhey R. Blumenstiel B. Parkin M. DeFelice M. Barry R. Brodeur W. Camarata J. Chia N. Fava M. Gibbons J. Handsaker B. Healy C. Nguyen K. Gates C. Sougnez C. Gage D. Nizzari M. Gabriel S.B. Chirn G.W. Ma Q. Parikh H. Richardson D. Ricke D. Purcell S. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007 316 5829 1331 1336 10.1126/science.1142358 17463246
    [Google Scholar]
  39. Morris A.P. Voight B.F. Teslovich T.M. Ferreira T. Segrè A.V. Steinthorsdottir V. Strawbridge R.J. Khan H. Grallert H. Mahajan A. Prokopenko I. Kang H.M. Dina C. Esko T. Fraser R.M. Kanoni S. Kumar A. Lagou V. Langenberg C. Luan J. Lindgren C.M. Müller-Nurasyid M. Pechlivanis S. Rayner N.W. Scott L.J. Wiltshire S. Yengo L. Kinnunen L. Rossin E.J. Raychaudhuri S. Johnson A.D. Dimas A.S. Loos R.J.F. Vedantam S. Chen H. Florez J.C. Fox C. Liu C.T. Rybin D. Couper D.J. Kao W.H.L. Li M. Cornelis M.C. Kraft P. Sun Q. van Dam R.M. Stringham H.M. Chines P.S. Fischer K. Fontanillas P. Holmen O.L. Hunt S.E. Jackson A.U. Kong A. Lawrence R. Meyer J. Perry J.R.B. Platou C.G.P. Potter S. Rehnberg E. Robertson N. Sivapalaratnam S. Stančáková A. Stirrups K. Thorleifsson G. Tikkanen E. Wood A.R. Almgren P. Atalay M. Benediktsson R. Bonnycastle L.L. Burtt N. Carey J. Charpentier G. Crenshaw A.T. Doney A.S.F. Dorkhan M. Edkins S. Emilsson V. Eury E. Forsen T. Gertow K. Gigante B. Grant G.B. Groves C.J. Guiducci C. Herder C. Hreidarsson A.B. Hui J. James A. Jonsson A. Rathmann W. Klopp N. Kravic J. Krjutškov K. Langford C. Leander K. Lindholm E. Lobbens S. Männistö S. Mirza G. Mühleisen T.W. Musk B. Parkin M. Rallidis L. Saramies J. Sennblad B. Shah S. Sigurðsson G. Silveira A. Steinbach G. Thorand B. Trakalo J. Veglia F. Wennauer R. Winckler W. Zabaneh D. Campbell H. van Duijn C. Uitterlinden A.G. Hofman A. Sijbrands E. Abecasis G.R. Owen K.R. Zeggini E. Trip M.D. Forouhi N.G. Syvänen A.C. Eriksson J.G. Peltonen L. Nöthen M.M. Balkau B. Palmer C.N.A. Lyssenko V. Tuomi T. Isomaa B. Hunter D.J. Qi L. Shuldiner A.R. Roden M. Barroso I. Wilsgaard T. Beilby J. Hovingh K. Price J.F. Wilson J.F. Rauramaa R. Lakka T.A. Lind L. Dedoussis G. Njølstad I. Pedersen N.L. Khaw K.T. Wareham N.J. Keinanen-Kiukaanniemi S.M. Saaristo T.E. Korpi-Hyövälti E. Saltevo J. Laakso M. Kuusisto J. Metspalu A. Collins F.S. Mohlke K.L. Bergman R.N. Tuomilehto J. Boehm B.O. Gieger C. Hveem K. Cauchi S. Froguel P. Baldassarre D. Tremoli E. Humphries S.E. Saleheen D. Danesh J. Ingelsson E. Ripatti S. Salomaa V. Erbel R. Jöckel K.H. Moebus S. Peters A. Illig T. de Faire U. Hamsten A. Morris A.D. Donnelly P.J. Frayling T.M. Hattersley A.T. Boerwinkle E. Melander O. Kathiresan S. Nilsson P.M. Deloukas P. Thorsteinsdottir U. Groop L.C. Stefansson K. Hu F. Pankow J.S. Dupuis J. Meigs J.B. Altshuler D. Boehnke M. McCarthy M.I. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012 44 9 981 990 10.1038/ng.2383 22885922
    [Google Scholar]
  40. Flannick J. Thorleifsson G. Beer N.L. Jacobs S.B.R. Grarup N. Burtt N.P. Mahajan A. Fuchsberger C. Atzmon G. Benediktsson R. Blangero J. Bowden D.W. Brandslund I. Brosnan J. Burslem F. Chambers J. Cho Y.S. Christensen C. Douglas D.A. Duggirala R. Dymek Z. Farjoun Y. Fennell T. Fontanillas P. Forsén T. Gabriel S. Glaser B. Gudbjartsson D.F. Hanis C. Hansen T. Hreidarsson A.B. Hveem K. Ingelsson E. Isomaa B. Johansson S. Jørgensen T. Jørgensen M.E. Kathiresan S. Kong A. Kooner J. Kravic J. Laakso M. Lee J.Y. Lind L. Lindgren C.M. Linneberg A. Masson G. Meitinger T. Mohlke K.L. Molven A. Morris A.P. Potluri S. Rauramaa R. Ribel-Madsen R. Richard A.M. Rolph T. Salomaa V. Segrè A.V. Skärstrand H. Steinthorsdottir V. Stringham H.M. Sulem P. Tai E.S. Teo Y.Y. Teslovich T. Thorsteinsdottir U. Trimmer J.K. Tuomi T. Tuomilehto J. Vaziri-Sani F. Voight B.F. Wilson J.G. Boehnke M. McCarthy M.I. Njølstad P.R. Pedersen O. Groop L. Cox D.R. Stefansson K. Altshuler D. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 2014 46 4 357 363 10.1038/ng.2915 24584071
    [Google Scholar]
  41. Lyssenko V. Nagorny C.L.F. Erdos M.R. Wierup N. Jonsson A. Spégel P. Bugliani M. Saxena R. Fex M. Pulizzi N. Isomaa B. Tuomi T. Nilsson P. Kuusisto J. Tuomilehto J. Boehnke M. Altshuler D. Sundler F. Eriksson J.G. Jackson A.U. Laakso M. Marchetti P. Watanabe R.M. Mulder H. Groop L. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 2009 41 1 82 88 10.1038/ng.288 19060908
    [Google Scholar]
  42. Tang Y. Axelsson A.S. Spégel P. Andersson L.E. Mulder H. Groop L.C. Renström E. Rosengren A.H. Genotype-based treatment of type 2 diabetes with an α 2A -adrenergic receptor antagonist. Sci. Transl. Med. 2014 6 257 257ra139 10.1126/scitranslmed.3009934 25298321
    [Google Scholar]
  43. De Jesus D.F. Kulkarni R.N. Epigenetic modifiers of islet function and mass. Trends Endocrinol. Metab. 2014 25 12 628 636 10.1016/j.tem.2014.08.006 25246382
    [Google Scholar]
  44. Özcan S. Minireview: MicroRNA function in pancreatic β cells. Mol. Endocrinol. 2014 28 12 1922 1933 10.1210/me.2014‑1306 25396300
    [Google Scholar]
  45. Halban P.A. Polonsky K.S. Bowden D.W. Hawkins M.A. Ling C. Mather K.J. Powers A.C. Rhodes C.J. Sussel L. Weir G.C. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. J. Clin. Endocrinol. Metab. 2014 99 6 1983 1992 10.1210/jc.2014‑1425 24712577
    [Google Scholar]
  46. Ferrannini E. Mari A. β-Cell function in type 2 diabetes. Metabolism 2014 63 10 1217 1227 10.1016/j.metabol.2014.05.012 25070616
    [Google Scholar]
  47. Arkan M.C. Hevener A.L. Greten F.R. Maeda S. Li Z.W. Long J.M. Wynshaw-Boris A. Poli G. Olefsky J. Karin M. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 2005 11 2 191 198 10.1038/nm1185 15685170
    [Google Scholar]
  48. de Alvaro C. Teruel T. Hernandez R. Lorenzo M. Tumor necrosis factor α produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J. Biol. Chem. 2004 279 17 17070 17078 10.1074/jbc.M312021200 14764603
    [Google Scholar]
  49. Uysal K.T. Wiesbrock S.M. Hotamisligil G.S. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-α-mediated insulin resistance in genetic obesity. Endocrinology 1998 139 12 4832 4838 10.1210/endo.139.12.6337 9832419
    [Google Scholar]
  50. Ofei F. Hurel S. Newkirk J. Sopwith M. Taylor R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996 45 7 881 885 10.2337/diab.45.7.881 8666137
    [Google Scholar]
  51. Kim J.K. Kim Y.J. Fillmore J.J. Chen Y. Moore I. Lee J. Yuan M. Li Z.W. Karin M. Perret P. Shoelson S.E. Shulman G.I. Prevention of fat-induced insulin resistance by salicylate. J. Clin. Invest. 2001 108 3 437 446 10.1172/JCI11559 11489937
    [Google Scholar]
  52. Yuan M. Konstantopoulos N. Lee J. Hansen L. Li Z.W. Karin M. Shoelson S.E. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001 293 5535 1673 1677 10.1126/science.1061620 11533494
    [Google Scholar]
  53. Goldfine A.B. Fonseca V. Jablonski K.A. Pyle L. Staten M.A. Shoelson S.E. The effects of salsalate on glycemic control in patients with type 2 diabetes: A randomized trial. Ann. Intern. Med. 2010 152 6 346 357 10.7326/0003‑4819‑152‑6‑201003160‑00004 20231565
    [Google Scholar]
  54. Martin B.C. Warram J.H. Krolewski A.S. Soeldner J.S. Kahn C.R. Martin B.C. Bergman R.N. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: Results of a 25-year follow-up study. Lancet 1992 340 8825 925 929 10.1016/0140‑6736(92)92814‑V 1357346
    [Google Scholar]
  55. Kahn S.E. Cooper M.E. Del Prato S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet 2014 383 9922 1068 1083 10.1016/S0140‑6736(13)62154‑6 24315620
    [Google Scholar]
  56. Nauck M.A. Vardarli I. Deacon C.F. Holst J.J. Meier J.J. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: What is up, what is down? Diabetologia 2011 54 1 10 18 10.1007/s00125‑010‑1896‑4 20871975
    [Google Scholar]
  57. Madsbad S. The role of glucagon-like peptide-1 impairment in obesity and potential therapeutic implications. Diabetes Obes. Metab. 2014 16 1 9 21 10.1111/dom.12119 23617798
    [Google Scholar]
  58. Ritzel R.A. Meier J.J. Lin C.Y. Veldhuis J.D. Butler P.C. Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets. Diabetes 2007 56 1 65 71 10.2337/db06‑0734 17192466
    [Google Scholar]
  59. Cabrera O. Berman D.M. Kenyon N.S. Ricordi C. Berggren P.O. Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 2006 103 7 2334 2339 10.1073/pnas.0510790103 16461897
    [Google Scholar]
  60. Hodson D.J. Mitchell R.K. Bellomo E.A. Sun G. Vinet L. Meda P. Li D. Li W.H. Bugliani M. Marchetti P. Bosco D. Piemonti L. Johnson P. Hughes S.J. Rutter G.A. Lipotoxicity disrupts incretin-regulated human β cell connectivity. J. Clin. Invest. 2013 123 10 4182 4194 10.1172/JCI68459 24018562
    [Google Scholar]
  61. Rahier J. Guiot Y. Goebbels R.M. Sempoux C. Henquin J.C. Pancreatic β‐cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab. 2008 10 s4 Suppl. 4 32 42 10.1111/j.1463‑1326.2008.00969.x 18834431
    [Google Scholar]
  62. Marselli L. Suleiman M. Masini M. Campani D. Bugliani M. Syed F. Martino L. Focosi D. Scatena F. Olimpico F. Filipponi F. Masiello P. Boggi U. Marchetti P. Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia 2014 57 2 362 365 10.1007/s00125‑013‑3098‑3 24233056
    [Google Scholar]
  63. Marchetti P. Masini M. Autophagy and the pancreatic beta-cell in human type 2 diabetes. Autophagy 2009 5 7 1055 1056 10.4161/auto.5.7.9511 19657235
    [Google Scholar]
  64. Marchetti P. Bugliani M. Lupi R. Marselli L. Masini M. Boggi U. Filipponi F. Weir G.C. Eizirik D.L. Cnop M. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 2007 50 12 2486 2494 10.1007/s00125‑007‑0816‑8 17906960
    [Google Scholar]
  65. Gupta D. Leahy J.L. Islet amyloid and type 2 diabetes: Overproduction or inadequate clearance and detoxification? J. Clin. Invest. 2014 124 8 3292 3294 10.1172/JCI77506 25036704
    [Google Scholar]
  66. Deng S. Vatamaniuk M. Huang X. Doliba N. Lian M.M. Frank A. Velidedeoglu E. Desai N.M. Koeberlein B. Wolf B. Barker C.F. Naji A. Matschinsky F.M. Markmann J.F. Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 2004 53 3 624 632 10.2337/diabetes.53.3.624 14988246
    [Google Scholar]
  67. Giacca A. Xiao C. Oprescu A.I. Carpentier A.C. Lewis G.F. Lipid-induced pancreatic β-cell dysfunction: Focus on in vivo studies. Am. J. Physiol. Endocrinol. Metab. 2011 300 2 E255 E262 10.1152/ajpendo.00416.2010 21119027
    [Google Scholar]
  68. Patti M.E. Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr. Rev. 2010 31 3 364 395 10.1210/er.2009‑0027 20156986
    [Google Scholar]
  69. Petersen K.F. Befroy D. Dufour S. Dziura J. Ariyan C. Rothman D.L. DiPietro L. Cline G.W. Shulman G.I. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 2003 300 5622 1140 1142 10.1126/science.1082889 12750520
    [Google Scholar]
  70. Petersen K.F. Dufour S. Befroy D. Garcia R. Shulman G.I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 2004 350 7 664 671 10.1056/NEJMoa031314 14960743
    [Google Scholar]
  71. Mogensen M. Sahlin K. Fernström M. Glintborg D. Vind B.F. Beck-Nielsen H. Højlund K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 2007 56 6 1592 1599 10.2337/db06‑0981 17351150
    [Google Scholar]
  72. Petersen K.F. Dufour S. Shulman G.I. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med. 2005 2 9 e233 10.1371/journal.pmed.0020233 16089501
    [Google Scholar]
  73. Wang C.H. Wang C.C. Huang H.C. Wei Y.H. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J. 2013 280 4 1039 1050 10.1111/febs.12096 23253816
    [Google Scholar]
  74. Rains J.L. Jain S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011 50 5 567 575 10.1016/j.freeradbiomed.2010.12.006 21163346
    [Google Scholar]
  75. Morino K. Petersen K.F. Sono S. Choi C.S. Samuel V.T. Lin A. Gallo A. Zhao H. Kashiwagi A. Goldberg I.J. Wang H. Eckel R.H. Maegawa H. Shulman G.I. Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes. Diabetes 2012 61 4 877 887 10.2337/db11‑1391 22368174
    [Google Scholar]
  76. Ramachandran A Snehalatha C Latha E Vijay V Viswanathan M. Rising prevalence of NIDDM in an urban population in India. Diabetologia 1997 40 2 232 7
    [Google Scholar]
  77. Takaki A. Kawai D. Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int. J. Mol. Sci. 2013 14 10 20704 20728 10.3390/ijms141020704 24132155
    [Google Scholar]
  78. Halliwell B. Rafter J. Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005 81 1 268S 276S 10.1093/ajcn/81.1.268S 15640490
    [Google Scholar]
  79. Dysken M.W. Sano M. Asthana S. Vertrees J.E. Pallaki M. Llorente M. Love S. Schellenberg G.D. McCarten J.R. Malphurs J. Prieto S. Chen P. Loreck D.J. Trapp G. Bakshi R.S. Mintzer J.E. Heidebrink J.L. Vidal-Cardona A. Arroyo L.M. Cruz A.R. Zachariah S. Kowall N.W. Chopra M.P. Craft S. Thielke S. Turvey C.L. Woodman C. Monnell K.A. Gordon K. Tomaska J. Segal Y. Peduzzi P.N. Guarino P.D. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. JAMA 2014 311 1 33 44 10.1001/jama.2013.282834 24381967
    [Google Scholar]
  80. Trachootham D. Alexandre J. Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009 8 7 579 591 10.1038/nrd2803 19478820
    [Google Scholar]
  81. Shukla V. Mishra S.K. Pant H.C. Oxidative stress in neurodegeneration. Adv. Pharmacol. Sci. 2011 2011 1 13 10.1155/2011/572634 21941533
    [Google Scholar]
  82. Radak D. Resanovic I. Isenovic E.R. Link between oxidative stress and acute brain ischemia. Angiology 2014 65 8 667 676 10.1177/0003319713506516 24132856
    [Google Scholar]
  83. Paravicini T. Touyz R. Redox signaling in hypertension. Cardiovasc. Res. 2006 71 2 247 258 10.1016/j.cardiores.2006.05.001 16765337
    [Google Scholar]
  84. Obradovic M. Bogdanovic N. Radak D. Isenovic E.R. Editorial: Oxidative stress in pathophysiological conditions. Curr. Vasc. Pharmacol. 2015 13 2 226 228 10.2174/1570161113999150311153109 25980652
    [Google Scholar]
  85. Haigis M.C. Yankner B.A. The aging stress response. Mol. Cell 2010 40 2 333 344 10.1016/j.molcel.2010.10.002 20965426
    [Google Scholar]
  86. Al Ghouleh I. Khoo N.K.H. Knaus U.G. Griendling K.K. Touyz R.M. Thannickal V.J. Barchowsky A. Nauseef W.M. Kelley E.E. Bauer P.M. Darley-Usmar V. Shiva S. Cifuentes-Pagano E. Freeman B.A. Gladwin M.T. Pagano P.J. Oxidases and peroxidases in cardiovascular and lung disease: New concepts in reactive oxygen species signaling. Free Radic. Biol. Med. 2011 51 7 1271 1288 10.1016/j.freeradbiomed.2011.06.011 21722728
    [Google Scholar]
  87. Tabet F. Schiffrin E.L. Callera G.E. He Y. Yao G. Östman A. Kappert K. Tonks N.K. Touyz R.M. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ. Res. 2008 103 2 149 158 10.1161/CIRCRESAHA.108.178608 18566342
    [Google Scholar]
  88. Sikaris K.A. The clinical biochemistry of obesity. Clin. Biochem. Rev. 2004 25 3 165 181 18458706
    [Google Scholar]
  89. Sudar Milovanovic E. Jovanovic A. Misirkic-Marjanovic M. Vucicevic L. Janjetovic K. Isenovic E. Effects of intracerebroventricularly (ICV) injected ghrelin on cardiac inducible nitric oxide synthase activity/expression in obese rats. Exp. Clin. Endocrinol. Diabetes 2015 123 10 581 588 10.1055/s‑0035‑1559758 26600052
    [Google Scholar]
  90. Olivares-Corichi I. Rincon Viquez M. Gutierrez-Lopez L. Ceballos-Reyes G. Garcia-Sanchez J. Oxidative stress present in the blood from obese patients modifies the structure and function of insulin. Horm. Metab. Res. 2011 43 11 748 753 10.1055/s‑0031‑1286305 22009368
    [Google Scholar]
  91. Tereshin E.V. [A role of fatty acids in the development of oxidative stress in aging. A hypothesis]. Usp. Gerontol. 2007 20 1 59 65 17969588
    [Google Scholar]
  92. Hensley K. Robinson K.A. Gabbita S.P. Salsman S. Floyd R.A. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 2000 28 10 1456 1462 10.1016/S0891‑5849(00)00252‑5 10927169
    [Google Scholar]
  93. Khan N.I. Naz L. Yasmeen G. Obesity: An independent risk factor for systemic oxidative stress. Pak. J. Pharm. Sci. 2006 19 1 62 65 16632456
    [Google Scholar]
  94. Diabetes Atlas International Diabetes Federation Diabetes and impaired glucose tolerance. 2006
  95. Sridhar G.R. Rao P.V. Ahuja M.M.S. Epidemiology of diabetes and its complications. RSSDI textbook of diabetesmellitus New Delhi (India) Jaypee Brothers Medical Publishers 2002
    [Google Scholar]
  96. Kadiki O.A. Reddy M.R.S. Marzouk A.A. Incidence of insulin-dependent diabetes (IDDM) and non-insulin-dependent diabetes (NIDDM) (0–34 years at onset) in Benghazi, Libya. Diabetes Res. Clin. Pract. 1996 32 3 165 173 10.1016/0168‑8227(96)01262‑4 8858205
    [Google Scholar]
  97. Wang X. Bao W. Liu J. OuYang Y.Y. Wang D. Rong S. Xiao X. Shan Z.L. Zhang Y. Yao P. Liu L.G. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2013 36 1 166 175 10.2337/dc12‑0702 23264288
    [Google Scholar]
  98. Khan MS Ahmad I Herbal medicine: Current trends and future prospects. New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads Cambridge, Massachusetts Academic Press 2019
    [Google Scholar]
  99. Marles R.J. Farnsworth N.R. Antidiabetic plants and their active constituents. Phytomedicine 1995 2 2 137 189 10.1016/S0944‑7113(11)80059‑0 23196156
    [Google Scholar]
  100. Ineedi S. Shakya A. Singh G.K. Kumar V. Role of hyperforin in diabetes and its associated hyperlipidemia in rats. TANG [HUMANITAS MEDICINE] 2012 2 3 25.1 25.6 10.5667/tang.2012.0015
    [Google Scholar]
  101. Thakur A.K. Chatterjee S.S. Kumar V. Anxiolytic-like activity of leaf extract of traditionally used Indian-Mustard (Brassica juncea) in diabetic rats. TANG [HUMANITAS MEDICINE] 2013 3 1 7.1 7.7 10.5667/tang.2012.0042
    [Google Scholar]
  102. Ding E.L. Song Y. Manson J.E. Hunter D.J. Lee C.C. Rifai N. Buring J.E. Gaziano J.M. Liu S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009 361 12 1152 1163 10.1056/NEJMoa0804381 19657112
    [Google Scholar]
  103. Wang T.J. Larson M.G. Vasan R.S. Cheng S. Rhee E.P. McCabe E. Lewis G.D. Fox C.S. Jacques P.F. Fernandez C. O’Donnell C.J. Carr S.A. Mootha V.K. Florez J.C. Souza A. Melander O. Clish C.B. Gerszten R.E. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011 17 4 448 453 10.1038/nm.2307 21423183
    [Google Scholar]
  104. Esteve E. Ricart W. Fernández-Real J.M. Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes. Curr. Opin. Clin. Nutr. Metab. Care 2011 14 5 483 490 10.1097/MCO.0b013e328348c06d 21681087
    [Google Scholar]
  105. Hu F.B. Manson J.E. Stampfer M.J. Colditz G. Liu S. Solomon C.G. Willett W.C. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 2001 345 11 790 797 10.1056/NEJMoa010492 11556298
    [Google Scholar]
  106. Schellenberg E.S. Dryden D.M. Vandermeer B. Ha C. Korownyk C. Lifestyle interventions for patients with and at risk for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013 159 8 543 551 10.7326/0003‑4819‑159‑8‑201310150‑00007 24126648
    [Google Scholar]
  107. Odermatt A. Atanasov A.G. Balazs Z. Schweizer R.A.S. Nashev L.G. Schuster D. Langer T. Why is 11β-hydroxysteroid dehydrogenase type 1 facing the endoplasmic reticulum lumen? Mol. Cell. Endocrinol. 2006 248 1-2 15 23 10.1016/j.mce.2005.11.040 16412558
    [Google Scholar]
  108. Davani B. Portwood N. Bryzgalova G. Reimer M.K. Heiden T. Östenson C.G. Okret S. Ahren B. Efendic S. Khan A. Aged transgenic mice with increased glucocorticoid sensitivity in pancreatic beta-cells develop diabetes. Diabetes 2004 53 Suppl. 1 S51 S59 10.2337/diabetes.53.2007.S51 14749266
    [Google Scholar]
  109. Andrews R.C. Walker B.R. Edling N. Forsgren M. Klingstrom G. Glucocorticoids and insulin resistance: Old hormones, new targets. Clin. Sci. (Lond.) 1999 96 5 513 523 10.1042/cs0960513 10209084
    [Google Scholar]
  110. Grøntved A. Rimm E.B. Willett W.C. Andersen L.B. Hu F.B. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch. Intern. Med. 2012 172 17 1306 1312 10.1001/archinternmed.2012.3138 22868691
    [Google Scholar]
  111. International Diabetes Federation IDF Diabetes Atlas. 2013 Available From: http://www.idf.org/sites/ default/files/EN_6E_Atlas_Full_0.pdf
    [Google Scholar]
  112. Thakur A.K. Chatterjee S.S. Kumar V. Beneficial effects of Brassica juncea on cognitive functions in rats. Pharm. Biol. 2013 51 10 1304 1310 10.3109/13880209.2013.789917 23848339
    [Google Scholar]
  113. Atta-Ur-Rahman Zaman K. Medicinal plants with hypoglycemic activity. J. Ethnopharmacol. 1989 26 1 1 55 10.1016/0378‑8741(89)90112‑8 2664356
    [Google Scholar]
  114. Badawi A. Klip A. Haddad P. Cole D.E. Bailo B.G. El-Sohemy A. Karmali M. Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes Metab. Syndr. Obes. 2010 3 173 186 10.2147/DMSO.S9089 21437087
    [Google Scholar]
  115. Rendell M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs 2004 64 12 1339 1358 10.2165/00003495‑200464120‑00006 15200348
    [Google Scholar]
  116. Krentz A.J. Bailey C.J. Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs 2005 65 3 385 411 10.2165/00003495‑200565030‑00005 15669880
    [Google Scholar]
  117. Shoelson S.E. Lee J. Yuan M. Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance. Int. J. Obes. 2003 27 S3 Suppl. 3 S49 S52 10.1038/sj.ijo.0802501 14704745
    [Google Scholar]
  118. Hundal R.S. Petersen K.F. Mayerson A.B. Randhawa P.S. Inzucchi S. Shoelson S.E. Shulman G.I. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 2002 109 10 1321 1326 10.1172/JCI0214955 12021247
    [Google Scholar]
  119. Hotamisligil G.S. Inflammation and metabolic disorders. Nature 2006 444 7121 860 867 10.1038/nature05485 17167474
    [Google Scholar]
  120. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005 26 2 19 39
    [Google Scholar]
  121. Atanasov A.G. Waltenberger B. Pferschy-Wenzig E.M. Linder T. Wawrosch C. Uhrin P. Temml V. Wang L. Schwaiger S. Heiss E.H. Rollinger J.M. Schuster D. Breuss J.M. Bochkov V. Mihovilovic M.D. Kopp B. Bauer R. Dirsch V.M. Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015 33 8 1582 1614 10.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  122. Patwardhan B. Vaidya A.D. Chorghade M. Ayurveda and natural products drug discovery. Curr. Sci. 2004 2004 789 799
    [Google Scholar]
  123. Coman C. Rugina O.D. Socaciu C. Plants and natural compounds with antidiabetic action. Not. Bot. Horti Agrobot. Cluj-Napoca 2012 40 1 314 325 10.15835/nbha4017205
    [Google Scholar]
  124. Gothai S. Ganesan P. Park S.Y. Fakurazi S. Choi D.K. Arulselvan P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients 2016 8 8 461 10.3390/nu8080461 27527213
    [Google Scholar]
  125. Kim W. Egan J.M. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 2008 60 4 470 512 10.1124/pr.108.000604 19074620
    [Google Scholar]
  126. Haidari F. Omidian K. Rafiei H. Zarei M. Mohamad Shahi M. Green tea (Camellia sinensis) supplementation to diabetic rats improves serum and hepatic oxidative stress markers. Iran. J. Pharm. Res. 2013 12 1 109 114 24250578
    [Google Scholar]
  127. Massey C.N. Feig E.H. Duque-Serrano L. Wexler D. Moskowitz J.T. Huffman J.C. Well-being interventions for individuals with diabetes: A systematic review. Diabetes Res. Clin. Pract. 2019 147 118 133 10.1016/j.diabres.2018.11.014 30500545
    [Google Scholar]
  128. Issa A.A. Abd-Alla M.H. Ohyama T. Nitrogen Fixing Cyanobacteria: Future Prospect. Advances in Biology and Ecology of Nitrogen Fixation London InTechOpen 2014
    [Google Scholar]
  129. Whitton B.A. Potts M. Introduction to the cyanobacteria. The Ecological of Cyanobacteria. Whitton B.A. Potts M. The Netherlands Kluwer Academic Publishers 2000 1 11
    [Google Scholar]
  130. Papke R.T. Ramsing N.B. Bateson M.M. Ward D.M. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 2003 5 8 650 659 10.1046/j.1462‑2920.2003.00460.x 12871232
    [Google Scholar]
  131. Comte K. Sabacká M. Carré-Mlouka A. Elster J. Komárek J. Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol. Ecol. 2007 59 2 366 376 10.1111/j.1574‑6941.2006.00257.x 17313583
    [Google Scholar]
  132. Alwathnani H. Johansen J.R. Cyanobacteria in soils from a Mojave desert ecosystem. Monogr. West. N. Am. Nat. 2011 5 1 71 89 10.3398/042.005.0103
    [Google Scholar]
  133. Hall D.O. Markov S.A. Watanabe Y. Krishna Rao K. The potential applications of cyanobacterial photosynthesis for clean technologies. Photosynth. Res. 1995 46 1-2 159 167 10.1007/BF00020426 24301578
    [Google Scholar]
  134. Markov S.A. Lichtl R. Rao K.K. Hall D.O. A hollow fibre photobioreactor for continuous production of hydrogen by immobilized cyanobacteria under partial vacuum. Int. J. Hydrogen Energy 1993 18 11 901 906 10.1016/0360‑3199(93)90059‑J
    [Google Scholar]
  135. Painter T.J. Carbohydrate polymers in desert reclamation: The potential of microalgal biofertilizers. Carbohydr. Polym. 1993 20 2 77 86 10.1016/0144‑8617(93)90081‑E
    [Google Scholar]
  136. Wilde E.W. Benemann J.R. Weissman J.C. Tillett D.M. Cultivation of algae and nutrient removal in a waste heat utilization process. J. Appl. Phycol. 1991 3 2 159 167 10.1007/BF00003698
    [Google Scholar]
  137. Venkataraman G.S. The role of blue-green algae in tropical rice cultivation. Nitrogen fixation by free living microorganisms. Stewart W.D.P. UK Cambridge University Press 1975 207 218
    [Google Scholar]
  138. Murphy R.C. Stevens S.E. Jr Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 1992 58 5 1650 1655 10.1128/aem.58.5.1650‑1655.1992 1622235
    [Google Scholar]
  139. Metting B. Pyne J.W. Biologically active compounds from microalgae. Enzyme Microb. Technol. 1986 8 7 386 394 10.1016/0141‑0229(86)90144‑4
    [Google Scholar]
  140. Dixit R.B. Suseela M.R. Cyanobacteria: Potential candidates for drug discovery. Antonie van Leeuwenhoek 2013 103 5 947 961 10.1007/s10482‑013‑9898‑0 23532410
    [Google Scholar]
  141. Gademann K. Portmann C. Secondary metabolites from cyanobacteria: Complex structures and powerful bioactivities. Curr. Org. Chem. 2008 12 4 326 341 10.2174/138527208783743750
    [Google Scholar]
  142. Sivonen K. Borner T. Bioactive compounds produced by cyanobacteria. The Cyanobacteria: Molecular Biology, Genomics and Evolution. Herro A. Flores E. Norfolk, UK Caster Academic Press 2008 159 197
    [Google Scholar]
  143. Carmichael W.W. Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol. 1992 72 6 445 459 10.1111/j.1365‑2672.1992.tb01858.x 1644701
    [Google Scholar]
  144. Pflugmacher S. Possible allelopathic effects of cyanotoxins, with reference to microcystin‐LR, in aquatic ecosystems. Environ. Toxicol. 2002 17 4 407 413 10.1002/tox.10071 12203964
    [Google Scholar]
  145. Burja A.M. Banaigs B. Abou-Mansour E. Grant Burgess J. Wright P.C. Marine cyanobacteria—a prolific source of natural products. Tetrahedron 2001 57 46 9347 9377 10.1016/S0040‑4020(01)00931‑0
    [Google Scholar]
  146. Tan L.T. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 2007 68 7 954 979 10.1016/j.phytochem.2007.01.012 17336349
    [Google Scholar]
  147. Harvey A. Natural product pharmaceuticals: A diverse approach to drug discovery. Drug Discov. Today 2008 13 19-20 894 901 10.1016/j.drudis.2008.07.004 18691670
    [Google Scholar]
  148. Williams P.G. Yoshida W.Y. Moore R.E. Paul V.J. Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides. J. Nat. Prod. 2002 65 1 29 31 10.1021/np0102253 11809060
    [Google Scholar]
  149. Grindberg V.R. Shuman F.C. Sorrels M.C. Wingerd J. Gerwick H.W. Neurotoxic alkaloids from cyanobacteria. Modern Alkaloids: Structure, Isolation, Synthesis and Biology Hoboken, New Jersey Wiley 2008
    [Google Scholar]
  150. Sivonen K. Cyanobacterial Toxins. Encyclopedia of Microbiology, Oxford. Schaechter M. UK Elsevier 2009 290 307 10.1016/B978‑012373944‑5.00005‑5
    [Google Scholar]
  151. Stewart I. Schluter P.J. Shaw G.R. Cyanobacterial lipopolysaccharides and human health – a review. Environ. Health 2006 5 1 7 10.1186/1476‑069X‑5‑7 16563160
    [Google Scholar]
  152. Kurmayer R. Deng L. Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 2016 54 69 86 10.1016/j.hal.2016.01.004 27307781
    [Google Scholar]
  153. Mazard S. Penesyan A. Ostrowski M. Paulsen I. Egan S. Tiny microbes with a big impact: The role of cyanobacteria and their metabolites in shaping our future. Mar. Drugs 2016 14 5 97 10.3390/md14050097 27196915
    [Google Scholar]
  154. Buratti F.M. Manganelli M. Vichi S. Stefanelli M. Scardala S. Testai E. Funari E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017 91 3 1049 1130 10.1007/s00204‑016‑1913‑6 28110405
    [Google Scholar]
  155. Humbert J-F. Törökné A. New tools for the monitoring of cyanobacteria in freshwater ecosystems. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. Chichester, UK JohnWiley & Sons, Ltd. 2017 84 88
    [Google Scholar]
  156. Paerl H.W. Otten T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013 65 4 995 1010 10.1007/s00248‑012‑0159‑y 23314096
    [Google Scholar]
  157. Zanchett G. Oliveira-Filho E. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins (Basel) 2013 5 10 1896 1917 10.3390/toxins5101896 24152991
    [Google Scholar]
  158. Farrokh P. Sheikhpour M. Kasaeian A. Asadi H. Bavandi R. Cyanobacteria as an eco‐friendly resource for biofuel production: A critical review. Biotechnol. Prog. 2019 35 5 e2835 10.1002/btpr.2835 31063628
    [Google Scholar]
  159. e D. B N. T B. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl. Microbiol. Biotechnol. 2001 57 4 467 473 10.1007/s002530100810 11764765
    [Google Scholar]
  160. Volk R.B. Screening of microalgae for species excreting norharmane, a manifold biologically active indole alkaloid. Microbiol. Res. 2008 163 3 307 313 10.1016/j.micres.2006.06.002 16872816
    [Google Scholar]
  161. Wase N.V. Wright P.C. Systems biology of cyanobacterial secondary metabolite production and its role in drug discovery. Expert Opin. Drug Discov. 2008 3 8 903 929 10.1517/17460441.3.8.903 23484967
    [Google Scholar]
  162. Treadway J.L. Mendys P. Hoover D.J. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin. Investig. Drugs 2001 10 3 439 454 10.1517/13543784.10.3.439 11227044
    [Google Scholar]
  163. Grover J.K. Yadav S. Vats V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 2002 81 1 81 100 10.1016/S0378‑8741(02)00059‑4 12020931
    [Google Scholar]
  164. Manirafasha E. Ndikubwimana T. Zeng X. Lu Y. Jing K. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J. 2016 109 282 296 10.1016/j.bej.2016.01.025
    [Google Scholar]
  165. Husain A. Khan F. Osama K. Media optimization for C-phycocyanin production in Plectonema sp. using response surface methodology and central composite design. Int. J. Res. Pharmaceut. Sci. 2020 11 3 3897 3904 10.26452/ijrps.v11i3.2575
    [Google Scholar]
  166. de Jesus Raposo M.F. de Morais R.M.S.C. de Morais A.M.M.B. Health applications of bioactive compounds from marine microalgae. Life Sci. 2013 93 15 479 486 10.1016/j.lfs.2013.08.002 23994664
    [Google Scholar]
  167. Abdelsalam S. Korashy H.M. Zeidan A. Agouni A. The role of protein tyrosine phosphatase (PTP) -1B in cardio- vascular disease and its interplay with insulin resistance. Biomolecules. 2019 9 7 286
    [Google Scholar]
  168. Peng J. Yuan J.P. Wu C.F. Wang J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011 9 10 1806 1828 10.3390/md9101806 22072997
    [Google Scholar]
  169. Lee J.Y. Kim S.M. Jung W.S. Song D-G. Um B-H. Son J-K. Pan C-H. Phlorofucofuroeckol-A, a potent inhibitor of aldo-keto reductase family 1 member B10, from the edible brown alga Eisenia bicyclis. J. Korean Soc. Appl. Biol. Chem. 2012 55 6 721 727 10.1007/s13765‑012‑2169‑3
    [Google Scholar]
  170. Moon H.E. Islam M.N. Ahn B.R. Chowdhury S.S. Sohn H.S. Jung H.A. Choi J.S. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci. Biotechnol. Biochem. 2011 75 8 1472 1480 10.1271/bbb.110137 21821954
    [Google Scholar]
  171. Gunathilaka M.D.T.L. Peiris D. Ranasinghe P. Samarakoon K.W. In-vitro anti-diabetic activity of polyphenolic rich extract from marine brown algae Choonospora minima (Hering 1841). 12 th INTERNATIONAL RESEARCH CONFERENCE -GENERAL SIR JOHN KOTELAWALA DEFENCE UNIVERSITY Srilanka 2019
    [Google Scholar]
  172. Unnikrishnan P.S. Suthindhiran K. Jayasri M.A. Inhibitory potential of Turbinaria ornata against key meta- bolic enzymes linked to diabetes. Biomed. Res. Int. 2014 2014 783895
    [Google Scholar]
  173. Son Y.K. Jin S.E. Kim H.R. Woo H.C. Jung H.A. Choi J.S. Inhibitory activities of the edible brown alga Laminaria japonica on glucose-mediated protein damage and rat lens aldose reductase. Fish. Sci. 2011 77 6 1069 1079 10.1007/s12562‑011‑0406‑z
    [Google Scholar]
  174. Lee S.H. Jeon Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013 86 129 136 10.1016/j.fitote.2013.02.013 23466874
    [Google Scholar]
  175. Jung H.A. Yoon N.Y. Woo M.H. Choi J.S. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fish. Sci. 2008 74 6 1363 1365 10.1111/j.1444‑2906.2008.01670.x
    [Google Scholar]
  176. Yang H.W. Fernando K.H.N. Oh J.Y. Li X. Jeon Y.J. Ryu B. Anti-obesity and anti-diabetic effects of Ishige oka- murae. Mar. Drugs 2019 17 4 202 10.3390/md17040202 30934943
    [Google Scholar]
  177. Ali M. Kim D. Seong S. Kim H.R. Jung H. Choi J. α-Glucosidase and protein tyrosine phosphatase 1B inhibitory activity of plastoquinones from marine brown alga Sargassum serratifolium. Mar. Drugs 2017 15 12 368 10.3390/md15120368 29194348
    [Google Scholar]
  178. Ezzat S.M. Bishbishy M.H.E. Habtemariam S. Salehi B. Sharifi-Rad M. Martins N. Sharifi-Rad J. Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: A special emphasis on PTP1B inhibitors. Molecules 2018 23 12 3334 10.3390/molecules23123334 30558294
    [Google Scholar]
  179. Shin H.C. Kim S.H. Park Y. Lee B.H. Hwang H.J. Effects of 12-week oral supplementation of Ecklonia cava polyphenols on anthropometric and blood lipid parameters in overweight Korean individuals: A double-blind randomized clinical trial. Phytother. Res. 2012 26 3 363 368 10.1002/ptr.3559 21717516
    [Google Scholar]
  180. Gómez-Guzmán M. Rodríguez-Nogales A. Algieri F. Gálvez J. Potential role of seaweed polyphenols in cardiovascular-associated disorders. Mar. Drugs 2018 16 8 250 10.3390/md16080250 30060542
    [Google Scholar]
  181. Gunathilaka T.L. Samarakoon K. Ranasinghe P. Peiris L.D.C. Antidiabetic potential of marine brown algae a mini review. J. Diabetes Res. 2020 2020 1 13 10.1155/2020/1230218 32377517
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998307764240909114007
Loading
/content/journals/cdr/10.2174/0115733998307764240909114007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test