Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetes is a chronic medical condition that causes high glycaemic levels, leading to damage to vital organs over time. It is a common disease worldwide, affecting around 422 million individuals living in middle- and low-income countries, which make up most of the population. Unfortunately, diabetes results in 1.5 million deaths annually. Diabetic patients are at a higher risk for developing cardiovascular conditions. Diabetic heart disease constitutes multiple genres, including diabetic cardiomyopathy, coronary artery disease, and heart failure. Hypoglycaemic agents aim to prevent these metabolic issues however some of these are cardiotoxic in nature. In contrast, other hypoglycaemic agents work beyond controlling glycaemic levels with their cardioprotective properties. Given that there is an alarming increase in diabetic heart disease cases universally, we have attempted to review the existing data on the topic and the effects of hypoglycaemic drugs on heart diseases.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998305019240702095537
2024-07-11
2025-04-21
Loading full text...

Full text loading...

References

  1. World Health Organization. Diabetes2023Available From: https://www.who.int/news-room/fact-sheets/detail/diabetes
  2. ChengA.Y.Y. Introduction.Can. J. Diabetes201337Suppl. 1S1S3https://www.ncbi.nlm.nih.gov/pubmed/2407092610.1016/j.jcjd.2013.01.009 24070926
    [Google Scholar]
  3. RajbhandariJ. FernandezC.J. AgarwalM. YeapB.X.Y. PappachanJ.M. Diabetic heart disease: A clinical update.World J. Diabetes202112438340610.4239/wjd.v12.i4.383 33889286
    [Google Scholar]
  4. TomicD. ShawJ.E. MaglianoD.J. The burden and risks of emerging complications of diabetes mellitus.Nat. Rev. Endocrinol.202218952553910.1038/s41574‑022‑00690‑7 35668219
    [Google Scholar]
  5. GlovaciD. FanW. WongN.D. Epidemiology of diabetes mellitus and cardiovascular disease.Curr. Cardiol. Rep.20192142110.1007/s11886‑019‑1107‑y 30828746
    [Google Scholar]
  6. RosengrenA. DikaiouP. Cardiovascular outcomes in type 1 and type 2 diabetes.Diabetologia202366342543710.1007/s00125‑022‑05857‑5 36640192
    [Google Scholar]
  7. SilanderK. TangH. MylesS. Worldwide patterns of haplotype diversity at 9p21.3, a locus associated with type 2 diabetes and coronary heart disease.Genome Med.2009155110.1186/gm51 19463184
    [Google Scholar]
  8. GoodarziM.O. RotterJ.I. Genetics insights in the relationship between type 2 diabetes and coronary heart disease.Circ. Res.2020126111526154810.1161/CIRCRESAHA.119.316065 32437307
    [Google Scholar]
  9. RodgersJ.L. JonesJ. BolledduS.I. Cardiovascular risks associated with gender and aging.J. Cardiovasc. Dev. Dis.2019621910.3390/jcdd6020019 31035613
    [Google Scholar]
  10. WangY. O’NeilA. JiaoY. Sex differences in the association between diabetes and risk of cardiovascular disease, cancer, and all-cause and cause-specific mortality: A systematic review and meta-analysis of 5,162,654 participants.BMC Med.201917113610.1186/s12916‑019‑1355‑0 31296205
    [Google Scholar]
  11. GanzM. AlessandroC. JacobsM. MillerD. DiahJ. WinerA. The role of body mass index and waist circumference in gender-specific risk factors for stress urinary incontinence: A cross-sectional study.Cureus2023155e3891710.7759/cureus.38917
    [Google Scholar]
  12. SpanakisE.K. GoldenS.H. Race/ethnic difference in diabetes and diabetic complications.Curr. Diab. Rep.201313681482310.1007/s11892‑013‑0421‑9 24037313
    [Google Scholar]
  13. HongX. LinJ. GuW. Risk factors and therapies in vascular diseases: An umbrella review of updated systematic reviews and meta‐analyses.J. Cell. Physiol.201923468221823210.1002/jcp.27633 30317627
    [Google Scholar]
  14. KahlK.G. StapelB. FrielingH. Link between depression and cardiovascular diseases due to epigenomics and proteomics: Focus on energy metabolism.Prog. Neuropsychopharmacol. Biol. Psychiatry20198914615710.1016/j.pnpbp.2018.09.004 30194950
    [Google Scholar]
  15. SchwabK.O. DoerferJ. HallermannK. Marked smoking-associated increase of cardiovascular risk in childhood type 1 diabetes.Int. J. Adolesc. Med. Health200820328529210.1515/IJAMH.2008.20.3.285 19097567
    [Google Scholar]
  16. BagchiD. SenC.K. RayS.D. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract.Mutat. Res.2003523-524879710.1016/S0027‑5107(02)00324‑X 12628506
    [Google Scholar]
  17. The European Group for the Study of Insulin Resistance (EGIR)Insulin resistance and hypersecretion in obesity.J. Clin. Invest.19971001166
    [Google Scholar]
  18. AbbasiF. BrownB.W.Jr LamendolaC. McLaughlinT. ReavenG.M. Relationship between obesity, insulin resistance, and coronary heart disease risk.J. Am. Coll. Cardiol.200240593794310.1016/S0735‑1097(02)02051‑X 12225719
    [Google Scholar]
  19. Adeva-AndanyM.M. Martínez-RodríguezJ. González-LucánM. Fernández-FernándezC. Castro-QuintelaE. Insulin resistance is a cardiovascular risk factor in humans.Diabetes Metab. Syndr.20191321449145510.1016/j.dsx.2019.02.023 31336505
    [Google Scholar]
  20. LDN KDM MS10 foods that may impact your risk of dying from heart disease, stroke, and type 2 diabetes.Available From: https://www.health.harvard.edu/blog/10-foods-that-may-impactyour-risk-of-dying-from-heart-disease-stroke-and-type-2-diabetes-2019100717965 2019
    [Google Scholar]
  21. WebM.D. Foods that are bad for your heart.Available From: https://www.webmd.com/heart-disease/ss/slideshow-foods-badheart 2019
    [Google Scholar]
  22. KnowlesJ.W. AshleyE.A. Cardiovascular disease: The rise of the genetic risk score.PLoS Med.2018153e100254610.1371/journal.pmed.1002546 29601582
    [Google Scholar]
  23. MaahsD.M. DanielsS.R. de FerrantiS.D. Cardiovascular disease risk factors in youth with diabetes mellitus: A scientific statement from the American Heart Association.Circulation2014130171532155810.1161/CIR.0000000000000094 25170098
    [Google Scholar]
  24. WaliR.K. HenrichW.L. Chronic kidney disease: A risk factor for cardiovascular disease.Cardiol. Clin.200523334336210.1016/j.ccl.2005.03.007 16084283
    [Google Scholar]
  25. WeinerD.E. TighiouartH. StarkP.C. Kidney disease as a risk factor for recurrent cardiovascular disease and mortality.Am. J. Kidney Dis.200444219820610.1053/j.ajkd.2004.04.024 15264177
    [Google Scholar]
  26. NicholsG.A. HillierT.A. ErbeyJ.R. BrownJ.B. Congestive heart failure in type 2 diabetes: Prevalence, incidence, and risk factors.Diabetes Care20012491614161910.2337/diacare.24.9.1614 11522708
    [Google Scholar]
  27. WildS. RoglicG. GreenA. SicreeR. KingH. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030.Diabetes Care20042751047105310.2337/diacare.27.5.1047 15111519
    [Google Scholar]
  28. LarssonS.C. WallinA. HåkanssonN. StackelbergO. BäckM. WolkA. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases.Int. J. Cardiol.2018262667010.1016/j.ijcard.2018.03.099 29605469
    [Google Scholar]
  29. KaurN. GuanY. RajaR. Ruiz-VelascoA. LiuW. Mechanisms and therapeutic prospects of diabetic cardiomyopathy through the inflammatory response.Front. Physiol.20211269486410.3389/fphys.2021.694864 34234695
    [Google Scholar]
  30. CrisafulliA. PagliaroP. RobertoS. Diabetic cardiomyopathy and ischemic heart disease: Prevention and therapy by exercise and conditioning.Int. J. Mol. Sci.2020218289610.3390/ijms21082896 32326182
    [Google Scholar]
  31. BlackHR Hypertension: A Companion to Braunwald's Heart Disease2012
    [Google Scholar]
  32. LeeY. PengY.Y. DingY.A. YenM.H. Losartan attenuates myocardial ischemia-induced ventricular arrythmias and reperfusion injury in spontaneously hypertensive rats.Am. J. Hypertens.199710885285810.1016/S0895‑7061(97)00119‑2 9270079
    [Google Scholar]
  33. SnoeckxL. van der VusseG.J. CoumansW.A. RenemanR.S. The effects of global ischemia and reperfusion on compensated hypertrophied rat hearts.J. Mol. Cell. Cardiol.199022121439145210.1016/0022‑2828(90)90987‑D 2150972
    [Google Scholar]
  34. IshikawaT. KajiwaraH. KuriharaS. Alterations in contractile properties and Ca2+ handling in streptozotocin-induced diabetic rat myocardium.Am. J. Physiol.19992776H2185H2194 10600836
    [Google Scholar]
  35. ForratR. SebbagL. WiernspergerN. GuidolletJ. RenaudS. de LorgerilM. Acute myocardial infarction in dogs with experimental diabetes.Cardiovasc. Res.199327111908191210.1093/cvr/27.11.1908 8287395
    [Google Scholar]
  36. ZhaoW. ZhangJ. SadowskyM.G. MengR. DingY. JiX. Remote ischaemic conditioning for preventing and treating ischaemic stroke.Cochrane Libr.20172017110.1002/14651858.CD012503 29974450
    [Google Scholar]
  37. KennyH.C. AbelE.D. Heart failure in type 2 diabetes mellitus: Impact of glucose-lowering agents, heart failure therapies, and novel therapeutic strategies.Circ. Res.2019124112114110.1161/CIRCRESAHA.118.311371 30605420
    [Google Scholar]
  38. AronsonD. EdelmanE.R. Coronary artery disease and diabetes mellitus.Cardiol. Clin.201432343945510.1016/j.ccl.2014.04.001 25091969
    [Google Scholar]
  39. FalkE. Pathogenesis of atherosclerosis.J. Am. Coll. Cardiol.2006478Suppl.C7C1210.1016/j.jacc.2005.09.068 16631513
    [Google Scholar]
  40. Dahl-JørgensenK. LarsenJ.R. HanssenK.F. Atherosclerosis in childhood and adolescent type 1 diabetes: Early disease, early treatment?Diabetologia20054881445145310.1007/s00125‑005‑1832‑1 15971059
    [Google Scholar]
  41. NaitoR. KasaiT. Coronary artery disease in type 2 diabetes mellitus: Recent treatment strategies and future perspectives.World J. Cardiol.20157311912410.4330/wjc.v7.i3.119 25810811
    [Google Scholar]
  42. LibbyP. RidkerP.M. MaseriA. Inflammation and atherosclerosis.Circulation200210591135114310.1161/hc0902.104353 11877368
    [Google Scholar]
  43. OrchardT.J. CostacouT. KretowskiA. NestoR.W. Type 1 diabetes and coronary artery disease.Diabetes Care200629112528253810.2337/dc06‑1161 17065698
    [Google Scholar]
  44. BerlinerJ. SubbanagounderG. LeitingerN. WatsonA.D. VoraD. Evidence for a role of phospholipid oxidation products in atherogenesis.Trends Cardiovasc. Med.2001113-414214710.1016/S1050‑1738(01)00098‑6 11686004
    [Google Scholar]
  45. PoznyakA. GrechkoA.V. PoggioP. MyasoedovaV.A. AlfieriV. OrekhovA.N. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation.Int. J. Mol. Sci.2020215183510.3390/ijms21051835 32155866
    [Google Scholar]
  46. RawshaniA. RawshaniA. FranzénS. Mortality and cardiovascular disease in type 1 and type 2 diabetes.N. Engl. J. Med.2017376151407141810.1056/NEJMoa1608664 28402770
    [Google Scholar]
  47. KearneyP.M. BlackwellL. CollinsR. Efficacy of cholesterol-lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: A meta-analysis.Lancet2008371960711712510.1016/S0140‑6736(08)60104‑X 18191683
    [Google Scholar]
  48. StancovenA. McGuireD.K. Preventing macrovascular complications in type 2 diabetes mellitus: Glucose control and beyond.Am. J. Cardiol.20079911S5S1110.1016/j.amjcard.2007.04.005 17665747
    [Google Scholar]
  49. BangaloreS. ParkarS. GrossmanE. MesserliF.H. A meta-analysis of 94,492 patients with hypertension treated with beta blockers to determine the risk of new-onset diabetes mellitus.Am. J. Cardiol.200710081254126210.1016/j.amjcard.2007.05.057 17920367
    [Google Scholar]
  50. American College of CardiologyTelmisartan randomised assessment Study in ACE Intolerant subjects with cardiovascular disease.Available From: https://www.acc.org/latest-incardiology/clinical-trials/2010/02/23/19/24/transcend 2023
    [Google Scholar]
  51. ArnoldS.V. BhattD.L. BarsnessG.W. Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: A scientific statement from the American Heart Association.Circulation202014119e779e80610.1161/CIR.0000000000000766 32279539
    [Google Scholar]
  52. DillmannW.H. Diabetic Cardiomyopathy.Circ. Res.201912481160116210.1161/CIRCRESAHA.118.314665 30973809
    [Google Scholar]
  53. FoxC.S. PencinaM.J. WilsonP.W.F. PaynterN.P. VasanR.S. D’AgostinoR.B.Sr Lifetime risk of cardiovascular disease among individuals with and without diabetes stratified by obesity status in the Framingham heart study.Diabetes Care20083181582158410.2337/dc08‑0025 18458146
    [Google Scholar]
  54. van HaterenK.J.J. LandmanG.W.D. KleefstraN. LogtenbergS.J.J. GroenierK.H. KamperA.M. The lipid profile and mortality risk in elderly type 2 diabetic patients: A ten-year follow-up study (ZODIAC-13).PLoS One2009412e8464
    [Google Scholar]
  55. KannelW.B. HjortlandM. CastelliW.P. Role of diabetes in congestive heart failure: The Framingham study.Am. J. Cardiol.1974341293410.1016/0002‑9149(74)90089‑7 4835750
    [Google Scholar]
  56. RaphaelJ. GozalY. NavotN. ZuoZ. Activation of adenosine triphosphate-regulated potassium channels during reperfusion restores isoflurane postconditioning-induced cardiac protection in acutely hyperglycemic rabbits.Anesthesiology201512261299131110.1097/ALN.0000000000000648
    [Google Scholar]
  57. FerdinandyP. HausenloyD.J. HeuschG. BaxterG.F. SchulzR. Interaction of cardiovascular nonmodifiable risk factors, comorbidities and comedications with ischemia/reperfusion injury and cardioprotection by pharmacological treatments and ischemic conditioning.Pharmacol. Rev.2023751159216
    [Google Scholar]
  58. DrengerB. OstrovskyI.A. BarakM. Nechemia-ArbelyY. ZivE. AxelrodJ.H. Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: Phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition.Anesthesiology201111461364137210.1097/ALN.0b013e31820efafd 21368653
    [Google Scholar]
  59. McDonaghT.A. MetraM. AdamoM. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.202142363599372610.1093/eurheartj/ehab368 34447992
    [Google Scholar]
  60. McMurrayJ.J.V. PackerM. How should we sequence the treatments for heart failure and a reduced ejection fraction? A redefinition of evidence-based medicine.Circulation2021143987587710.1161/CIRCULATIONAHA.120.052926 33378214
    [Google Scholar]
  61. SolaD. RossiL. SchiancaG.P.C. State of the art paper Sulfonylureas and their use in clinical practice.Arch. Med. Sci.20154484084810.5114/aoms.2015.53304 26322096
    [Google Scholar]
  62. DenegriA. BorianiG. High Sensitivity C-reactive Protein (hsCRP) and its Implications in Cardiovascular Outcomes.Curr. Pharm. Des.202127226327510.2174/1381612826666200717090334 32679014
    [Google Scholar]
  63. CostelloR.A. NicolasS. ShivkumarA. Sulfonylureas.Treasure Island, (FL)StatPearls Publishing2024
    [Google Scholar]
  64. DworackaM. AbramczykM. WiniarskaH. KuczynskiS. BorowskaM. SzczawinskaK. Disproportionately elevated proinsulin levels in type 2 diabetic patients treated with sulfonylurea.Int. J. Clin. Pharmacol. Ther.2006441141910.5414/CPP44014 16425966
    [Google Scholar]
  65. NathanD.M. Rosiglitazone and cardiotoxicity-weighing the evidence.N. Engl. J. Med.20073571646610.1056/NEJMe078117 17551161
    [Google Scholar]
  66. JearathV. VashishtR. RustagiV. RainaS. SharmaR. Pioglitazone-induced congestive heart failure and pulmonary edema in a patient with preserved ejection fraction.J. Pharmacol. Pharmacother.201671414310.4103/0976‑500X.179363 27127397
    [Google Scholar]
  67. DawwasG.K. SmithS.M. ParkH. Risk of heart failure hospitalization among users of dipeptidyl peptidase-4 inhibitors compared to glucagon-like peptide-1 receptor agonists.Cardiovasc. Diabetol.201817110210.1186/s12933‑018‑0746‑4 30016946
    [Google Scholar]
  68. HubersS.A. WilsonJ.R. YuC. DPP (Dipeptidyl peptidase)-4 inhibition potentiates the vasoconstrictor response to NPY (neuropeptide Y) in humans during renin-angiotensin-aldosterone system inhibition.Hypertension201872371271910.1161/HYPERTENSIONAHA.118.11498 29987109
    [Google Scholar]
  69. GourgariE. WilhelmE.E. HassanzadehH. ArodaV.R. ShoulsonI. A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data.J. Diabetes Complications201731121719172710.1016/j.jdiacomp.2017.08.005 28939018
    [Google Scholar]
  70. SezaiA. SekinoH. UnosawaS. TaokaM. OsakaS. TanakaM. Canagliflozin for Japanese patients with chronic heart failure and type II diabetes.Cardiovasc. Diabetol.20191817610.1186/s12933‑019‑0877‑2 31167663
    [Google Scholar]
  71. DriverC. BamitaleK.D.S. KaziA. OllaM. NyaneN.A. OwiraP.M.O. Cardioprotective Effects of Metformin.J. Cardiovasc. Pharmacol.201872212112710.1097/FJC.0000000000000599 29738369
    [Google Scholar]
  72. MusiN. HirshmanM.F. NygrenJ. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes.Diabetes20025172074208110.2337/diabetes.51.7.2074 12086935
    [Google Scholar]
  73. KempB.E. MitchelhillK.I. StapletonD. MichellB.J. ChenZ.P. WittersL.A. Dealing with energy demand: The AMP-activated protein kinase.Trends Biochem. Sci.1999241222510.1016/S0968‑0004(98)01340‑1 10087918
    [Google Scholar]
  74. ESCESC Guidelines for the management of cardiovascular disease in patients with diabetes.Available From: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/CVD-and-Diabetes-Guidelines 2023
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998305019240702095537
Loading
/content/journals/cdr/10.2174/0115733998305019240702095537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test