Skip to content
2000
image of Medicinal Plants Facilitate the Recovery of Diabetic Foot Ulcer by Regulating Macrophages: Latest Evidence and Insights

Abstract

Diabetic Foot Ulcer (DFU) is a major complication of diabetes that mostly affects the lower extremities, with a high incidence and recurrence rate in approximately 15% of patients with diabetes. The complexity of diabetic wounds poses a substantial challenge for clinical recovery, underscoring the need to investigate novel therapeutic approaches. Medicinal plants have been used to treat ulcers for centuries. Recently, there has been a growing focus on the development of topical preparations derived from medicinal plants that target macrophages as an adjuvant therapy for DFU. Macrophages have been identified as crucial factors in the DFU healing process. This review aims to introduce the latest evidence and insights into the role of medicinal plants in promoting DFU recovery by targeting macrophages. The molecular mechanisms underlying the preventive effects of medicinal plants on DFU primarily involve promoting M2 polarization of macrophages, inhibition of M1 polarization, and regulation of macrophage function. This review highlights the substantial potential of advancing the field of DFU management by medicinal plants and lays the groundwork for novel therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998332536241205164427
2024-12-23
2025-01-22
Loading full text...

Full text loading...

References

  1. Nair G.G. Tzanakakis E.S. Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat. Rev. Endocrinol. 2020 16 9 506 518 10.1038/s41574‑020‑0375‑3 32587391
    [Google Scholar]
  2. McDermott K. Fang M. Boulton A.J.M. Selvin E. Hicks C.W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes. Care 2023 46 1 209 221 10.2337/dci22‑0043 36548709
    [Google Scholar]
  3. Schmidt B.M. Wrobel J.S. Munson M. Rothenberg G. Holmes C.M. Podiatry impact on high-low amputation ratio characteristics: A 16-year retrospective study. Diabetes Res. Clin. Pract. 2017 126 272 277 10.1016/j.diabres.2017.02.008 28288437
    [Google Scholar]
  4. Yu G.T. Monie D.D. Khosla S. Tchkonia T. Kirkland J.L. Wyles S.P. Mapping cellular senescence networks in human diabetic foot ulcers. Geroscience 2023 46 1 1071 1082 10.1007/s11357‑023‑00854‑x 37380899
    [Google Scholar]
  5. Schaper N.C. van Netten J.J. Apelqvist J. Bus S.A. Fitridge R. Game F. Monteiro-Soares M. Senneville E. IWGDF Editorial Board Practical guidelines on the prevention and management of diabetes-related foot disease (IWGDF 2023 update). Diabetes Metab. Res. Rev. 2024 40 3 e3657 10.1002/dmrr.3657 37243927
    [Google Scholar]
  6. Armstrong D.G. Tan T.W. Boulton A.J.M. Bus S.A. Diabetic foot ulcers. JAMA 2023 330 1 62 75 10.1001/jama.2023.10578 37395769
    [Google Scholar]
  7. Lopes L. Setia O. Aurshina A. Liu S. Hu H. Isaji T. Liu H. Wang T. Ono S. Guo X. Yatsula B. Guo J. Gu Y. Navarro T. Dardik A. Stem cell therapy for diabetic foot ulcers: A review of preclinical and clinical research. Stem Cell Res. Ther. 2018 9 1 188 10.1186/s13287‑018‑0938‑6 29996912
    [Google Scholar]
  8. Yu Q. Qiao G. Wang M. Yu L. Sun Y. Shi H. Ma T. Stem cell-based therapy for diabetic foot ulcers. Front. Cell Dev. Biol. 2022 10 812262 10.3389/fcell.2022.812262 35178389
    [Google Scholar]
  9. Wu S. Zhou Z. Li Y. Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024 10 17 e37031 10.1016/j.heliyon.2024.e37031 39286219
    [Google Scholar]
  10. Maksimova N.V. Michenko A.V. Krasilnikova O.A. Klabukov I.D. Gadaev I.Y. Krasheninnikov M.E. Belkov P.A. Lyundup A.V. Mesenchymal stromal cells therapy alone does not lead to the complete restoration of the skin parameters in diabetic foot patients within a 3-year follow-up period. Bioimpacts 2021 12 1 51 55 10.34172/bi.2021.22167 35087716
    [Google Scholar]
  11. Chen H.R. Lu S.J. Wang Q. Li M.L. Chen X.C. Pan B.Y. Application of hyperbaric oxygen therapy in diabetic foot ulcers: A meta-analysis. Int. Wound J. 2024 21 4 e14621 10.1111/iwj.14621 38531355
    [Google Scholar]
  12. Wenhui L. Changgeng F. Lei X. Baozhong Y. Guobin L. Weijing F. Hyperbaric oxygen therapy for chronic diabetic foot ulcers: An overview of systematic reviews. Diabetes Res. Clin. Pract. 2021 176 108862 10.1016/j.diabres.2021.108862 34015392
    [Google Scholar]
  13. Kranke P. Bennett M.H. Martyn-St James M. Schnabel A. Debus S.E. Weibel S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Libr. 2015 2015 6 CD004123 10.1002/14651858.CD004123.pub4 26106870
    [Google Scholar]
  14. Yang Q. Zhang Y. Yin H. Lu Y. Topical recombinant human epidermal growth factor for diabetic foot ulcers: A meta-analysis of randomized controlled clinical trials. Ann. Vasc. Surg. 2020 62 442 451 10.1016/j.avsg.2019.05.041 31394225
    [Google Scholar]
  15. Chiu A. Sharma D. Zhao F. Tissue engineering-based strategies for diabetic foot ulcer management. Adv. Wound Care (New Rochelle) 2023 12 3 145 167 10.1089/wound.2021.0081 34939837
    [Google Scholar]
  16. Rayman G. Vas P. Dhatariya K. Driver V. Hartemann A. Londahl M. Piaggesi A. Apelqvist J. Attinger C. Game F. International Working Group on the Diabetic Foot (IWGDF) Guidelines on use of interventions to enhance healing of chronic foot ulcers in diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020 36 S1 Suppl. 1 e3283 10.1002/dmrr.3283 32176450
    [Google Scholar]
  17. Tan C.T. Liang K. Ngo Z.H. Dube C.T. Lim C.Y. Application of 3D bioprinting technologies to the management and treatment of diabetic foot ulcers. Biomedicines 2020 8 10 441 10.3390/biomedicines8100441
    [Google Scholar]
  18. Huang J. Chen J. Xiong S. Huang J. Liu Z. The effect of low-level laser therapy on diabetic foot ulcers: A meta-analysis of randomised controlled trials. Int. Wound J. 2021 18 6 763 776 10.1111/iwj.13577 33751853
    [Google Scholar]
  19. Liu Y. Liu Y. Deng J. Li W. Nie X. Fibroblast growth factor in diabetic foot ulcer: Progress and therapeutic prospects. Front. Endocrinol. (Lausanne) 2021 12 744868 10.3389/fendo.2021.744868 34721299
    [Google Scholar]
  20. Theocharidis G. Baltzis D. Roustit M. Tellechea A. Dangwal S. Khetani R.S. Shu B. Zhao W. Fu J. Bhasin S. Kafanas A. Hui D. Sui S.H. Patsopoulos N.A. Bhasin M. Veves A. Integrated skin transcriptomics and serum multiplex assays reveal novel mechanisms of wound healing in diabetic foot ulcers. Diabetes 2020 69 10 2157 2169 10.2337/db20‑0188 32763913
    [Google Scholar]
  21. Wong Y.H. Wong S.H. Wong X.T. Yap Q.Y. Yip K.Y. Wong L.Z. Chellappan D.K. Bhattamisra S.K. Candasamy M. Genetic associated complications of type 2 diabetes mellitus. Panminerva Med. 2022 64 2 274 288 10.23736/S0031‑0808.21.04285‑3 34609116
    [Google Scholar]
  22. Lin C.W. Hung C.M. Chen W.J. Chen J.C. Huang W.Y. Lu C.S. Kuo M.L. Chen S.G. New horizons of macrophage immunomodulation in the healing of diabetic foot ulcers. Pharmaceutics 2022 14 10 2065 10.3390/pharmaceutics14102065 36297499
    [Google Scholar]
  23. Theocharidis G. Thomas B.E. Sarkar D. Mumme H.L. Pilcher W.J.R. Dwivedi B. Sandoval-Schaefer T. Sîrbulescu R.F. Kafanas A. Mezghani I. Wang P. Lobao A. Vlachos I.S. Dash B. Hsia H.C. Horsley V. Bhasin S.S. Veves A. Bhasin M. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun. 2022 13 1 181 10.1038/s41467‑021‑27801‑8 35013299
    [Google Scholar]
  24. Liang X. Xia Y. Xu Z. Zeng Q. Gao G. He J. Xu D. Treatment of diabetic foot ulcers with external application of Chinese herbal medicine: An overview of overlapping systematic reviews. Int. Wound J. 2024 21 4 e14563 10.1111/iwj.14563 38135909
    [Google Scholar]
  25. Salazar-Gómez A. Alonso-Castro A.J. Medicinal plants from latin America with wound healing activity: Ethnomedicine, phytochemistry, preclinical and clinical studies—A review. Pharmaceuticals 2022 15 9 1095 10.3390/ph15091095 36145316
    [Google Scholar]
  26. Agyare C. Boakye Y.D. Bekoe E.O. Hensel A. Dapaah S.O. Appiah T. Review: African medicinal plants with wound healing properties. J. Ethnopharmacol. 2016 177 85 100 10.1016/j.jep.2015.11.008 26549271
    [Google Scholar]
  27. Jin L. Schmiech M. El Gaafary M. Zhang X. Syrovets T. Simmet T. A comparative study on root and bark extracts of Eleutherococcus senticosus and their effects on human macrophages. Phytomedicine 2020 68 153181 10.1016/j.phymed.2020.153181 32065954
    [Google Scholar]
  28. Ashouri F. Beyranvand F. Beigi Boroujeni N. Tavafi M. Sheikhian A. Varzi A.M. Shahrokhi S. Macrophage polarization in wound healing: Role of aloe vera/chitosan nanohydrogel. Drug Deliv. Transl. Res. 2019 9 6 1027 1042 10.1007/s13346‑019‑00643‑0 31115868
    [Google Scholar]
  29. Huang Y.Y. Lin C.W. Cheng N.C. Cazzell S.M. Chen H.H. Huang K.F. Tung K.Y. Huang H.L. Lin P.Y. Perng C.K. Shi B. Liu C. Ma Y. Cao Y. Li Y. Xue Y. Yan L. Li Q. Ning G. Chang S.C. Effect of a novel macrophage-regulating drug on wound healing in patients with diabetic foot ulcers. JAMA Netw. Open 2021 4 9 e2122607 e2122607 10.1001/jamanetworkopen.2021.22607 34477854
    [Google Scholar]
  30. Srirod S. Tewtrakul S. Anti-inflammatory and wound healing effects of cream containing Curcuma mangga extract. J. Ethnopharmacol. 2019 238 111828 10.1016/j.jep.2019.111828 30910580
    [Google Scholar]
  31. Shapouri-Moghaddam A. Mohammadian S. Vazini H. Taghadosi M. Esmaeili S.A. Mardani F. Seifi B. Mohammadi A. Afshari J.T. Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018 233 9 6425 6440 10.1002/jcp.26429 29319160
    [Google Scholar]
  32. Mosser D.M. Hamidzadeh K. Goncalves R. Macrophages and the maintenance of homeostasis. Cell. Mol. Immunol. 2021 18 3 579 587 10.1038/s41423‑020‑00541‑3 32934339
    [Google Scholar]
  33. Italiani P. Mosca E. Della Camera G. Melillo D. Migliorini P. Milanesi L. Boraschi D. Profiling the course of resolving vs. Persistent inflammation in human monocytes: The role of IL-1 family molecules. Front. Immunol. 2020 11 1426 10.3389/fimmu.2020.01426 32754155
    [Google Scholar]
  34. Yunna C. Mengru H. Lei W. Weidong C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020 877 173090 10.1016/j.ejphar.2020.173090 32234529
    [Google Scholar]
  35. Nakai K. Multiple roles of macrophage in skin. J. Dermatol. Sci. 2021 104 1 2 10 10.1016/j.jdermsci.2021.08.008 34493430
    [Google Scholar]
  36. Anders C.B. Lawton T.M.W. Smith H.L. Garret J. Doucette M.M. Ammons M.C.B. Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes. J. Leukoc. Biol. 2022 111 3 667 693 10.1002/JLB.6A1120‑744R 34374126
    [Google Scholar]
  37. Suleimanov S.K. Efremov Y.M. Klyucherev T.O. Salimov E.L. Ragimov A.A. Timashev P.S. Vlasova I.I. Radical-generating activity, phagocytosis, and mechanical properties of four phenotypes of human macrophages. Int. J. Mol. Sci. 2024 25 3 1860 10.3390/ijms25031860 38339139
    [Google Scholar]
  38. Han H. Kim Y. Mo H. Choi S.H. Lee K. Rim Y.A. Ju J.H. Preferential stimulation of melanocytes by M2 macrophages to produce melanin through vascular endothelial growth factor. Sci. Rep. 2022 12 1 6416 10.1038/s41598‑022‑08163‑7 35440608
    [Google Scholar]
  39. Edgar L. Akbar N. Braithwaite A.T. Krausgruber T. Gallart-Ayala H. Bailey J. Corbin A.L. Khoyratty T.E. Chai J.T. Alkhalil M. Rendeiro A.F. Ziberna K. Arya R. Cahill T.J. Bock C. Laurencikiene J. Crabtree M.J. Lemieux M.E. Riksen N.P. Netea M.G. Wheelock C.E. Channon K.M. Rydén M. Udalova I.A. Carnicer R. Choudhury R.P. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis. Circulation 2021 144 12 961 982 10.1161/CIRCULATIONAHA.120.046464 34255973
    [Google Scholar]
  40. Cao W. Peng S. Yao Y. Xie J. Li S. Tu C. Gao C. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo. Acta Biomater. 2022 152 60 73 10.1016/j.actbio.2022.08.048 36049625
    [Google Scholar]
  41. Kuninaka Y. Ishida Y. Ishigami A. Nosaka M. Matsuki J. Yasuda H. Kofuna A. Kimura A. Furukawa F. Kondo T. Macrophage polarity and wound age determination. Sci. Rep. 2022 12 1 20327 10.1038/s41598‑022‑24577‑9 36434083
    [Google Scholar]
  42. Funes S.C. Rios M. Escobar-Vera J. Kalergis A.M. Implications of macrophage polarization in autoimmunity. Immunology 2018 154 2 186 195 10.1111/imm.12910 29455468
    [Google Scholar]
  43. Frykberg R.G. Banks J. Challenges in the treatment of chronic wounds. Adv. Wound Care (New Rochelle) 2015 4 9 560 582 10.1089/wound.2015.0635 26339534
    [Google Scholar]
  44. Dorrington M.G. Fraser I.D.C. NF-κB signaling in macrophages: Dynamics, crosstalk, and signal integration. Front. Immunol. 2019 10 705 10.3389/fimmu.2019.00705 31024544
    [Google Scholar]
  45. Mussbacher M. Derler M. Basílio J. Schmid J.A. NF-κB in monocytes and macrophages – an inflammatory master regulator in multitalented immune cells. Front. Immunol. 2023 14 1134661 10.3389/fimmu.2023.1134661 36911661
    [Google Scholar]
  46. Toshchakov V. Jones B.W. Perera P.Y. Thomas K. Cody M.J. Zhang S. Williams B.R.G. Major J. Hamilton T.A. Fenton M.J. Vogel S.N. TLR4, but not TLR2, mediates IFN-β–induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 2002 3 4 392 398 10.1038/ni774 11896392
    [Google Scholar]
  47. Cai Y. Chen K. Liu C. Qu X. Harnessing strategies for enhancing diabetic wound healing from the perspective of spatial inflammation patterns. Bioact. Mater. 2023 28 243 254 10.1016/j.bioactmat.2023.04.019 37292231
    [Google Scholar]
  48. Kharaziha M. Baidya A. Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 2021 33 39 2100176 10.1002/adma.202100176 34251690
    [Google Scholar]
  49. Chen C. Liu T. Tang Y. Luo G. Liang G. He W. Epigenetic regulation of macrophage polarization in wound healing. Burns Trauma 2023 11 tkac057 10.1093/burnst/tkac057 36687556
    [Google Scholar]
  50. He X. Tan S. Shao Z. Wang X. Latitudinal and longitudinal regulation of tissue macrophages in inflammatory diseases. Genes Dis. 2022 9 5 1194 1207 10.1016/j.gendis.2021.06.007 35873033
    [Google Scholar]
  51. Kimball A.S. Davis F.M. denDekker A. Joshi A.D. Schaller M.A. Bermick J. Xing X. Burant C.F. Obi A.T. Nysz D. Robinson S. Allen R. Lukacs N.W. Henke P.K. Gudjonsson J.E. Moore B.B. Kunkel S.L. Gallagher K.A. The histone methyltransferase Setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair. Immunity 2019 51 2 258 271.e5 10.1016/j.immuni.2019.06.015 31350176
    [Google Scholar]
  52. Wang J. Feng J. Ni Y. Wang Y. Zhang T. Cao Y. Zhou M. Zhao C. Histone modifications and their roles in macrophage-mediated inflammation: A new target for diabetic wound healing. Front. Immunol. 2024 15 1450440 10.3389/fimmu.2024.1450440 39229271
    [Google Scholar]
  53. Li B. Tan T.B. Wang L. Zhao X.Y. Tan G.J. p38MAPK/SGK1 signaling regulates macrophage polarization in experimental autoimmune encephalomyelitis. Aging (Albany NY) 2019 11 3 898 907 10.18632/aging.101786 30716717
    [Google Scholar]
  54. Louiselle A.E. Niemiec S.M. Zgheib C. Liechty K.W. Macrophage polarization and diabetic wound healing. Transl. Res. 2021 236 109 116 10.1016/j.trsl.2021.05.006 34089902
    [Google Scholar]
  55. Su H.Y. Yang C.Y. Ou H.T. Chen S.G. Chen J.C. Ho H.J. Kuo S. Cost-effectiveness of novel macrophage-regulating treatment for wound healing in patients with diabetic foot ulcers from the Taiwan health care sector perspective. JAMA Netw. Open 2023 6 1 e2250639 10.1001/jamanetworkopen.2022.50639 36633847
    [Google Scholar]
  56. Lin C.W. Chen C.C. Huang W.Y. Chen Y.Y. Chen S.T. Chou H.W. Hung C.M. Chen W.J. Lu C.S. Nian S.X. Chen S.G. Chang H.W. Chang V.H.S. Liu L.Y. Kuo M.L. Chang S.C. Restoring prohealing/remodeling-associated M2a/c macrophages using ON101 accelerates diabetic wound healing. JID Innovations 2022 2 5 100138 10.1016/j.xjidi.2022.100138 36017415
    [Google Scholar]
  57. Zhang X. Ma Z. Wang Y. Sun B. Guo X. Pan C. Chen L. Angelica Dahurica ethanolic extract improves impaired wound healing by activating angiogenesis in diabetes. PLoS One 2017 12 5 e0177862 10.1371/journal.pone.0177862 28542422
    [Google Scholar]
  58. Guo J. Hu Z. Yan F. Lei S. Li T. Li X. Xu C. Sun B. Pan C. Chen L. Angelica dahurica promoted angiogenesis and accelerated wound healing in db/db mice via the HIF-1α/PDGF-β signaling pathway. Free Radic. Biol. Med. 2020 160 447 457 10.1016/j.freeradbiomed.2020.08.015 32853721
    [Google Scholar]
  59. Hu Y. Lei S. Yan Z. Hu Z. Guo J. Guo H. Sun B. Pan C. Angelica dahurica regulated the polarization of macrophages and accelerated wound healing in diabetes: A network pharmacology study and In Vivo experimental validation. Front. Pharmacol. 2021 12 678713 10.3389/fphar.2021.678713 34234674
    [Google Scholar]
  60. Chao Y.H. Yang W.T. Li M.C. Yang F.L. Lee R.P. Angelica dahurica and Rheum officinale facilitated diabetic wound healing by elevating vascular endothelial growth factor. Am. J. Chin. Med. 2021 49 6 1515 1533 10.1142/S0192415X21500713 34224339
    [Google Scholar]
  61. Zou J. Duan Y. Wang Y. Liu A. Chen Y. Guo D. Guo W. Li S. Su Z. Wu Y. Lu H. Deng Y. Zhu J. Li F. Phellopterin cream exerts an anti-inflammatory effect that facilitates diabetes-associated cutaneous wound healing via SIRT1. Phytomedicine 2022 107 154447 10.1016/j.phymed.2022.154447 36150345
    [Google Scholar]
  62. Bashmakov Y.K. Assaad-Khalil S. Petyaev I.M. Resveratrol may be beneficial in treatment of diabetic foot syndrome. Med. Hypotheses 2011 77 3 364 367 10.1016/j.mehy.2011.05.016 21689891
    [Google Scholar]
  63. Pandey S. Shamim A. Shaif M. Kushwaha P. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 8 1811 1825 10.1007/s00210‑023‑02441‑5 36862150
    [Google Scholar]
  64. Gokce E.H. Tuncay Tanrıverdi S. Eroglu I. Tsapis N. Gokce G. Tekmen I. Fattal E. Ozer O. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats. Eur. J. Pharm. Biopharm. 2017 119 17 27 10.1016/j.ejpb.2017.04.027 28461085
    [Google Scholar]
  65. Zhu W. Dong Y. Xu P. Pan Q. Jia K. Jin P. Zhou M. Xu Y. Guo R. Cheng B. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater. 2022 154 212 230 10.1016/j.actbio.2022.10.038 36309190
    [Google Scholar]
  66. Lu J. He R. Sun P. Zhang F. Linhardt R.J. Zhang A. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int. J. Biol. Macromol. 2020 150 765 774 10.1016/j.ijbiomac.2020.02.035 32035956
    [Google Scholar]
  67. Meng M. Yao J. Zhang Y. Sun H. Liu M. Potential anti-rheumatoid arthritis activities and mechanisms of Ganoderma lucidum polysaccharides. Molecules 2023 28 6 2483 10.3390/molecules28062483 36985456
    [Google Scholar]
  68. Li F. Liu T. Liu X. Han C. Li L. Zhang Q. Sui X. Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization. Int. J. Biol. Macromol. 2024 260 Pt 2 129682 10.1016/j.ijbiomac.2024.129682 38266851
    [Google Scholar]
  69. Li T.H. Hou C.C. Chang C.L.T. Yang W.C. Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos. Evid. Based Complement. Alternat. Med. 2011 2011 1 128402 10.1155/2011/128402 20924500
    [Google Scholar]
  70. Fang C.L. Paul C.R. Day C.H. Chang R.L. Kuo C.H. Ho T.J. Hsieh D.J.Y. Viswanadha V.P. Kuo W.W. Huang C.Y. Poria cocos (Fuling) targets TGFβ /Smad7 associated collagen accumulation and enhances Nrf2-antioxidant mechanism to exert anti-skin aging effects in human dermal fibroblasts. Environ. Toxicol. 2021 36 5 729 736 10.1002/tox.23075 33336893
    [Google Scholar]
  71. Ding X. Li S. Tian M. Yang P. Ding Y. Wang Y. Duan G. Zhang D. Chen B. Tan Q. Facile preparation of a novel nanoemulsion based hyaluronic acid hydrogel loading with Poria cocos triterpenoids extract for wound dressing. Int. J. Biol. Macromol. 2023 226 1490 1499 10.1016/j.ijbiomac.2022.11.261 36442559
    [Google Scholar]
  72. Ma X. Zhang W. Jiang Y. Wen J. Wei S. Zhao Y. Paeoniflorin, a natural product with multiple targets in liver diseases—a mini review. Front. Pharmacol. 2020 11 531 10.3389/fphar.2020.00531 32410996
    [Google Scholar]
  73. Yu W. Ilyas I. Hu X. Xu S. Yu H. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Front. Immunol. 2022 13 1072007 10.3389/fimmu.2022.1072007 36618414
    [Google Scholar]
  74. Yang H. Song L. Sun B. Chu D. Yang L. Li M. Li H. Dai Y. Yu Z. Guo J. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater. Today Bio 2021 12 100139 10.1016/j.mtbio.2021.100139 34632363
    [Google Scholar]
  75. Pignet A.L. Schellnegger M. Hecker A. Kohlhauser M. Kotzbeck P. Kamolz L.P. Resveratrol-induced signal transduction in wound healing. Int. J. Mol. Sci. 2021 22 23 12614 10.3390/ijms222312614 34884419
    [Google Scholar]
  76. Ding Y. Yang P. Li S. Zhang H. Ding X. Tan Q. Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice. Pharm. Biol. 2022 60 1 2328 2337 10.1080/13880209.2022.2149821 36469602
    [Google Scholar]
  77. Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv. 2019 26 1 860 869 10.1080/10717544.2019.1660732 31524010
    [Google Scholar]
  78. Li S. Yang P. Ding X. Zhang H. Ding Y. Tan Q. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype. Burns Trauma 2022 10 tkac046 10.1093/burnst/tkac046 36568527
    [Google Scholar]
  79. Chen X. Peng L.H. Shan Y.H. Li N. Wei W. Yu L. Li Q.M. Liang W.Q. Gao J.Q. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery. Int. J. Pharm. 2013 447 1-2 171 181 10.1016/j.ijpharm.2013.02.054 23500766
    [Google Scholar]
  80. Luo X. Huang P. Yuan B. Liu T. Lan F. Lu X. Dai L. Liu Y. Yin H. Astragaloside IV enhances diabetic wound healing involving upregulation of alternatively activated macrophages. Int. Immunopharmacol. 2016 35 22 28 10.1016/j.intimp.2016.03.020 27016716
    [Google Scholar]
  81. Fu J. Huang J. Lin M. Xie T. You T. Quercetin promotes diabetic wound healing via switching macrophages From M1 to M2 polarization. J. Surg. Res. 2020 246 213 223 10.1016/j.jss.2019.09.011 31606511
    [Google Scholar]
  82. Yu F. Yu N. Peng J. Zhao Y. Zhang L. Wang X. Xu X. Zhou J. Wang F. Emodin inhibits lipid accumulation and inflammation in adipose tissue of high-fat diet-fed mice by inducing M2 polarization of adipose tissue macrophages. FASEB J. 2021 35 7 e21730 10.1096/fj.202100157RR 34110631
    [Google Scholar]
  83. Chen C. Lin Z. Liu W. Hu Q. Wang J. Zhuang X. Guan S. Wu X. Hu T. Quan S. Jin X. Shen J. Emodin accelerates diabetic wound healing by promoting anti-inflammatory macrophage polarization. Eur. J. Pharmacol. 2022 936 175329 10.1016/j.ejphar.2022.175329 36341884
    [Google Scholar]
  84. Qian Y. Zheng Y. Jin J. Wu X. Xu K. Dai M. Niu Q. Zheng H. He X. Shen J. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv. Mater. 2022 34 29 2200521 10.1002/adma.202200521 35576814
    [Google Scholar]
  85. Li S. Yu Y. Chen J. Guo B. Yang L. Ding W. Evaluation of the antibacterial effects and mechanism of action of Protocatechualdehyde against Ralstonia solanacearum. Molecules 2016 21 6 754 10.3390/molecules21060754 27294898
    [Google Scholar]
  86. Liu J. Qu M. Wang C. Xue Y. Huang H. Chen Q. Sun W. Zhou X. Xu G. Jiang X. A dual-cross-linked hydrogel patch for promoting diabetic wound healing. Small 2022 18 17 2106172 10.1002/smll.202106172 35319815
    [Google Scholar]
  87. Fu Y.J. Shi Y.F. Wang L.Y. Zhao Y.F. Wang R.K. Li K. Zhang S.T. Zha X.J. Wang W. Zhao X. Yang W. All-natural immunomodulatory bioadhesive hydrogel promotes angiogenesis and diabetic wound healing by regulating macrophage heterogeneity. Adv. Sci. (Weinh.) 2023 10 13 2206771 10.1002/advs.202206771 36862027
    [Google Scholar]
  88. Balcazar N. Betancur L.I. Muñoz D.L. Cabrera F.J. Castaño A. Echeverri L.F. Acin S. Ursolic acid lactone obtained from Eucalyptus tereticornis increases glucose uptake and reduces inflammatory activity and intracellular neutral fat: An In Vitro study. Molecules 2021 26 8 2282 10.3390/molecules26082282 33920841
    [Google Scholar]
  89. Lv H. Zhao M. Li Y. Li K. Chen S. Zhao W. Wu S. Han Y. Electrospun chitosan-polyvinyl alcohol nanofiber dressings loaded with bioactive ursolic acid promoting diabetic wound healing. Nanomaterials 2022 12 17 2933 10.3390/nano12172933 36079971
    [Google Scholar]
  90. Wang C.S. Luo S.D. Jia S. Wu W. Chang S.F. Feng S.W. Yang C.H. Lin J.H. Wee Y. Balance of macrophage activation by a complex coacervate-based adhesive drug carrier facilitates diabetic wound healing. Antioxidants 2022 11 12 2351 10.3390/antiox11122351 36552559
    [Google Scholar]
  91. Wang S. Liu Y. Wang X. Chen L. Huang W. Xiong T. Wang N. Guo J. Gao Z. Jin M. Modulating macrophage phenotype for accelerated wound healing with chlorogenic acid-loaded nanocomposite hydrogel. J. Control. Release 2024 369 420 443 10.1016/j.jconrel.2024.03.054 38575075
    [Google Scholar]
  92. Fan X. Huang J. Zhang W. Su Z. Li J. Wu Z. Zhang P. A multifunctional, tough, stretchable, and transparent curcumin hydrogel with potent antimicrobial, antioxidative, anti-inflammatory, and angiogenesis capabilities for diabetic wound healing. ACS Appl. Mater. Interfaces 2024 16 8 9749 9767 10.1021/acsami.3c16837 38359334
    [Google Scholar]
  93. Nayak B.S. Ramdeen R. Adogwa A. Ramsubhag A. Marshall J.R. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int. Wound J. 2012 9 6 650 655 10.1111/j.1742‑481X.2011.00933.x 22296524
    [Google Scholar]
  94. Telgenhoff D. Lam K. Ramsay S. Vasquez V. Villareal K. Slusarewicz P. Attar P. Shroot B. Influence of papain urea copper chlorophyllin on wound matrix remodeling. Wound Repair. Regen. 2007 15 5 727 735 10.1111/j.1524‑475X.2007.00279.x 17971019
    [Google Scholar]
  95. Collard E. Roy S. Improved function of diabetic wound-site macrophages and accelerated wound closure in response to oral supplementation of a fermented papaya preparation. Antioxid. Redox Signal. 2010 13 5 599 606 10.1089/ars.2009.3039 20095880
    [Google Scholar]
  96. Fan S.L. Lin J.A. Chen S.Y. Lin J.H. Lin H.T. Chen Y.Y. Yen G.C. Effects of Hsian-tsao ( Mesona procumbens Hemsl.) extracts and its polysaccharides on the promotion of wound healing under diabetes-like conditions. Food Funct. 2021 12 1 119 132 10.1039/D0FO02180F 33242056
    [Google Scholar]
  97. Klabukov I. Atiakshin D. Kogan E. Ignatyuk M. Krasheninnikov M. Zharkov N. Yakimova A. Grinevich V. Pryanikov P. Parshin V. Sosin D. Kostin A.A. Shegay P. Kaprin A.D. Baranovskii D. Post-implantation inflammatory responses to xenogeneic tissue-engineered cartilage implanted in rabbit trachea: The role of cultured chondrocytes in the modification of inflammation. Int. J. Mol. Sci. 2023 24 23 16783 10.3390/ijms242316783 38069106
    [Google Scholar]
  98. Komi D.E.A. Khomtchouk K. Santa Maria P.L. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin. Rev. Allergy Immunol. 2020 58 3 298 312 10.1007/s12016‑019‑08729‑w 30729428
    [Google Scholar]
  99. Clayton S.M. Shafikhani S.H. Soulika A.M. Macrophage and neutrophil dysfunction in diabetic wounds. Adv. Wound Care (New Rochelle) 2024 13 9 463 484 10.1089/wound.2023.0149 38695109
    [Google Scholar]
  100. Feng J. Yao Y. Wang Q. Han X. Deng X. Cao Y. Chen X. Zhou M. Zhao C. Exosomes: Potential key players towards novel therapeutic options in diabetic wounds. Biomed. Pharmacother. 2023 166 115297 10.1016/j.biopha.2023.115297 37562235
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998332536241205164427
Loading
/content/journals/cdr/10.2174/0115733998332536241205164427
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: macrophages ; Medical plants ; diabetic foot ulcer ; mechanism ; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test