Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic Foot Ulcer (DFU) is a major complication of diabetes that mostly affects the lower extremities, with a high incidence and recurrence rate in approximately 15% of patients with diabetes. The complexity of diabetic wounds poses a substantial challenge for clinical recovery, underscoring the need to investigate novel therapeutic approaches. Medicinal plants have been used to treat ulcers for centuries. Recently, there has been a growing focus on the development of topical preparations derived from medicinal plants that target macrophages as an adjuvant therapy for DFU. Macrophages have been identified as crucial factors in the DFU healing process. This review aims to introduce the latest evidence and insights into the role of medicinal plants in promoting DFU recovery by targeting macrophages. The molecular mechanisms underlying the preventive effects of medicinal plants on DFU primarily involve promoting M2 polarization of macrophages, inhibition of M1 polarization, and regulation of macrophage function. This review highlights the substantial potential of advancing the field of DFU management by medicinal plants and lays the groundwork for novel therapeutic interventions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998332536241205164427
2024-12-23
2026-02-07
Loading full text...

Full text loading...

/deliver/fulltext/cdr/22/1/CDR-22-1-03.html?itemId=/content/journals/cdr/10.2174/0115733998332536241205164427&mimeType=html&fmt=ahah

References

  1. NairG.G. TzanakakisE.S. HebrokM. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy.Nat. Rev. Endocrinol.202016950651810.1038/s41574‑020‑0375‑332587391
    [Google Scholar]
  2. McDermottK. FangM. BoultonA.J.M. SelvinE. HicksC.W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers.Diabetes. Care202346120922110.2337/dci22‑004336548709
    [Google Scholar]
  3. SchmidtB.M. WrobelJ.S. MunsonM. RothenbergG. HolmesC.M. Podiatry impact on high-low amputation ratio characteristics: A 16-year retrospective study.Diabetes Res. Clin. Pract.201712627227710.1016/j.diabres.2017.02.00828288437
    [Google Scholar]
  4. YuG.T. MonieD.D. KhoslaS. TchkoniaT. KirklandJ.L. WylesS.P. Mapping cellular senescence networks in human diabetic foot ulcers.Geroscience20234611071108210.1007/s11357‑023‑00854‑x37380899
    [Google Scholar]
  5. SchaperN.C. van NettenJ.J. ApelqvistJ. BusS.A. FitridgeR. GameF. Monteiro-SoaresM. SennevilleE. IWGDF Editorial Board Practical guidelines on the prevention and management of diabetes-related foot disease (IWGDF 2023 update).Diabetes Metab. Res. Rev.2024403e365710.1002/dmrr.365737243927
    [Google Scholar]
  6. ArmstrongD.G. TanT.W. BoultonA.J.M. BusS.A. Diabetic foot ulcers.JAMA20233301627510.1001/jama.2023.1057837395769
    [Google Scholar]
  7. LopesL. SetiaO. AurshinaA. LiuS. HuH. IsajiT. LiuH. WangT. OnoS. GuoX. YatsulaB. GuoJ. GuY. NavarroT. DardikA. Stem cell therapy for diabetic foot ulcers: A review of preclinical and clinical research.Stem Cell Res. Ther.20189118810.1186/s13287‑018‑0938‑629996912
    [Google Scholar]
  8. YuQ. QiaoG. WangM. YuL. SunY. ShiH. MaT. Stem cell-based therapy for diabetic foot ulcers.Front. Cell Dev. Biol.20221081226210.3389/fcell.2022.81226235178389
    [Google Scholar]
  9. WuS. ZhouZ. LiY. JiangJ. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes.Heliyon20241017e3703110.1016/j.heliyon.2024.e3703139286219
    [Google Scholar]
  10. MaksimovaN.V. MichenkoA.V. KrasilnikovaO.A. KlabukovI.D. GadaevI.Y. KrasheninnikovM.E. BelkovP.A. LyundupA.V. Mesenchymal stromal cells therapy alone does not lead to the complete restoration of the skin parameters in diabetic foot patients within a 3-year follow-up period.Bioimpacts2021121515510.34172/bi.2021.2216735087716
    [Google Scholar]
  11. ChenH.R. LuS.J. WangQ. LiM.L. ChenX.C. PanB.Y. Application of hyperbaric oxygen therapy in diabetic foot ulcers: A meta-analysis.Int. Wound J.2024214e1462110.1111/iwj.1462138531355
    [Google Scholar]
  12. WenhuiL. ChanggengF. LeiX. BaozhongY. GuobinL. WeijingF. Hyperbaric oxygen therapy for chronic diabetic foot ulcers: An overview of systematic reviews.Diabetes Res. Clin. Pract.202117610886210.1016/j.diabres.2021.10886234015392
    [Google Scholar]
  13. KrankeP. BennettM.H. Martyn-St JamesM. SchnabelA. DebusS.E. WeibelS. Hyperbaric oxygen therapy for chronic wounds.Cochrane Libr.201520156CD00412310.1002/14651858.CD004123.pub426106870
    [Google Scholar]
  14. YangQ. ZhangY. YinH. LuY. Topical recombinant human epidermal growth factor for diabetic foot ulcers: A meta-analysis of randomized controlled clinical trials.Ann. Vasc. Surg.20206244245110.1016/j.avsg.2019.05.04131394225
    [Google Scholar]
  15. ChiuA. SharmaD. ZhaoF. Tissue engineering-based strategies for diabetic foot ulcer management.Adv. Wound Care (New Rochelle)202312314516710.1089/wound.2021.008134939837
    [Google Scholar]
  16. RaymanG. VasP. DhatariyaK. DriverV. HartemannA. LondahlM. PiaggesiA. ApelqvistJ. AttingerC. GameF. International Working Group on the Diabetic Foot (IWGDF) Guidelines on use of interventions to enhance healing of chronic foot ulcers in diabetes (IWGDF 2019 update).Diabetes Metab. Res. Rev.202036S1Suppl. 1e328310.1002/dmrr.328332176450
    [Google Scholar]
  17. TanC.T. LiangK. NgoZ.H. DubeC.T. LimC.Y. Application of 3D bioprinting technologies to the management and treatment of diabetic foot ulcers.Biomedicines202081044110.3390/biomedicines8100441
    [Google Scholar]
  18. HuangJ. ChenJ. XiongS. HuangJ. LiuZ. The effect of low-level laser therapy on diabetic foot ulcers: A meta-analysis of randomised controlled trials.Int. Wound J.202118676377610.1111/iwj.1357733751853
    [Google Scholar]
  19. LiuY. LiuY. DengJ. LiW. NieX. Fibroblast growth factor in diabetic foot ulcer: Progress and therapeutic prospects.Front. Endocrinol. (Lausanne)20211274486810.3389/fendo.2021.74486834721299
    [Google Scholar]
  20. TheocharidisG. BaltzisD. RoustitM. TellecheaA. DangwalS. KhetaniR.S. ShuB. ZhaoW. FuJ. BhasinS. KafanasA. HuiD. SuiS.H. PatsopoulosN.A. BhasinM. VevesA. Integrated skin transcriptomics and serum multiplex assays reveal novel mechanisms of wound healing in diabetic foot ulcers.Diabetes202069102157216910.2337/db20‑018832763913
    [Google Scholar]
  21. WongY.H. WongS.H. WongX.T. YapQ.Y. YipK.Y. WongL.Z. ChellappanD.K. BhattamisraS.K. CandasamyM. Genetic associated complications of type 2 diabetes mellitus.Panminerva Med.202264227428810.23736/S0031‑0808.21.04285‑334609116
    [Google Scholar]
  22. LinC.W. HungC.M. ChenW.J. ChenJ.C. HuangW.Y. LuC.S. KuoM.L. ChenS.G. New horizons of macrophage immunomodulation in the healing of diabetic foot ulcers.Pharmaceutics20221410206510.3390/pharmaceutics1410206536297499
    [Google Scholar]
  23. TheocharidisG. ThomasB.E. SarkarD. MummeH.L. PilcherW.J.R. DwivediB. Sandoval-SchaeferT. SîrbulescuR.F. KafanasA. MezghaniI. WangP. LobaoA. VlachosI.S. DashB. HsiaH.C. HorsleyV. BhasinS.S. VevesA. BhasinM. Single cell transcriptomic landscape of diabetic foot ulcers.Nat. Commun.202213118110.1038/s41467‑021‑27801‑835013299
    [Google Scholar]
  24. LiangX. XiaY. XuZ. ZengQ. GaoG. HeJ. XuD. Treatment of diabetic foot ulcers with external application of Chinese herbal medicine: An overview of overlapping systematic reviews.Int. Wound J.2024214e1456310.1111/iwj.1456338135909
    [Google Scholar]
  25. Salazar-GómezA. Alonso-CastroA.J. Medicinal plants from latin America with wound healing activity: Ethnomedicine, phytochemistry, preclinical and clinical studies—A review.Pharmaceuticals2022159109510.3390/ph1509109536145316
    [Google Scholar]
  26. AgyareC. BoakyeY.D. BekoeE.O. HenselA. DapaahS.O. AppiahT. Review: African medicinal plants with wound healing properties.J. Ethnopharmacol.20161778510010.1016/j.jep.2015.11.00826549271
    [Google Scholar]
  27. JinL. SchmiechM. El GaafaryM. ZhangX. SyrovetsT. SimmetT. A comparative study on root and bark extracts of Eleutherococcus senticosus and their effects on human macrophages.Phytomedicine20206815318110.1016/j.phymed.2020.15318132065954
    [Google Scholar]
  28. AshouriF. BeyranvandF. Beigi BoroujeniN. TavafiM. SheikhianA. VarziA.M. ShahrokhiS. Macrophage polarization in wound healing: Role of aloe vera/chitosan nanohydrogel.Drug Deliv. Transl. Res.2019961027104210.1007/s13346‑019‑00643‑031115868
    [Google Scholar]
  29. Kumari A, Raina N, Wahi A, et al. Wound-healing effects of curcumin and its nanoformulations: A comprehensive review.Pharmaceutics20221411228810.3390/pharmaceutics14112288
    [Google Scholar]
  30. SrirodS. TewtrakulS. Anti-inflammatory and wound healing effects of cream containing Curcuma mangga extract.J. Ethnopharmacol.201923811182810.1016/j.jep.2019.11182830910580
    [Google Scholar]
  31. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  32. MosserD.M. HamidzadehK. GoncalvesR. Macrophages and the maintenance of homeostasis.Cell. Mol. Immunol.202118357958710.1038/s41423‑020‑00541‑332934339
    [Google Scholar]
  33. ItalianiP. MoscaE. Della CameraG. MelilloD. MiglioriniP. MilanesiL. BoraschiD. Profiling the course of resolving vs. Persistent inflammation in human monocytes: The role of IL-1 family molecules.Front. Immunol.202011142610.3389/fimmu.2020.0142632754155
    [Google Scholar]
  34. YunnaC. MengruH. LeiW. WeidongC. Macrophage M1/M2 polarization.Eur. J. Pharmacol.202087717309010.1016/j.ejphar.2020.17309032234529
    [Google Scholar]
  35. NakaiK. Multiple roles of macrophage in skin.J. Dermatol. Sci.2021104121010.1016/j.jdermsci.2021.08.00834493430
    [Google Scholar]
  36. AndersC.B. LawtonT.M.W. SmithH.L. GarretJ. DoucetteM.M. AmmonsM.C.B. Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes.J. Leukoc. Biol.2022111366769310.1002/JLB.6A1120‑744R34374126
    [Google Scholar]
  37. SuleimanovS.K. EfremovY.M. KlyucherevT.O. SalimovE.L. RagimovA.A. TimashevP.S. VlasovaI.I. Radical-generating activity, phagocytosis, and mechanical properties of four phenotypes of human macrophages.Int. J. Mol. Sci.2024253186010.3390/ijms2503186038339139
    [Google Scholar]
  38. HanH. KimY. MoH. ChoiS.H. LeeK. RimY.A. JuJ.H. Preferential stimulation of melanocytes by M2 macrophages to produce melanin through vascular endothelial growth factor.Sci. Rep.2022121641610.1038/s41598‑022‑08163‑735440608
    [Google Scholar]
  39. EdgarL. AkbarN. BraithwaiteA.T. KrausgruberT. Gallart-AyalaH. BaileyJ. CorbinA.L. KhoyrattyT.E. ChaiJ.T. AlkhalilM. RendeiroA.F. ZibernaK. AryaR. CahillT.J. BockC. LaurencikieneJ. CrabtreeM.J. LemieuxM.E. RiksenN.P. NeteaM.G. WheelockC.E. ChannonK.M. RydénM. UdalovaI.A. CarnicerR. ChoudhuryR.P. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis.Circulation20211441296198210.1161/CIRCULATIONAHA.120.04646434255973
    [Google Scholar]
  40. CaoW. PengS. YaoY. XieJ. LiS. TuC. GaoC. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo.Acta Biomater.2022152607310.1016/j.actbio.2022.08.04836049625
    [Google Scholar]
  41. KuninakaY. IshidaY. IshigamiA. NosakaM. MatsukiJ. YasudaH. KofunaA. KimuraA. FurukawaF. KondoT. Macrophage polarity and wound age determination.Sci. Rep.20221212032710.1038/s41598‑022‑24577‑936434083
    [Google Scholar]
  42. FunesS.C. RiosM. Escobar-VeraJ. KalergisA.M. Implications of macrophage polarization in autoimmunity.Immunology2018154218619510.1111/imm.1291029455468
    [Google Scholar]
  43. FrykbergR.G. BanksJ. Challenges in the treatment of chronic wounds.Adv. Wound Care (New Rochelle)20154956058210.1089/wound.2015.063526339534
    [Google Scholar]
  44. DorringtonM.G. FraserI.D.C. NF-κB signaling in macrophages: Dynamics, crosstalk, and signal integration.Front. Immunol.20191070510.3389/fimmu.2019.0070531024544
    [Google Scholar]
  45. MussbacherM. DerlerM. BasílioJ. SchmidJ.A. NF-κB in monocytes and macrophages – an inflammatory master regulator in multitalented immune cells.Front. Immunol.202314113466110.3389/fimmu.2023.113466136911661
    [Google Scholar]
  46. ToshchakovV. JonesB.W. PereraP.Y. ThomasK. CodyM.J. ZhangS. WilliamsB.R.G. MajorJ. HamiltonT.A. FentonM.J. VogelS.N. TLR4, but not TLR2, mediates IFN-β–induced STAT1α/β-dependent gene expression in macrophages.Nat. Immunol.20023439239810.1038/ni77411896392
    [Google Scholar]
  47. CaiY. ChenK. LiuC. QuX. Harnessing strategies for enhancing diabetic wound healing from the perspective of spatial inflammation patterns.Bioact. Mater.20232824325410.1016/j.bioactmat.2023.04.01937292231
    [Google Scholar]
  48. KharazihaM. BaidyaA. AnnabiN. Rational design of immunomodulatory hydrogels for chronic wound healing.Adv. Mater.20213339210017610.1002/adma.20210017634251690
    [Google Scholar]
  49. ChenC. LiuT. TangY. LuoG. LiangG. HeW. Epigenetic regulation of macrophage polarization in wound healing.Burns Trauma202311tkac05710.1093/burnst/tkac05736687556
    [Google Scholar]
  50. HeX. TanS. ShaoZ. WangX. Latitudinal and longitudinal regulation of tissue macrophages in inflammatory diseases.Genes Dis.2022951194120710.1016/j.gendis.2021.06.00735873033
    [Google Scholar]
  51. KimballA.S. DavisF.M. denDekkerA. JoshiA.D. SchallerM.A. BermickJ. XingX. BurantC.F. ObiA.T. NyszD. RobinsonS. AllenR. LukacsN.W. HenkeP.K. GudjonssonJ.E. MooreB.B. KunkelS.L. GallagherK.A. The histone methyltransferase Setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair.Immunity2019512258271.e510.1016/j.immuni.2019.06.01531350176
    [Google Scholar]
  52. WangJ. FengJ. NiY. WangY. ZhangT. CaoY. ZhouM. ZhaoC. Histone modifications and their roles in macrophage-mediated inflammation: A new target for diabetic wound healing.Front. Immunol.202415145044010.3389/fimmu.2024.145044039229271
    [Google Scholar]
  53. LiB. TanT.B. WangL. ZhaoX.Y. TanG.J. p38MAPK/SGK1 signaling regulates macrophage polarization in experimental autoimmune encephalomyelitis.Aging (Albany NY)201911389890710.18632/aging.10178630716717
    [Google Scholar]
  54. LouiselleA.E. NiemiecS.M. ZgheibC. LiechtyK.W. Macrophage polarization and diabetic wound healing.Transl. Res.202123610911610.1016/j.trsl.2021.05.00634089902
    [Google Scholar]
  55. SuH.Y. YangC.Y. OuH.T. ChenS.G. ChenJ.C. HoH.J. KuoS. Cost-effectiveness of novel macrophage-regulating treatment for wound healing in patients with diabetic foot ulcers from the Taiwan health care sector perspective.JAMA Netw. Open202361e225063910.1001/jamanetworkopen.2022.5063936633847
    [Google Scholar]
  56. Huang YY, Lin CW, Cheng NC, et al. Effect of a novel macrophage-regulating drug on wound healing in patients with diabetic foot ulcers: A randomized clinical trial.JAMA Netw Open202149e212260710.1001/jamanetworkopen.2021.2260734477854
    [Google Scholar]
  57. LinC.W. ChenC.C. HuangW.Y. ChenY.Y. ChenS.T. ChouH.W. HungC.M. ChenW.J. LuC.S. NianS.X. ChenS.G. ChangH.W. ChangV.H.S. LiuL.Y. KuoM.L. ChangS.C. Restoring prohealing/remodeling-associated M2a/c macrophages using ON101 accelerates diabetic wound healing.JID Innovations20222510013810.1016/j.xjidi.2022.10013836017415
    [Google Scholar]
  58. ZhangX. MaZ. WangY. SunB. GuoX. PanC. ChenL. Angelica dahurica ethanolic extract improves impaired wound healing by activating angiogenesis in diabetes.PLoS One2017125e017786210.1371/journal.pone.017786228542422
    [Google Scholar]
  59. GuoJ. HuZ. YanF. LeiS. LiT. LiX. XuC. SunB. PanC. ChenL. Angelica dahurica promoted angiogenesis and accelerated wound healing in db/db mice via the HIF-1α/PDGF-β signaling pathway.Free Radic. Biol. Med.202016044745710.1016/j.freeradbiomed.2020.08.01532853721
    [Google Scholar]
  60. HuY. LeiS. YanZ. HuZ. GuoJ. GuoH. SunB. PanC. Angelica dahurica regulated the polarization of macrophages and accelerated wound healing in diabetes: A network pharmacology study and in vivo experimental validation.Front. Pharmacol.20211267871310.3389/fphar.2021.67871334234674
    [Google Scholar]
  61. ChaoY.H. YangW.T. LiM.C. YangF.L. LeeR.P. Angelica dahurica and Rheum officinale facilitated diabetic wound healing by elevating vascular endothelial growth factor.Am. J. Chin. Med.20214961515153310.1142/S0192415X2150071334224339
    [Google Scholar]
  62. ZouJ. DuanY. WangY. LiuA. ChenY. GuoD. GuoW. LiS. SuZ. WuY. LuH. DengY. ZhuJ. LiF. Phellopterin cream exerts an anti-inflammatory effect that facilitates diabetes-associated cutaneous wound healing via SIRT1.Phytomedicine202210715444710.1016/j.phymed.2022.15444736150345
    [Google Scholar]
  63. BashmakovY.K. Assaad-KhalilS. PetyaevI.M. Resveratrol may be beneficial in treatment of diabetic foot syndrome.Med. Hypotheses201177336436710.1016/j.mehy.2011.05.01621689891
    [Google Scholar]
  64. PandeyS. ShamimA. ShaifM. KushwahaP. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer.Naunyn Schmiedebergs Arch. Pharmacol.202339681811182510.1007/s00210‑023‑02441‑536862150
    [Google Scholar]
  65. GokceE.H. Tuncay TanrıverdiS. ErogluI. TsapisN. GokceG. TekmenI. FattalE. OzerO. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats.Eur. J. Pharm. Biopharm.2017119172710.1016/j.ejpb.2017.04.02728461085
    [Google Scholar]
  66. ZhuW. DongY. XuP. PanQ. JiaK. JinP. ZhouM. XuY. GuoR. ChengB. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice.Acta Biomater.202215421223010.1016/j.actbio.2022.10.03836309190
    [Google Scholar]
  67. LuJ. HeR. SunP. ZhangF. LinhardtR.J. ZhangA. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review.Int. J. Biol. Macromol.202015076577410.1016/j.ijbiomac.2020.02.03532035956
    [Google Scholar]
  68. MengM. YaoJ. ZhangY. SunH. LiuM. Potential anti-rheumatoid arthritis activities and mechanisms of Ganoderma lucidum polysaccharides.Molecules2023286248310.3390/molecules2806248336985456
    [Google Scholar]
  69. LiF. LiuT. LiuX. HanC. LiL. ZhangQ. SuiX. Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization.Int. J. Biol. Macromol.2024260Pt 212968210.1016/j.ijbiomac.2024.12968238266851
    [Google Scholar]
  70. LiT.H. HouC.C. ChangC.L.T. YangW.C. Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos.Evid. Based Complement. Alternat. Med.20112011112840210.1155/2011/12840220924500
    [Google Scholar]
  71. FangC.L. PaulC.R. DayC.H. ChangR.L. KuoC.H. HoT.J. HsiehD.J.Y. ViswanadhaV.P. KuoW.W. HuangC.Y. Poria cocos (Fuling) targets TGFβ /Smad7 associated collagen accumulation and enhances Nrf2-antioxidant mechanism to exert anti-skin aging effects in human dermal fibroblasts.Environ. Toxicol.202136572973610.1002/tox.2307533336893
    [Google Scholar]
  72. DingX. LiS. TianM. YangP. DingY. WangY. DuanG. ZhangD. ChenB. TanQ. Facile preparation of a novel nanoemulsion based hyaluronic acid hydrogel loading with Poria cocos triterpenoids extract for wound dressing.Int. J. Biol. Macromol.20232261490149910.1016/j.ijbiomac.2022.11.26136442559
    [Google Scholar]
  73. MaX. ZhangW. JiangY. WenJ. WeiS. ZhaoY. Paeoniflorin, a natural product with multiple targets in liver diseases—a mini review.Front. Pharmacol.20201153110.3389/fphar.2020.0053132410996
    [Google Scholar]
  74. YuW. IlyasI. HuX. XuS. YuH. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective.Front. Immunol.202213107200710.3389/fimmu.2022.107200736618414
    [Google Scholar]
  75. YangH. SongL. SunB. ChuD. YangL. LiM. LiH. DaiY. YuZ. GuoJ. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing.Mater. Today Bio20211210013910.1016/j.mtbio.2021.10013934632363
    [Google Scholar]
  76. PignetA.L. SchellneggerM. HeckerA. KohlhauserM. KotzbeckP. KamolzL.P. Resveratrol-induced signal transduction in wound healing.Int. J. Mol. Sci.202122231261410.3390/ijms22231261434884419
    [Google Scholar]
  77. DingY. YangP. LiS. ZhangH. DingX. TanQ. Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice.Pharm. Biol.20226012328233710.1080/13880209.2022.214982136469602
    [Google Scholar]
  78. ZhangL. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine.Drug Deliv.201926186086910.1080/10717544.2019.166073231524010
    [Google Scholar]
  79. LiS. YangP. DingX. ZhangH. DingY. TanQ. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype.Burns Trauma202210tkac04610.1093/burnst/tkac04636568527
    [Google Scholar]
  80. ChenX. PengL.H. ShanY.H. LiN. WeiW. YuL. LiQ.M. LiangW.Q. GaoJ.Q. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery.Int. J. Pharm.20134471-217118110.1016/j.ijpharm.2013.02.05423500766
    [Google Scholar]
  81. LuoX. HuangP. YuanB. LiuT. LanF. LuX. DaiL. LiuY. YinH. Astragaloside IV enhances diabetic wound healing involving upregulation of alternatively activated macrophages.Int. Immunopharmacol.201635222810.1016/j.intimp.2016.03.02027016716
    [Google Scholar]
  82. FuJ. HuangJ. LinM. XieT. YouT. Quercetin promotes diabetic wound healing via switching macrophages From M1 to M2 polarization.J. Surg. Res.202024621322310.1016/j.jss.2019.09.01131606511
    [Google Scholar]
  83. YuF. YuN. PengJ. ZhaoY. ZhangL. WangX. XuX. ZhouJ. WangF. Emodin inhibits lipid accumulation and inflammation in adipose tissue of high-fat diet-fed mice by inducing M2 polarization of adipose tissue macrophages.FASEB J.2021357e2173010.1096/fj.202100157RR34110631
    [Google Scholar]
  84. ChenC. LinZ. LiuW. HuQ. WangJ. ZhuangX. GuanS. WuX. HuT. QuanS. JinX. ShenJ. Emodin accelerates diabetic wound healing by promoting anti-inflammatory macrophage polarization.Eur. J. Pharmacol.202293617532910.1016/j.ejphar.2022.17532936341884
    [Google Scholar]
  85. QianY. ZhengY. JinJ. WuX. XuK. DaiM. NiuQ. ZhengH. HeX. ShenJ. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold.Adv. Mater.20223429220052110.1002/adma.20220052135576814
    [Google Scholar]
  86. LiS. YuY. ChenJ. GuoB. YangL. DingW. Evaluation of the antibacterial effects and mechanism of action of Protocatechualdehyde against Ralstonia solanacearum.Molecules201621675410.3390/molecules2106075427294898
    [Google Scholar]
  87. LiuJ. QuM. WangC. XueY. HuangH. ChenQ. SunW. ZhouX. XuG. JiangX. A dual-cross-linked hydrogel patch for promoting diabetic wound healing.Nano Micro Small20221817210617210.1002/smll.20210617235319815
    [Google Scholar]
  88. FuY.J. ShiY.F. WangL.Y. ZhaoY.F. WangR.K. LiK. ZhangS.T. ZhaX.J. WangW. ZhaoX. YangW. All-natural immunomodulatory bioadhesive hydrogel promotes angiogenesis and diabetic wound healing by regulating macrophage heterogeneity.Adv. Sci. (Weinh.)20231013220677110.1002/advs.20220677136862027
    [Google Scholar]
  89. BalcazarN. BetancurL.I. MuñozD.L. CabreraF.J. CastañoA. EcheverriL.F. AcinS. Ursolic acid lactone obtained from Eucalyptus tereticornis increases glucose uptake and reduces inflammatory activity and intracellular neutral fat: An in vitro study.Molecules2021268228210.3390/molecules2608228233920841
    [Google Scholar]
  90. LvH. ZhaoM. LiY. LiK. ChenS. ZhaoW. WuS. HanY. Electrospun chitosan-polyvinyl alcohol nanofiber dressings loaded with bioactive ursolic acid promoting diabetic wound healing.Nanomaterials20221217293310.3390/nano1217293336079971
    [Google Scholar]
  91. WangC.S. LuoS.D. JiaS. WuW. ChangS.F. FengS.W. YangC.H. LinJ.H. WeeY. Balance of macrophage activation by a complex coacervate-based adhesive drug carrier facilitates diabetic wound healing.Antioxidants20221112235110.3390/antiox1112235136552559
    [Google Scholar]
  92. WangS. LiuY. WangX. ChenL. HuangW. XiongT. WangN. GuoJ. GaoZ. JinM. Modulating macrophage phenotype for accelerated wound healing with chlorogenic acid-loaded nanocomposite hydrogel.J. Control. Release202436942044310.1016/j.jconrel.2024.03.05438575075
    [Google Scholar]
  93. FanX. HuangJ. ZhangW. SuZ. LiJ. WuZ. ZhangP. A multifunctional, tough, stretchable, and transparent curcumin hydrogel with potent antimicrobial, antioxidative, anti-inflammatory, and angiogenesis capabilities for diabetic wound healing.ACS Appl. Mater. Interfaces20241689749976710.1021/acsami.3c1683738359334
    [Google Scholar]
  94. NayakB.S. RamdeenR. AdogwaA. RamsubhagA. MarshallJ.R. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds.Int. Wound J.20129665065510.1111/j.1742‑481X.2011.00933.x22296524
    [Google Scholar]
  95. TelgenhoffD. LamK. RamsayS. VasquezV. VillarealK. SlusarewiczP. AttarP. ShrootB. Influence of papain urea copper chlorophyllin on wound matrix remodeling.Wound Repair. Regen.200715572773510.1111/j.1524‑475X.2007.00279.x17971019
    [Google Scholar]
  96. CollardE. RoyS. Improved function of diabetic wound-site macrophages and accelerated wound closure in response to oral supplementation of a fermented papaya preparation.Antioxid. Redox Signal.201013559960610.1089/ars.2009.303920095880
    [Google Scholar]
  97. FanS.L. LinJ.A. ChenS.Y. LinJ.H. LinH.T. ChenY.Y. YenG.C. Effects of Hsian-tsao ( Mesona procumbens Hemsl.) extracts and its polysaccharides on the promotion of wound healing under diabetes-like conditions.Food Funct.202112111913210.1039/D0FO02180F33242056
    [Google Scholar]
  98. KlabukovI. AtiakshinD. KoganE. IgnatyukM. KrasheninnikovM. ZharkovN. YakimovaA. GrinevichV. PryanikovP. ParshinV. SosinD. KostinA.A. ShegayP. KaprinA.D. BaranovskiiD. Post-implantation inflammatory responses to xenogeneic tissue-engineered cartilage implanted in rabbit trachea: The role of cultured chondrocytes in the modification of inflammation.Int. J. Mol. Sci.202324231678310.3390/ijms24231678338069106
    [Google Scholar]
  99. KomiD.E.A. KhomtchoukK. Santa MariaP.L. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms.Clin. Rev. Allergy Immunol.202058329831210.1007/s12016‑019‑08729‑w30729428
    [Google Scholar]
  100. ClaytonS.M. ShafikhaniS.H. SoulikaA.M. Macrophage and neutrophil dysfunction in diabetic wounds.Adv Wound Care (New Rochelle)202413946348410.1089/wound.2023.014938695109
    [Google Scholar]
  101. FengJ. YaoY. WangQ. HanX. DengX. CaoY. ChenX. ZhouM. ZhaoC. Exosomes: Potential key players towards novel therapeutic options in diabetic wounds.Biomed. Pharmacother.202316611529710.1016/j.biopha.2023.11529737562235
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998332536241205164427
Loading
/content/journals/cdr/10.2174/0115733998332536241205164427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test