Skip to content
2000
image of 
A Review on Hepatoprotective Effect of Chrysin: Preclinical Implications and Molecular Cascades Came into Focus

Abstract

Chrysin, a flavone nutraceutical, possesses several beneficial pharmacological properties, which has gained much emphasis in recent years. The biological effects of chrysin are exerted due to impeding or activating multifarious cellular and molecular pathways. Our findings indicated that chrysin inhibited tumor progression in various cancer cell lines by repressing the formation of a sphere and upregulated protein expression of Src homology region 2 domain-containing phosphatase-1 (SHP-1), alleviating phosphorylated-signal transducer and activator of transcription 3 (p-STAT3) and transaction workflow innovation standards team1 (Twist1), sustaining phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and endorsing mitogen-activated protein kinase kinase1 (MEK1) overexpression, increasing the cytochrome c release, mitochondrial reactive oxygen species (ROS) formation, matrix metalloproteinases (MMP) collapse, and caspase-3 activity, modulating p53/ B-cell lymphoma-2 (Bcl-2)/caspase-9 cascade, cyclooxygenase-2 (COX-2), nuclear factor kappa B proposition 65 (NF-kB p65) expression and also decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). Chrysin prevented cyclophosphamide, doxorubicin, cisplatin, methotrexate, paracetamol, alcohol, carbon tetrachloride, tert-butyl hydroperoxide (tBHP) and thioacetamide. Chrysin has protective properties against oxidative stress, inflammation, hepatotoxicity, liver fibrosis, steatosis, and hepatocellular carcinoma.Chrysin's most common hepatoprotective biochemical and molecular mechanisms involve the ability to control enzyme synthesis, scavenge free radicals, boost the antioxidant response, induce apoptosis, and modify the synthesis of proinflammatory and profibrotic cytokines.Chrysin is a valuable nutraceutical with broad therapeutic feasibility, but to confirm its representative hepatoprotective potential, clinical studies are advised. It would also be interesting to use cutting-edge drug delivery techniques or include bio-enhancers.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998329724240918091335
2024-12-06
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cdr/10.2174/0115733998329724240918091335/BMS-CDR-2024-99.html?itemId=/content/journals/cdr/10.2174/0115733998329724240918091335&mimeType=html&fmt=ahah

References

  1. Blachier M. Leleu H. Peck-Radosavljevic M. Valla D.C. Roudot-Thoraval F. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol. 2013 58 3 593 608 10.1016/j.jhep.2012.12.005 23419824
    [Google Scholar]
  2. Cuadrado A. Rojo A.I. Wells G. Hayes J.D. Cousin S.P. Rumsey W.L. Attucks O.C. Franklin S. Levonen A.L. Kensler T.W. Dinkova-Kostova A.T. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 2019 18 4 295 317 10.1038/s41573‑018‑0008‑x 30610225
    [Google Scholar]
  3. Sun B. Karin M. NF-κB signaling, liver disease and hepatoprotective agents. Oncogene 2008 27 48 6228 6244 10.1038/onc.2008.300 18931690
    [Google Scholar]
  4. Li S. Tan H.Y. Wang N. Zhang Z.J. Lao L. Wong C.W. Feng Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015 16 11 26087 26124 10.3390/ijms161125942 26540040
    [Google Scholar]
  5. Tujios S. Fontana R.J. Mechanisms of drug-induced liver injury: from bedside to bench. Nat. Rev. Gastroenterol. Hepatol. 2011 8 4 202 211 10.1038/nrgastro.2011.22 21386809
    [Google Scholar]
  6. Schwartz J.D. Schwartz M. Mandeli J. Sung M. Neoadjuvant and adjuvant therapy for resectable hepatocellular carcinoma: review of the randomised clinical trials. Lancet Oncol. 2002 3 10 593 603 10.1016/S1470‑2045(02)00873‑2 12372721
    [Google Scholar]
  7. Villanueva A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019 380 15 1450 1462 10.1056/NEJMra1713263 30970190
    [Google Scholar]
  8. Farzaei M.H. Zobeiri M. Parvizi F. El-Senduny F.F. Marmouzi I. Coy-Barrera E. Naseri R. Nabavi S.M. Rahimi R. Abdollahi M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018 10 7 855 10.3390/nu10070855 29966389
    [Google Scholar]
  9. Worachartcheewan A. Nantasenamat C. Isarankura-Na-Ayudhya C. Prachayasittikul V. Probing the origins of anticancer activity of chrysin derivatives. Med. Chem. Res. 2015 24 5 1884 1892 10.1007/s00044‑014‑1260‑1
    [Google Scholar]
  10. Atanasov A.G. Zotchev S.B. Dirsch V.M. Supuran C.T. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z
    [Google Scholar]
  11. Talebi M. Kakouri E. Talebi M. Tarantilis P.A. Farkhondeh T. İlgün S. Pourbagher-Shahri A.M. Samarghandian S. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer’s disease. Expert Rev. Neurother. 2021 21 6 625 642 10.1080/14737175.2021.1923479 33910446
    [Google Scholar]
  12. Chadha R. Bhalla Y. Nandan A. Chadha K. Karan M. Chrysin cocrystals: Characterization and evaluation. J. Pharm. Biomed. Anal. 2017 134 361 371 10.1016/j.jpba.2016.10.020 27894779
    [Google Scholar]
  13. Talebi M. Talebi M. Farkhondeh T. Simal-Gandara J. Kopustinskiene D.M. Bernatoniene J. Samarghandian S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int. 2021 21 1 214 10.1186/s12935‑021‑01906‑y 33858433
    [Google Scholar]
  14. Talebi M. Talebi M. Farkhondeh T. Samarghandian S. Molecular mechanism-based therapeutic properties of honey. Biomed. Pharmacother. 2020 130 110590 10.1016/j.biopha.2020.110590 32768885
    [Google Scholar]
  15. Farkhondeh T. Samarghandian S. Bafandeh F. The cardiovascular protective effects of chrysin: A narrative review on experimental researches. Cardiovasc. Hematol. Agents Med. Chem. 2019 17 1 17 27 10.2174/1871525717666190114145137 30648526
    [Google Scholar]
  16. Samarghandian S. Azimi-Nezhad M. Pourbagher Shahri A.M. Farkhondeh T. Antidotal or protective effects of honey and one of its major polyphenols, chrysin, against natural and chemical toxicities. Acta Biomed. 2019 90 4 533 550 31910181
    [Google Scholar]
  17. Moghadam E.R. Ang H.L. Asnaf S.E. Zabolian A. Saleki H. Yavari M. Esmaeili H. Zarrabi A. Ashrafizadeh M. Kumar A.P. Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives. Biomolecules 2020 10 10 1374 10.3390/biom10101374 32992587
    [Google Scholar]
  18. Zeinali M. Rezaee S.A. Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother. 2017 92 998 1009 10.1016/j.biopha.2017.06.003 28609844
    [Google Scholar]
  19. George M.Y. Esmat A. Tadros M.G. El-Demerdash E. In vivo cellular and molecular gastroprotective mechanisms of chrysin; Emphasis on oxidative stress, inflammation and angiogenesis. Eur. J. Pharmacol. 2018 818 486 498 10.1016/j.ejphar.2017.11.008 29126792
    [Google Scholar]
  20. Jiang J.S. Wei Y.J. Jia X.B. Chen B. Tan X.B. Ma S.P. Huang Y. Zheng Z.Y. Zhu J. Advances in studies on pharmacological effect and structure-activity relationship of chrysin and its derivatives. Chin. Tradit. Herbal Drugs 2011 42 11 2345 2350
    [Google Scholar]
  21. Kasala E.R. Bodduluru L.N. Madana R.M. v A.K. Gogoi R. Barua C.C. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol. Lett. 2015 233 2 214 225 10.1016/j.toxlet.2015.01.008 25596314
    [Google Scholar]
  22. Li Y. Li Y. He J. Liu D. Zhang Q. Li K. Zheng X. Tang G.T. Guo Y. Liu Y. The relationship between pharmacological properties and structure- activity of chrysin derivatives. Mini Rev. Med. Chem. 2019 19 7 555 568 10.2174/1389557518666180424094821 29692242
    [Google Scholar]
  23. Harris G.K. Qian Y. Leonard S.S. Sbarra D.C. Shi X. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J. Nutr. 2006 136 6 1517 1521 10.1093/jn/136.6.1517 16702314
    [Google Scholar]
  24. Tsuji P.A. Walle T. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chem. Biol. Interact. 2008 171 1 37 44 10.1016/j.cbi.2007.08.007 17884029
    [Google Scholar]
  25. Mani R. Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018 145 187 196 10.1016/j.phytochem.2017.09.016 29161583
    [Google Scholar]
  26. Tong L. Wan M. Zhang L. Zhu Y. Sun H. Bi K. Simultaneous determination of baicalin, wogonoside, baicalein, wogonin, oroxylin A and chrysin of Radix scutellariae extract in rat plasma by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 2012 70 6 12 10.1016/j.jpba.2012.03.051 22703838
    [Google Scholar]
  27. Nabavi S.F. Braidy N. Habtemariam S. Orhan I.E. Daglia M. Manayi A. Gortzi O. Nabavi S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem. Int. 2015 90 224 231 10.1016/j.neuint.2015.09.006 26386393
    [Google Scholar]
  28. Zheng X. Meng W.D. Xu Y.Y. Cao J.G. Qing F.L. Synthesis and anticancer effect of chrysin derivatives. Bioorg. Med. Chem. Lett. 2003 13 5 881 884 10.1016/S0960‑894X(02)01081‑8 12617913
    [Google Scholar]
  29. Zeng Z. Liu S. Luo W. Liang J. Peng A.Y. Efficient Synthesis of Phosphorus/Nitrogen‐Containing Chrysin Derivatives via Classic Reactions. ChemistrySelect 2021 6 3 415 418 10.1002/slct.202004358
    [Google Scholar]
  30. Yadav S. Singh J.D. Synthesis and preliminary biological evaluation for the anticancer activity of organochalcogen (S/se) tethered chrysin-based organometallic Ru II (η 6 -p-cymene) complexes. J. Biomol. Struct. Dyn. 2019 37 13 3337 3353 10.1080/07391102.2018.1513867 30124119
    [Google Scholar]
  31. Halevas E. Mavroidi B. Antonoglou O. Hatzidimitriou A. Sagnou M. Pantazaki A.A. Litsardakis G. Pelecanou M. Structurally characterized gallium–chrysin complexes with anticancer potential. Dalton Trans. 2020 49 8 2734 2746 10.1039/C9DT04540F 32064490
    [Google Scholar]
  32. Mayer S. Keglevich P. Ábrányi-Balogh P. Szigetvári Á. Dékány M. Szántay C. Jr Hazai L. Synthesis and in vitro anticancer evaluation of novel chrysin and 7-aminochrysin derivatives. Molecules 2020 25 4 888 10.3390/molecules25040888 32079315
    [Google Scholar]
  33. Dao T.T. Oh J.W. Chi Y.S. Kim H.P. Sin K.S. Park H. Synthesis and PGE2 inhibitory activity of vinylated and allylated chrysin analogues. Arch. Pharm. Res. 2003 26 8 581 584 10.1007/BF02976703 12967189
    [Google Scholar]
  34. Song H.Y. Sik Kim W. Kim J.M. Bak D.H. Moo Han J. Lim S.T. Byun E.B. A hydroxyethyl derivative of chrysin exhibits anti-inflammatory activity in dendritic cells and protective effects against dextran sodium salt-induced colitis in mice. Int. Immunopharmacol. 2019 77 105958 10.1016/j.intimp.2019.105958 31639615
    [Google Scholar]
  35. During A. Larondelle Y. The O-methylation of chrysin markedly improves its intestinal anti-inflammatory properties: Structure–activity relationships of flavones. Biochem. Pharmacol. 2013 86 12 1739 1746 10.1016/j.bcp.2013.10.003 24134915
    [Google Scholar]
  36. Marzec E. Świtalska M. Winiewska-Szajewska M. Wójcik J. Wietrzyk J. Maciejewska A.M. Poznański J. Mieczkowski A. The halogenation of natural flavonoids, baicalein and chrysin, enhances their affinity to human protein kinase CK2. IUBMB Life 2020 72 6 1250 1261 10.1002/iub.2298 32364671
    [Google Scholar]
  37. Zhu Y. Yao X. Long J. Li R. Liu Y. Yang Z. Zheng X. Fluorine-Containing Chrysin Derivatives. Nat. Prod. Commun. 2019 14 9 1934578X1987892 10.1177/1934578X19878921
    [Google Scholar]
  38. Fujitaka Y. Hamada H. Hamada H. Iwaki T. Shimoda K. Kiriake Y. Saikawa T. Synthesis of Glycosides of α-Tocopherol, Daidzein, Resveratrol, Hesperetin, Naringenin, and Chrysin as Antiallergic Functional Foods and Cosmetics. Nat. Prod. Commun. 2020 15 9 1934578X2094466 10.1177/1934578X20944666
    [Google Scholar]
  39. Shimoda K. Kubota N. Tanigawa M. Hamada H. Glycosylation of chrysin by cultured cells of eucalyptus perriniana. Nat. Prod. Commun. 2016 11 8 1934578X1601100 10.1177/1934578X1601100816 30725566
    [Google Scholar]
  40. Ibrahim A.R.S. Biotransformation of chrysin and apigenin by Cunninghamella elegans. Chem. Pharm. Bull. (Tokyo) 2005 53 6 671 673 10.1248/cpb.53.671 15930780
    [Google Scholar]
  41. Jiang B. Lin F. Huang C. Cai C. Qian J. Zhang M. Pan W. Lin C. Thermal degradation kinetics and stability study of chrysin by thermal analysis. Asian J. Chem. 2014 26 19 6404 6408 10.14233/ajchem.2014.16393
    [Google Scholar]
  42. Zhou L. Zhang P. Yang G. Lin R. Wang W. Liu T. Zhang L. Zhang J. Solubility of chrysin in ethanol and water mixtures. J. Chem. Eng. Data 2014 59 7 2215 2220 10.1021/je5001654
    [Google Scholar]
  43. Noubigh A. Akremi A. Solid–liquid equilibria of chrysin in six pure solvents and in aqueous methanol mixtures: temperature dependence and thermodynamics. Monatsh. Chem. 2019 150 7 1215 1224 10.1007/s00706‑019‑02386‑7
    [Google Scholar]
  44. Walle T. Otake Y. Brubaker J.A. Walle U.K. Halushka P.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol. 2001 51 2 143 146 10.1111/j.1365‑2125.2001.01317.x 11259985
    [Google Scholar]
  45. Wei Y.J. Jia X.B. Zhan Y. Wang C.M. Chen B. Metabolism study of chrysin by zebrafish. Chung Kuo Yao Hsueh Tsa Chih 2013 48 7 565 568
    [Google Scholar]
  46. Galijatovic A. Otake Y. Walle U.K. Walle T. Extensive metabolism of the flavonoid chrysin by human Caco-2 and Hep G2 cells. Xenobiotica 1999 29 12 1241 1256 10.1080/004982599237912 10647910
    [Google Scholar]
  47. Vidyavathi M. Krishna D.R. Prasad K.V.S.R.G. Vidyasagar J. Study of metabolism of a flavone - Chrysin using microbial cultures. Asian J. Microbiol. Biotechnol. Environ. Sci. 2008 10 1 59 63
    [Google Scholar]
  48. Dong D. Quan E. Yuan X. Xie Q. Li Z. Wu B. Sodium Oleate-Based Nanoemulsion Enhances Oral Absorption of Chrysin through Inhibition of UGT-Mediated Metabolism. Mol. Pharm. 2017 14 9 2864 2874 10.1021/acs.molpharmaceut.6b00851 27983856
    [Google Scholar]
  49. Ge S. Gao S. Yin T. Hu M. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method. J. Agric. Food Chem. 2015 63 11 2902 2910 10.1021/jf5056979 25715997
    [Google Scholar]
  50. Ramesh P. Rao V.S. Reddy P.M. Babu K.S. Rao M.S. Synthesis, biological evaluation and molecular modeling studies of novel C (7) modified analogues of chrysin. Lett. Drug Des. Discov. 2020 17 7 873 883 10.2174/1570180816666190913183623
    [Google Scholar]
  51. Kao Y.C. Zhou C. Sherman M. Laughton C.A. Chen S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Health Perspect. 1998 106 2 85 92 10.1289/ehp.9810685 9435150
    [Google Scholar]
  52. Anari E. Akbarzadeh A. Zarghami N. RETRACTED ARTICLE: Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif. Cells Nanomed. Biotechnol. 2016 44 6 1410 1416 10.3109/21691401.2015.1029633 26148177
    [Google Scholar]
  53. Mohammadinejad S. Akbarzadeh A. Rahmati-Yamchi M. Hatam S. Kachalaki S. Zohreh S. Zarghami N. Preparation and Evaluation of Chrysin Encapsulated in PLGA- PEG Nanoparticles in the T47-D Breast Cancer Cell Line. APJCP 2015 16 9 3753 3758 25987033
    [Google Scholar]
  54. Zheng H. Li S. Pu Y. Lai Y. He B. Gu Z. Nanoparticles generated by PEG-Chrysin conjugates for efficient anticancer drug delivery. Euro. J. Pharmaceut. Biopharmaceut. 2014 87 3 454 460
    [Google Scholar]
  55. Lee J.A. Jung B.G. Kim T.H. Kim Y.M. Park M.H. Hyun P. Jeon J. Park J. Cho C.W. Suh G.H. Lee B.J. Poly D. Poly d,l-lactide-co-glycolide (PLGA) nanoparticle-encapsulated honeybee (Apis melifera) venom promotes clearance of Salmonella enterica serovar Typhimurium infection in experimentally challenged pigs through the up-regulation of T helper type 1 specific immune responses. Vet. Immunol. Immunopathol. 2014 161 3-4 193 204 10.1016/j.vetimm.2014.08.010 25193467
    [Google Scholar]
  56. Jung J. Emerging utilization of chrysin using nanoscale modification. J. Nanomater. 2016 201 4089 10.1155/2016/2894089
    [Google Scholar]
  57. Sa R. Zhang Y. Deng Y. Huang Y. Zhang M. Lou B. Novel Salt Cocrystal of Chrysin with Berberine: Preparation, Characterization, and Oral Bioavailability. Cryst. Growth Des. 2018 18 8 4724 4730 10.1021/acs.cgd.8b00696
    [Google Scholar]
  58. Zhu Z.Y. Luo Y. Liu Y. Wang X.T. Liu F. Guo M.Z. Wang Z. Liu A.J. Zhang Y.M. Inclusion of chrysin in β-cyclodextrin and its biological activities. J. Drug Deliv. Sci. Technol. 2016 31 176 186 10.1016/j.jddst.2016.01.002
    [Google Scholar]
  59. Sundararajan M. Thomas P.A. Venkadeswaran K. Jeganathan K. Geraldine P. Synthesis and characterization of chrysin-loaded β-cyclodextrin-based nanosponges to enhance in-vitro solubility, photostability, drug release, antioxidant effects and antitumorous efficacy. J. Nanosci. Nanotechnol. 2017 17 12 8742 8751 10.1166/jnn.2017.13911
    [Google Scholar]
  60. Lee S.H. Lee Y. Song J.G. Han H.K. Improved in vivo effect of chrysin as an absorption enhancer via the preparation of ternary solid dispersion with brij®L4 and aminoclay. Curr. Drug Deliv. 2018 16 1 86 92 10.2174/1567201815666180924151458 30246640
    [Google Scholar]
  61. Kim K.M. Lim H.K. Shim S.H. Jung J. Improved chemotherapeutic efficacy of injectable chrysin encapsulated by copolymer nanoparticles. Int. J. Nanomedicine 2017 12 1917 1925 10.2147/IJN.S132043 28331315
    [Google Scholar]
  62. Halevas E. Kokotidou C. Zaimai E. Moschona A. Lialiaris E. Mitraki A. Lialiaris T. Pantazaki A. Evaluation of the hemocompatibility and anticancer potential of poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers with encapsulated chrysin. Pharmaceutics 2021 13 1 109 10.3390/pharmaceutics13010109 33467090
    [Google Scholar]
  63. Pan Y.J. Xu P.Y. Chen B.Q. Fu C.P. Kankala R.K. Chen A.Z. Wang S.B. Supercritical antisolvent process-assisted fabrication of chrysin-polyvinylpyrrolidone sub-microparticles for improved anticancer efficiency. J. Supercrit. Fluids 2020 162 104847 10.1016/j.supflu.2020.104847
    [Google Scholar]
  64. Santos I. Ramos C. Mendes C. Sequeira C.O. Tomé C.S. Fernandes D.G.H. Mota P. Pires R.F. Urso D. Hipólito A. Antunes A.M.M. Vicente J.B. Pereira S.A. Bonifácio V.D.B. Nunes S.C. Serpa J. Targeting Glutathione and Cystathionine β-Synthase in Ovarian Cancer Treatment by Selenium–Chrysin Polyurea Dendrimer Nanoformulation. Nutrients 2019 11 10 2523 10.3390/nu11102523 31635026
    [Google Scholar]
  65. Sassa-deepaeng T. Pikulkaew S. Okonogi S. Development of chrysin loaded poloxamer micelles and toxicity evaluation in fish embryos. Drug Discov. Ther. 2016 10 3 150 155 10.5582/ddt.2016.01039 27357607
    [Google Scholar]
  66. Sathishkumar G. Bharti R. Jha P.K. Selvakumar M. Dey G. Jha R. Jeyaraj M. Mandal M. Sivaramakrishnan S. Dietary flavone chrysin (5,7-dihydroxyflavone ChR) functionalized highly-stable metal nanoformulations for improved anticancer applications. RSC Advances 2015 5 109 89869 89878 10.1039/C5RA15060D
    [Google Scholar]
  67. Nosrati H. Javani E. Salehiabar M. Kheiri Manjili H. Davaran S. Danafar H. Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. J. Mater. Res. 2018 33 11 1602 1611 10.1557/jmr.2018.148
    [Google Scholar]
  68. Gnanasekar S. Balakrishnan D. Seetharaman P. Arivalagan P. Chandrasekaran R. Sivaperumal S. Chrysin-Anchored Silver and Gold Nanoparticle-Reduced Graphene Oxide Composites for Breast Cancer Therapy. ACS Appl. Nano Mater. 2020 3 5 4574 4585 10.1021/acsanm.0c00630
    [Google Scholar]
  69. Gnanasekar S. Palanisamy P. Jha P.K. Murugaraj J. Kandasamy M. Mohamed Hussain A.M.K. Sivaperumal S. Natural Honeycomb Flavone Chrysin (5,7-dihydroxyflavone)-Reduced Graphene Oxide Nanosheets Fabrication for Improved Bactericidal and Skin Regeneration. ACS Sustain. Chem.& Eng. 2018 6 1 349 363 10.1021/acssuschemeng.7b02603
    [Google Scholar]
  70. Zhang Y. Zhao J. Afzal O. Kazmi I. Al-Abbasi F.A. Altamimi A.S.A. Yang Z. Neuroprotective role of chrysin‐loaded poly(lactic‐co‐glycolic acid) nanoparticle against kindling‐induced epilepsy through Nrf2/ARE/HO‐1 pathway. J. Biochem. Mol. Toxicol. 2021 35 2 e22634 10.1002/jbt.22634 32991785
    [Google Scholar]
  71. Vedagiri A. Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25–35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides 2016 58 111 125 10.1016/j.npep.2016.03.002 27021394
    [Google Scholar]
  72. Aishwarya V. Sumathi T. Enhanced blood–brain barrier transmigration using the novel chrysin embedded solid lipid nanoformulation: A salient approach on physico-chemical characterization, pharmacokinetics and biodistribution studies. International Journal of Pharmaceutical and Clinical Research 2016 8 12 1574 1582
    [Google Scholar]
  73. Nosrati H. Rakhshbahar A. Salehiabar M. Afroogh S. Kheiri Manjili H. Danafar H. Davaran S. Bovine serum albumin: An efficient biomacromolecule nanocarrier for improving the therapeutic efficacy of chrysin. J. Mol. Liq. 2018 271 639 646 10.1016/j.molliq.2018.06.066
    [Google Scholar]
  74. Ferrado J.B. Perez A.A. Visentini F.F. Islan G.A. Castro G.R. Santiago L.G. Formation and characterization of self-assembled bovine serum albumin nanoparticles as chrysin delivery systems. Colloids Surf. B Biointerfaces 2019 173 43 51 10.1016/j.colsurfb.2018.09.046 30266019
    [Google Scholar]
  75. Mohammadi Z. Sharif Zak M. Majdi H. Mostafavi E. Barati M. Lotfimehr H. Ghaseminasab K. Pazoki-Toroudi H. Webster T.J. Akbarzadeh A. The effect of chrysin–curcumin-loaded nanofibres on the wound-healing process in male rats. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1642 1652 10.1080/21691401.2019.1594855 31027431
    [Google Scholar]
  76. Tavakoli F. Jahanban-Esfahlan R. Seidi K. Jabbari M. Behzadi R. Pilehvar-Soltanahmadi Y. Zarghami N. Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artifi. Cell. Nanomed. Biotechnol. 2018 46 S2 75 86
    [Google Scholar]
  77. Kim S.M. Jung J.I. Chai C. Imm J.Y. Characteristics and glucose uptake promoting effect of chrysin-loaded phytosomes prepared with different phospholipid matrices. Nutrients 2019 11 10 2549 10.3390/nu11102549 31652637
    [Google Scholar]
  78. Deldar Y. Zarghami F. Pilehvar-Soltanahmadi Y. Dadashpour M. Zarghami N. Antioxidant effects of chrysin-loaded electrospun nanofibrous mats on proliferation and stemness preservation of human adipose-derived stem cells. Cell Tissue Bank. 2017 18 4 475 487 10.1007/s10561‑017‑9654‑1 28808812
    [Google Scholar]
  79. Deldar Y. Pilehvar-Soltanahmadi Y. Dadashpour M. Montazer Saheb S. Rahmati-Yamchi M. Zarghami N. An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. Artif. Cells Nanomed. Biotechnol. 2018 46 4 706 716 10.1080/21691401.2017.1337022 28595461
    [Google Scholar]
  80. Tang S. Floy M. Bhandari R. Dziubla T. Hilt J. Development of Novel N-isopropylacrylamide (NIPAAm) Based Hydrogels with Varying Content of Chrysin Multiacrylate. Gels 2017 3 4 40 10.3390/gels3040040 29805968
    [Google Scholar]
  81. Siddhardha B. Pandey U. Kaviyarasu K. Pala R. Syed A. Bahkali A. Elgorban A. Chrysin-loaded chitosan nanoparticles potentiates antibiofilm activity against staphylococcus aureus. Pathogens 2020 9 2 115 10.3390/pathogens9020115 32059467
    [Google Scholar]
  82. Kondža M. Rimac H. Maleš Ž. Turčić P. Ćavar I. Bojić M. Inhibitory Effect of Acacetin, Apigenin, Chrysin and Pinocembrin on Human Cytochrome P450 3A4. Croat. Chem. Acta 2020 93 1 33 39 10.5562/cca3652
    [Google Scholar]
  83. He L. He F. Bi H. Li J. Zeng S. Luo H.B. Huang M. Isoform-selective inhibition of chrysin towards human cytochrome P450 1A2. Kinetics analysis, molecular docking, and molecular dynamics simulations. Bioorg. Med. Chem. Lett. 2010 20 20 6008 6012 10.1016/j.bmcl.2010.08.072 20832301
    [Google Scholar]
  84. Mohos V. Fliszár-Nyúl E. Ungvári O. Bakos É. Kuffa K. Bencsik T. Zsidó B.Z. Hetényi C. Telbisz Á. Özvegy-Laczka C. Poór M. Effects of chrysin and its major conjugated metabolites chrysin-7-sulfate and chrysin-7-glucuronide on cytochrome P450 enzymes and on OATP, P-gp, BCRP, and MRP2 transporters. Drug Metab. Dispos. 2020 48 10 1064 1073 10.1124/dmd.120.000085 32661014
    [Google Scholar]
  85. Yao W. Cheng J. Kandhare A.D. Mukherjee-Kandhare A.A. Bodhankar S.L. Lu G. Toxicological evaluation of a flavonoid, chrysin: morphological, behavioral, biochemical and histopathological assessments in rats. Drug Chem. Toxicol. 2019 31724432
    [Google Scholar]
  86. Naz S. Imran M. Rauf A. Orhan I.E. Shariati M.A. Iahtisham-Ul-Haq IqraYasmin Shahbaz M. Qaisrani T.B. Shah Z.A. Plygun S. Heydari M. Chrysin: Pharmacological and therapeutic properties. Life Sci. 2019 235 116797 10.1016/j.lfs.2019.116797 31472146
    [Google Scholar]
  87. Tobin P.J. Beale P. Noney L. Liddell S. Rivory L.P. Clarke S. A pilot study on the safety of combining chrysin, a non-absorbable inducer of UGT1A1, and irinotecan (CPT-11) to treat metastatic colorectal cancer. Cancer Chemother. Pharmacol. 2006 57 3 309 316 10.1007/s00280‑005‑0053‑0 16003560
    [Google Scholar]
  88. Gardner I. Popović M. Zahid N. Uetrecht J.P. A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo. Chem. Res. Toxicol. 2005 18 9 1384 1394 10.1021/tx050095o 16167830
    [Google Scholar]
  89. Dhawan K. Kumar S. Sharma A. Beneficial effects of chrysin and benzoflavone on virility in 2-year-old male rats. J. Med. Food 2002 5 1 43 48 10.1089/109662002753723214 12511112
    [Google Scholar]
  90. Talebi M. Talebi M. Farkhondeh T. Samarghandian S. Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. Phytother. Res. 2021 35 4 1739 1753 10.1002/ptr.6905 33051921
    [Google Scholar]
  91. Chen J. Gingold J.A. Su X. Immunomodulatory TGF-β Signaling in Hepatocellular Carcinoma. Trends Mol. Med. 2019 25 11 1010 1023 10.1016/j.molmed.2019.06.007 31353124
    [Google Scholar]
  92. Garrido A. Djouder N. Cirrhosis: A Questioned Risk Factor for Hepatocellular Carcinoma. Trends Cancer 2021 7 1 29 36 10.1016/j.trecan.2020.08.005 32917550
    [Google Scholar]
  93. Gallage S. García-Beccaria M. Szydlowska M. Rahbari M. Mohr R. Tacke F. Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. Med 2021 2 5 505 552 10.1016/j.medj.2021.03.002 35590232
    [Google Scholar]
  94. Talebi M. Talebi M. Farkhondeh T. Mishra G. İlgün S. Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res. 2021 35 6 3078 3112 10.1002/ptr.7033
    [Google Scholar]
  95. Burroughs A. Hochhauser D. Meyer T. Systemic treatment and liver transplantation for hepatocellular carcinoma: two ends of the therapeutic spectrum. Lancet Oncol. 2004 5 7 409 418 10.1016/S1470‑2045(04)01508‑6 15231247
    [Google Scholar]
  96. Xia S. Pan Y. Liang Y. Xu J. Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine 2020 51 102610 10.1016/j.ebiom.2019.102610 31918403
    [Google Scholar]
  97. Pinter M. Jain R.K. Duda D.G. The Current Landscape of Immune Checkpoint Blockade in Hepatocellular Carcinoma. JAMA Oncol. 2021 7 1 113 123 10.1001/jamaoncol.2020.3381 33090190
    [Google Scholar]
  98. Hussain S.P. Schwank J. Staib F. Wang X.W. Harris C.C. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 2007 26 15 2166 2176 10.1038/sj.onc.1210279 17401425
    [Google Scholar]
  99. Farkhondeh T. Pourbagher-Shahri A.M. Azimi-Nezhad M. Forouzanfar F. Brockmueller A. Ashrafizadeh M. Talebi M. Shakibaei M. Samarghandian S. Roles of Nrf2 in Gastric Cancer: Targeting for Therapeutic Strategies. Molecules 2021 26 11 3157 10.3390/molecules26113157 34070502
    [Google Scholar]
  100. Talebi M. Talebi M. Kakouri E. Farkhondeh T. Pourbagher-Shahri A.M. Tarantilis P.A. Samarghandian S. Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int. J. Biol. Macromol. 2021 172 93 103 10.1016/j.ijbiomac.2021.01.042 33440210
    [Google Scholar]
  101. Harris C.C. Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med. 1993 329 18 1318 1327 10.1056/NEJM199310283291807 8413413
    [Google Scholar]
  102. Yu L.X. Schwabe R.F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 2017 14 9 527 539 10.1038/nrgastro.2017.72 28676707
    [Google Scholar]
  103. Iwase M. Watanabe K. Shimizu M. Suzuki T. Yamamoto Y. Inoue J. Sato R. Chrysin reduces the activity and protein level of mature forms of sterol regulatory element-binding proteins. Biosci. Biotechnol. Biochem. 2019 83 9 1740 1746 10.1080/09168451.2019.1608806 31021712
    [Google Scholar]
  104. Sherif I.O. Al-Mutabagani L.A. Sabry D. Elsherbiny N.M. Antineoplastic activity of chrysin against human hepatocellular carcinoma: New insight on gpc3/sulf2 axis and lncrna-af085935 expression. Int. J. Mol. Sci. 2020 21 20 7642 10.3390/ijms21207642 33076548
    [Google Scholar]
  105. Zhang Y. Chen F. Xiao X. Pan W. Yuan Q. Cao J. Chrysin inhibits sphere formation in SMMC-7721 cells via modulation of SHP-1/STAT3 signaling pathway. Cancer Manag. Res. 2019 11 2977 2985 10.2147/CMAR.S193647 31114345
    [Google Scholar]
  106. Wei C.T. Chen L.C. Hsiang Y.P. Hung Y.J. Chien P.H. Pan H.L. Chen Y.J. Chrysin-induced ERK1/2 Phosphorylation Enhances the Sensitivity of Human Hepatocellular Carcinoma Cells to Sorafenib. Anticancer Res. 2019 39 2 695 701 10.21873/anticanres.13165 30711947
    [Google Scholar]
  107. Seydi E. Rahimpour Z. Salimi A. Pourahmad J. Selective toxicity of chrysin on mitochondria isolated from liver of a HCC rat model. Bioorg. Med. Chem. 2019 27 24 115163 10.1016/j.bmc.2019.115163 31708277
    [Google Scholar]
  108. Glory M.D. Thiruvengadam D. Potential chemopreventive role of chrysin against N-nitrosodiethylamine-induced hepatocellular carcinoma in rats. Biomedicine & Preventive Nutrition 2012 2 2 106 112 10.1016/j.bionut.2011.06.022
    [Google Scholar]
  109. Xu D. Jin J. Yu H. Zhao Z. Ma D. Zhang C. Jiang H. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J. Exp. Clin. Cancer Res. 2017 36 1 44 10.1186/s13046‑017‑0514‑4 28320429
    [Google Scholar]
  110. Zhang Q. Ma S. Liu B. Liu J. Zhu R. Li M. Chrysin induces cell apoptosis via activation of the p53/Bcl-2/caspase-9 pathway in hepatocellular carcinoma cells. Exp. Ther. Med. 2016 12 1 469 474 10.3892/etm.2016.3282 27347080
    [Google Scholar]
  111. Li X. Huang J.M. Wang J.N. Xiong X.K. Yang X.F. Zou F. Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53. Chem. Biol. Interact. 2015 232 12 20 10.1016/j.cbi.2015.03.003 25770930
    [Google Scholar]
  112. Wang J.N. Li X. Chen M.F. Wang F.Y. Xiong X.K. Chen X.J. Yang M.L. Huang J.M. Sensitization of chrysin on the apoptosis induced by cisplatin or camptothecin in hepatoma cell lines (Hep G2). Chung Kuo Yao Hsueh Tsa Chih 2016 51 24 2088 2093
    [Google Scholar]
  113. Oliveira G.A.R. Ferraz E.R.A. Souza A.O. Lourenço R.A. Oliveira D.P. Dorta D.J. Evaluation of the mutagenic activity of chrysin, a flavonoid inhibitor of the aromatization process. J. Toxicol. Environ. Health A 2012 75 16-17 1000 1011 10.1080/15287394.2012.696517 22852850
    [Google Scholar]
  114. Ding J. Polier G. Köhler R. Giaisi M. Krammer P.H. Li-Weber M. Wogonin and related natural flavones overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein resistance of tumors by down-regulation of c-FLIP protein and up-regulation of TRAIL receptor 2 expression. J. Biol. Chem. 2012 287 1 641 649 10.1074/jbc.M111.286526 22086925
    [Google Scholar]
  115. Gao A.M. Ke Z.P. Shi F. Sun G.C. Chen H. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem. Biol. Interact. 2013 206 1 100 108 10.1016/j.cbi.2013.08.008 23994249
    [Google Scholar]
  116. Zhao X. Shu G. Chen L. Mi X. Mei Z. Deng X. A flavonoid component from Docynia delavayi (Franch.) Schneid represses transplanted H22 hepatoma growth and exhibits low toxic effect on tumor-bearing mice. Food. chem. toxicol. 2012 50 9 3166 3173
    [Google Scholar]
  117. Li X. Wang J.N. Xiong X.K. Chen M.F. Gu M.Y. Yang Y. Wang F.Y. Yang X.F. Huang J.M. Acceleration of chrysin on apoptosis of hepatoma cell lines HepG2 induced by TNF-α. Chin. Tradit. Herbal Drugs 2010 41 11 1828 1834
    [Google Scholar]
  118. Sun X. Huo X. Luo T. Li M. Yin Y. Jiang Y. The anticancer flavonoid chrysin induces the unfolded protein response in hepatoma cells. J. Cell. Mol. Med. 2011 15 11 2389 2398 10.1111/j.1582‑4934.2010.01244.x 21199322
    [Google Scholar]
  119. Khan M.S. Devaraj H. Devaraj N. Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine-induced preneoplastic nodules in rats. Toxicol. Appl. Pharmacol. 2011 251 1 85 94 10.1016/j.taap.2010.12.004 21167192
    [Google Scholar]
  120. Smith C.M. Graham R.A. Krol W.L. Silver I.S. Negishi M. Wang H. Lecluyse E.L. Differential UGT1A1 induction by chrysin in primary human hepatocytes and HepG2 Cells. J. Pharmacol. Exp. Ther. 2005 315 3 1256 1264 10.1124/jpet.105.090795 16135700
    [Google Scholar]
  121. Uhl M. Ecker S. Kassie F. Lhoste E. Chakraborty A. Mohn G. Knasmüller S. Effect of chrysin, a flavonoid compound, on the mutagenic activity of 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) and benzo(a)pyrene (B(a)P) in bacterial and human hepatoma (HepG2) cells. Arch. Toxicol. 2003 77 8 477 484 10.1007/s00204‑003‑0469‑4 12856103
    [Google Scholar]
  122. Wang Z. Zhou Q. Shi H. Xiong S. Wang Y. Anti-hepatocarcinoma effects of a food additive Chrysin Nanosuspension against human HepG2 cells. Adv. J. Food Sci. Technol. 2015 7 8 627 630 10.19026/ajfst.7.1619
    [Google Scholar]
  123. Hoofnagle J.H. Björnsson E.S. Drug-Induced Liver Injury — Types and Phenotypes. N. Engl. J. Med. 2019 381 3 264 273 10.1056/NEJMra1816149 31314970
    [Google Scholar]
  124. Temel Y. Kucukler S. Yıldırım S. Caglayan C. Kandemir F.M. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 3 325 337 10.1007/s00210‑019‑01741‑z 31620822
    [Google Scholar]
  125. Rashid S. Ali N. Nafees S. Ahmad S.T. Arjumand W. Hasan S.K. Sultana S. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol. Mech. Methods 2013 23 5 337 345 10.3109/15376516.2012.759306 23256457
    [Google Scholar]
  126. Rehman M.U. Ali N. Rashid S. Jain T. Nafees S. Tahir M. Khan A.Q. Lateef A. Khan R. Hamiza O.O. Kazim S. Qamar W. Sultana S. Alleviation of hepatic injury by chrysin in cisplatin administered rats: probable role of oxidative and inflammatory markers. Pharmacolog. rep. 2014 66 6 1050 1059
    [Google Scholar]
  127. Ali N. Rashid S. Nafees S. Hasan S.K. Sultana S. Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Mol. Cell. Biochem. 2014 385 1-2 215 223 10.1007/s11010‑013‑1830‑4 24154663
    [Google Scholar]
  128. Pingili R.B. Pawar A.K. Challa S.R. Effect of chrysin on the formation of N-acetyl-p-benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Chem. Biol. Interact. 2019 302 123 134 10.1016/j.cbi.2019.02.014 30794797
    [Google Scholar]
  129. Mohammadi A. Kazemi S. Hosseini M. Najafzadeh Varzi H. Feyzi F. Morakabati P. Moghadamnia A.A. Chrysin Effect in Prevention of Acetaminophen-Induced Hepatotoxicity in Rat. Chem. Res. Toxicol. 2019 32 11 2329 2337 10.1021/acs.chemrestox.9b00332 31625388
    [Google Scholar]
  130. Eldutar E. Kandemir F.M. Kucukler S. Caglayan C. Restorative effects of Chrysin pretreatment on oxidant–antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol‐induced hepatotoxicity in rats: An experimental and biochemical study. J. Biochem. Mol. Toxicol. 2017 31 11 e21960 10.1002/jbt.21960 28682524
    [Google Scholar]
  131. Fuster D. Samet J.H. Alcohol Use in Patients with Chronic Liver Disease. N. Engl. J. Med. 2018 379 13 1251 1261 10.1056/NEJMra1715733 30257164
    [Google Scholar]
  132. Tilg H. Diehl A.M. Cytokines in alcoholic and nonalcoholic steatohepatitis. N. Engl. J. Med. 2000 343 20 1467 1476 10.1056/NEJM200011163432007 11078773
    [Google Scholar]
  133. Sathiavelu J. Senapathy G.J. Devaraj R. Namasivayam N. Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats. J. Pharm. Pharmacol. 2010 61 6 809 817 10.1211/jpp.61.06.0015 19505373
    [Google Scholar]
  134. Tahir M. Sultana S. Chrysin modulates ethanol metabolism in Wistar rats: a promising role against organ toxicities. Alcohol Alcohol. 2011 46 4 383 392 10.1093/alcalc/agr038 21531755
    [Google Scholar]
  135. Friedman S.L. Liver fibrosis – from bench to bedside. J. Hepatol. 2003 38 Suppl. 1 38 53 10.1016/S0168‑8278(02)00429‑4 12591185
    [Google Scholar]
  136. Fabre T. Molina M.F. Soucy G. Goulet J.P. Willems B. Villeneuve J.P. Bilodeau M. Shoukry N.H. Type 3 cytokines IL-17A and IL-22 drive TGF-β–dependent liver fibrosis. Sci. Immunol. 2018 3 28 eaar7754 10.1126/sciimmunol.aar7754 30366940
    [Google Scholar]
  137. Henderson N.C. Rieder F. Wynn T.A. Fibrosis: from mechanisms to medicines. Nature 2020 587 7835 555 566 10.1038/s41586‑020‑2938‑9 33239795
    [Google Scholar]
  138. Kisseleva T. Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021 18 3 151 166 10.1038/s41575‑020‑00372‑7 33128017
    [Google Scholar]
  139. Baykalir B.G. Arslan A.S. Mutlu S.I. Parlak Ak T. Seven I. Seven P.T. Yaman M. Gul H.F. The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats. Int. J. Vitam. Nutr. Res. 2020 91 5-6 427 438
    [Google Scholar]
  140. Anand K.V. Anandhi R. Pakkiyaraj M. Geraldine P. Protective effect of chrysin on carbon tetrachloride (CCl 4 )—induced tissue injury in male Wistar rats. Toxicol. Ind. Health 2011 27 10 923 933 10.1177/0748233711399324 21511893
    [Google Scholar]
  141. Beyrami M. Karimi E. Oskoueian E. Synthesized chrysin-loaded nanoliposomes improves cadmium-induced toxicity in mice. Environ. Sci. Pollut. Res. Int. 2020 27 32 40643 40651 10.1007/s11356‑020‑10113‑7 32671712
    [Google Scholar]
  142. Hermenean A. Mariasiu T. Navarro-González I. Vegara-Meseguer J. Miuțescu E. Chakraborty S. Pérez-Sánchez H. Hepatoprotective activity of chrysin is mediated through TNF-α in chemically-induced acute liver damage: An in vivo study and molecular modeling. Exp. Ther. Med. 2017 13 5 1671 1680 10.3892/etm.2017.4181 28565752
    [Google Scholar]
  143. Ciceu A. Balta C. Herman H. Gharbia S. Ignat S.R. Dinescu S. Váradi J. Fenyvesi F. Gyöngyösi S. Hermenean A. Costache M. Complexation with random methyl-β-cyclodextrin and (2-hidroxypropyl)-β-cyclodextrin enhances in vivo anti-fibrotic and anti-inflammatory effects of chrysin via the inhibition of NF-κB and TGF-β1/smad signaling pathways and modulation of hepatic pro/anti-fibrotic mirna. Int. J. Mol. Sci. 2021 22 4 1869 10.3390/ijms22041869 33668543
    [Google Scholar]
  144. Balta C. Herman H. Boldura O.M. Gasca I. Rosu M. Ardelean A. Hermenean A. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chem. Biol. Interact. 2015 240 94 101 10.1016/j.cbi.2015.08.013 26297989
    [Google Scholar]
  145. Balta C. Ciceu A. Herman H. Rosu M. Boldura O.M. Hermenean A. Dose-Dependent Antifibrotic Effect of Chrysin on Regression of Liver Fibrosis: The Role in Extracellular Matrix Remodeling. Dose Response 2018 16 3 10.1177/1559325818789835 30108459
    [Google Scholar]
  146. Huang C.S. Lii C.K. Lin A.H. Yeh Y.W. Yao H.T. Li C.C. Wang T.S. Chen H.W. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch. Toxicol. 2013 87 1 167 178 10.1007/s00204‑012‑0913‑4 22864849
    [Google Scholar]
  147. Butterworth R.F. The liver–brain axis in liver failure: neuroinflammation and encephalopathy. Nat. Rev. Gastroenterol. Hepatol. 2013 10 9 522 528 10.1038/nrgastro.2013.99 23817325
    [Google Scholar]
  148. Alimirah M. Sadiq O. Gordon S.C. Novel Therapies in Hepatic Encephalopathy. Clin. Liver Dis. 2020 24 2 303 315 10.1016/j.cld.2020.01.009 32245535
    [Google Scholar]
  149. El-Marasy S.A. El Awdan S.A. Abd-Elsalam R.M. Protective role of chrysin on thioacetamide-induced hepatic encephalopathy in rats. Chem. Biol. Interact. 2019 299 111 119 10.1016/j.cbi.2018.11.021 30500344
    [Google Scholar]
  150. Xia M.F. Bian H. Gao X. NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front. Pharmacol. 2019 10 877 10.3389/fphar.2019.00877 31447675
    [Google Scholar]
  151. Febbraio M.A. Reibe S. Shalapour S. Ooi G.J. Watt M.J. Karin M. Preclinical Models for Studying NASH-Driven HCC: How Useful Are They? Cell Metab. 2019 29 1 18 26 10.1016/j.cmet.2018.10.012 30449681
    [Google Scholar]
  152. Wong V.W.S. Chitturi S. Wong G.L.H. Yu J. Chan H.L.Y. Farrell G.C. Pathogenesis and novel treatment options for non-alcoholic steatohepatitis. Lancet Gastroenterol. Hepatol. 2016 1 1 56 67 10.1016/S2468‑1253(16)30011‑5 28404113
    [Google Scholar]
  153. Wang H. Mehal W. Nagy L.E. Rotman Y. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell. Mol. Immunol. 2021 18 1 73 91 10.1038/s41423‑020‑00579‑3 33268887
    [Google Scholar]
  154. Videla L.A. Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World J. Hepatol. 2009 1 1 72 78 10.4254/wjh.v1.i1.72 21160968
    [Google Scholar]
  155. Sanyal A.J. Treatment of non‐alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2002 17 s3 Suppl. 3 S385 S388 10.1046/j.1440‑1746.17.s3.32.x 12472968
    [Google Scholar]
  156. Targher G. Day C.P. Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 2010 363 14 1341 1350 10.1056/NEJMra0912063 20879883
    [Google Scholar]
  157. Diehl A.M. Day C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2017 377 21 2063 2072 10.1056/NEJMra1503519 29166236
    [Google Scholar]
  158. Gross B. Pawlak M. Lefebvre P. Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 2017 13 1 36 49 10.1038/nrendo.2016.135 27636730
    [Google Scholar]
  159. Musso G. Cassader M. Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat. Rev. Drug Discov. 2016 15 4 249 274 10.1038/nrd.2015.3 26794269
    [Google Scholar]
  160. Targher G. Tilg H. Byrne C.D. Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol. Hepatol. 2021 6 7 578 588 10.1016/S2468‑1253(21)00020‑0 33961787
    [Google Scholar]
  161. Song Y. Wu W. Sheng L. Jiang B. Li X. Cai K. Chrysin ameliorates hepatic steatosis induced by a diet deficient in methionine and choline by inducing the secretion of hepatocyte nuclear factor 4α‐dependent very low‐density lipoprotein. J. Biochem. Mol. Toxicol. 2020 34 7 e22497 10.1002/jbt.22497 32220030
    [Google Scholar]
  162. Pai S.A. Munshi R.P. Panchal F.H. Gaur I.S. Juvekar A.R. Chrysin ameliorates nonalcoholic fatty liver disease in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2019 392 12 1617 1628 10.1007/s00210‑019‑01705‑3 31372694
    [Google Scholar]
  163. Sobočanec S. Šverko V. Balog T. Šarić A. Rusak G. Likić S. Kušić B. Katalinić V. Radić S. Marotti T. Oxidant/antioxidant properties of Croatian native propolis. J. Agric. Food Chem. 2006 54 21 8018 8026 10.1021/jf0612023 17032004
    [Google Scholar]
  164. Sulaiman G.M. Al Sammarrae K.W. Ad'hiah A.H. Zucchetti M. Frapolli R. Bello E. Erba E. D'Incalci M. Bagnati R. Chemical characterization of Iraqi propolis samples and assessing their antioxidant potentials. Food. chem. toxicol. 2011 49 9 2415 2421
    [Google Scholar]
  165. Pasini F. Gardini S. Marcazzan G.L. Caboni M.F. Buckwheat honeys: Screening of composition and properties. Food Chem. 2013 141 3 2802 2811 10.1016/j.foodchem.2013.05.102 23871027
    [Google Scholar]
  166. Pichichero E. Cicconi R. Mattei M. Muzi M.G. Canini A. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression. Int. J. Oncol. 2010 37 4 973 981 20811719
    [Google Scholar]
  167. Williams C.A. Harborne J.B. Newman M. Greenham J. Eagles J. Chrysin and other leaf exudate flavonoids in the genus Pelargonium. Phytochemistry 1997 46 8 1349 1353 10.1016/S0031‑9422(97)00514‑1 9419900
    [Google Scholar]
  168. Bajgai S.P. Prachyawarakorn V. Mahidol C. Ruchirawat S. Kittakoop P. Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry 2011 72 16 2062 2067 10.1016/j.phytochem.2011.07.002 21802698
    [Google Scholar]
  169. Gharari Z. Bagheri K. Danafar H. Sharafi A. Simultaneous determination of baicalein, chrysin and wogonin in four Iranian Scutellaria species by high performance liquid chromatography. J. Appl. Res. Med. Aromat. Plants 2020 16 100232 10.1016/j.jarmap.2019.100232
    [Google Scholar]
  170. Mamadalieva N.Z. Herrmann F. El-Readi M.Z. Tahrani A. Hamoud R. Egamberdieva D.R. Azimova S.S. Wink M. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J. Pharm. Pharmacol. 2011 63 10 1346 1357 10.1111/j.2042‑7158.2011.01336.x 21899551
    [Google Scholar]
  171. Li J. Wang Y.H. Smillie T.J. Khan I.A. Identification of phenolic compounds from Scutellaria lateriflora by liquid chromatography with ultraviolet photodiode array and electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2012 63 120 127 10.1016/j.jpba.2012.01.027 22342658
    [Google Scholar]
  172. Menon S. Lawrence L. Sivaram V.P. Padikkala J. Oroxylum indicum root bark extract prevents doxorubicin-induced cardiac damage by restoring redox balance. J. Ayurveda Integr. Med. 2019 10 3 159 165 10.1016/j.jaim.2017.06.007 29398409
    [Google Scholar]
  173. Dinda B. SilSarma I. Dinda M. Rudrapaul P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J. Ethnopharmacol. 2015 161 255 278 10.1016/j.jep.2014.12.027 25543018
    [Google Scholar]
  174. Larit F. Elokely K.M. Chaurasiya N.D. Benyahia S. Nael M.A. León F. Abu-Darwish M.S. Efferth T. Wang Y.H. Belouahem-Abed D. Benayache S. Tekwani B.L. Cutler S.J. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Phytomedicine 2018 40 27 36 10.1016/j.phymed.2017.12.032 29496172
    [Google Scholar]
  175. Pereira O.R. Silva A.M.S. Domingues M.R.M. Cardoso S.M. Identification of phenolic constituents of Cytisus multiflorus. Food Chem. 2012 131 2 652 659 10.1016/j.foodchem.2011.09.045
    [Google Scholar]
  176. Liu Y.L. Ho D.K. Cassady J.M. Cook V.M. Baird W.M. Isolation of potential cancer chemopreventive agents from Eriodictyon californicum. J. Nat. Prod. 1992 55 3 357 363 10.1021/np50081a012 1593282
    [Google Scholar]
  177. Wolfman C. Viola H. Paladini A. Dajas F. Medina J.H. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora Coerulea. Pharmacol. Biochem. Behav. 1994 47 1 1 4 10.1016/0091‑3057(94)90103‑1 7906886
    [Google Scholar]
  178. Siddiqui A. Badruddeen; Akhtar, J.; Uddin M.S, S.; Khan, M. I.; Khalid, M.; Ahmad, M., A Naturally Occurring Flavone (Chrysin): Chemistry, Occurrence, Pharmacokinetic, Toxicity, Molecular Targets and Medicinal Properties. Journal of Biologically Active Products from Nature 2018 8 4 208 227 10.1080/22311866.2018.1498750
    [Google Scholar]
  179. Huang C. Wei Y.X. Shen M.C. Tu Y.H. Wang C.C. Huang H.C. Chrysin, Abundant in Morinda citrifolia Fruit Water–EtOAc Extracts, Combined with Apigenin Synergistically Induced Apoptosis and Inhibited Migration in Human Breast and Liver Cancer Cells. J. Agric. Food Chem. 2016 64 21 4235 4245 10.1021/acs.jafc.6b00766 27137679
    [Google Scholar]
  180. Abou Assi R. Darwis Y. Abdulbaqi I.M. khan A.A. Vuanghao L. Laghari M.H. Morinda citrifolia (Noni): A comprehensive review on its industrial uses, pharmacological activities, and clinical trials. Arab. J. Chem. 2017 10 5 691 707 10.1016/j.arabjc.2015.06.018
    [Google Scholar]
  181. Wang D. Shi C. Tang H. He C. Duan A. Gong H. The complete chloroplast genome sequence of Docynia indica (Wall.) Decne. Mitochondrial DNA B Resour. 2019 4 2 3046 3048 10.1080/23802359.2019.1666669 33365849
    [Google Scholar]
  182. Sharma P. Kumari A. Gulati A. Krishnamurthy S. Hemalatha S. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr. Neurosci. 2019 22 8 569 577 10.1080/1028415X.2017.1418786 29284373
    [Google Scholar]
  183. Ali M. Muhammad S. Shah M.R. Khan A. Rashid U. Farooq U. Ullah F. Sadiq A. Ayaz M. Ali M. Ahmad M. Latif A. Neurologically Potent Molecules from Crataegus oxyacantha; Isolation, Anticholinesterase Inhibition, and Molecular Docking. Front. Pharmacol. 2017 8 327 327 10.3389/fphar.2017.00327 28638340
    [Google Scholar]
  184. Saadawi S. Jalil J. Jasamai M. Jantan I. Inhibitory effects of acetylmelodorinol, chrysin and polycarpol from Mitrella kentii on prostaglandin E₂ and Thromboxane B₂ production and platelet activating factor receptor binding. Molecules 2012 17 5 4824 4835 10.3390/molecules17054824 22538486
    [Google Scholar]
  185. Begum S. Banerjee A. De B. Antioxidant and Enzyme Inhibitory Properties of Mangifera indica leaf Extract. Nat. Prod. J. 2020 10 4 384 394 10.2174/2210315509666190626124539
    [Google Scholar]
  186. Zhang Z.J. Cheang L.C.V. Wang M.W. Li G.H. Chu I.K. Lin Z.X. Lee S.M.Y. Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cell. Mol. Neurobiol. 2012 32 1 27 40 10.1007/s10571‑011‑9731‑0 21744117
    [Google Scholar]
  187. Huang K.K. Lin M.N. Hsu Y.L. Lu I.H. Pan I.H. Yang J.L. Alpinia oxyphylla Fruit Extract Ameliorates Experimental Autoimmune Encephalomyelitis through the Regulation of Th1/Th17 Cells. Evid. Based Complement. Alternat. Med. 2019 2019 1 15 10.1155/2019/6797030 31001353
    [Google Scholar]
  188. Kamat S. Kumari M. Sajna K.V. Jayabaskaran C. Endophytic fungus, Chaetomium globosum, associated with marine green alga, a new source of Chrysin. Sci. Rep. 2020 10 1 18726 10.1038/s41598‑020‑72497‑3 33127928
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998329724240918091335
Loading
/content/journals/cdr/10.2174/0115733998329724240918091335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test