Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Introduction

Type 2 Diabetes Mellitus (T2DM) accounts for more than 95% of all diabetes cases and is a leading cause of disability and death. This study aimed to evaluate the effectiveness and safety of a combination therapy involving metformin, teneligliptin, and glimepiride in patients diagnosed with T2DM.

Methods

The present quasi-experimental clinical trial involved 300 adult T2DM patients. They were divided into three groups: Group 1 (Metformin; n=100), Group 2 (Metformin + Teneligliptin; n=100), and Group 3 (Metformin + Teneligliptin +; n=100). Along with demographic data, we collected information on HbA1c, FBS, and PPBS levels, as well as fasting insulin, C-Peptide, HOMA-IR, QUICKI-IR, and lipid, renal, and hepatic profiles at baseline and after 3, 6, and 12 months. Data analysis was performed using SPSS 21.0 software.

Results

A total of 300 patients participated in the study. At the end of 12 months, triple-drug therapy achieved significant glycemic control (HbA1c: 6.56±0.50%; 0.0001) and reduced FBS (7.6±1.41 mg/dl; 0.0001), PPBS (9.39±2.14 mg/dl; 0.0001), and fasting insulin (11.26±2.5 IU; 0.0001), C-peptide (2.01±2.29 ng/ml; 0.0001), and insulin resistance by HOMA-IR (3.74±0.7; 0.0001). Favorable lipid profiles (0.0001) were noted versus other groups. Despite renal and hepatic profile variations, values remained within the normal range.

Conclusion

The combination of teneligliptin with metformin and glimepiride in T2DM patients demonstrated significant improvements in glycaemic control, reduced insulin resistance, and positive effects on lipid, renal, and hepatic profiles. Importantly, the therapy did not result in serious adverse drug reactions, such as hypoglycemia. We need more RCTs to substantiate these findings.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998292943240730115310
2024-11-29
2025-04-02
The full text of this item is not currently available.

References

  1. HossainM.J. Al-MamunM. IslamM.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused.Health Sci. Rep.202473e200410.1002/hsr2.200438524769
    [Google Scholar]
  2. KahnC.R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes.Diabetes19944381066108510.2337/diab.43.8.10668039601
    [Google Scholar]
  3. ChenchulaS. GuptaR. SB. VishweA. GourP. KumarS. An observational cross-sectional study to determine the effect of telmisartan on reducing microalbuminuria in diabetic hypertensive patients in tertiary care teaching hospital, Central India.Int. J. Basic Clin. Pharmacol.2017682082208610.18203/2319‑2003.ijbcp20173300
    [Google Scholar]
  4. ElderD.A. HornungL.N. HerbersP.M. PrigeonR. WooJ.G. D’AlessioD.A. Rapid deterioration of insulin secretion in obese adolescents preceding the onset of type 2 diabetes.J. Pediatr.2015166367267810.1016/j.jpeds.2014.11.02925557969
    [Google Scholar]
  5. FuZ. GilbertE.R. LiuD. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes.Curr. Diabetes Rev.201391255310.2174/15733991380414322522974359
    [Google Scholar]
  6. Pinhas-HamielO. ZeitlerP. Type 2 Diabetes in Children and Adolescents- A Focus on Diagnosis and Treatment.South Dartmouth (MA), MDText.com, Inc.2000
    [Google Scholar]
  7. ZhuR. ZhouS. XiaL. BaoX. Incidence, Morbidity and years Lived With Disability due to Type 2 Diabetes Mellitus in 204 Countries and Territories: Trends From 1990 to 2019.Front. Endocrinol. (Lausanne)20221390553810.3389/fendo.2022.90553835898461
    [Google Scholar]
  8. MohanV. PradeepaR. Epidemiology of type 2 diabetes in India.Indian J. Ophthalmol.202169112932293810.4103/ijo.IJO_1627_2134708726
    [Google Scholar]
  9. PichéME. TchernofA. DesprésJP. Obesity phenotypes, diabetes, and cardiovascular diseases.Circ Res.2020126111477150010.1161/CIRCRESAHA.120.316101
    [Google Scholar]
  10. Children and Adolescents: Standards of Medical Care in Diabetes−2020.Diabetes Care202043Suppl. 1S163S18210.2337/dc20‑S01331862756
    [Google Scholar]
  11. American Diabetes Association Professional Practice Committee Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2022.Diabetes Care202245Suppl. 1S125S14310.2337/dc22‑S00934964831
    [Google Scholar]
  12. DaviesM.J. D’AlessioD.A. FradkinJ. KernanW.N. MathieuC. MingroneG. RossingP. TsapasA. WexlerD.J. BuseJ.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).Diabetes Care201841122669270110.2337/dci18‑003330291106
    [Google Scholar]
  13. Type 2 diabetes in adults:managementNICE guidelines2015
    [Google Scholar]
  14. KanatsukaA. SatoY. KawaiK. HiraoK. KobayashiM. KashiwagiA. AbeN. AraiK. FujiyaH. FukumotoY. DakeF. IizumiT. ItoM. IwasakiK. KanamoriA. KatoS. KatoM. KawaraA. KimuraK. ChikamoriK. IemitsuK. KouS. KudoM. KuriharaY. LeeG. TsuruokaA. MandaN. MatobaK. HayashiH. MinamiM. KuribayashiN. MiyazawaK. ChibaY. OsonoiT. NakamuraS. SasakiH. KomoriK. OishiM. OkadaA. OkuguchiF. YanagisawaM. SugimotoH. SugiyamaH. TakaiM. TakakiM. TakamuraH. TakedaH. TakedaH. TanakaK. MiwaT. TomonagaO. TaguchiM. YamazakiK. WadaT. YagiN. YamaokaK. YuharaA. Japan Diabetes Clinical Data Management Study Group (JDDM) Relationship between the efficacy of oral antidiabetic drugs and clinical features in type 2 diabetic patients (JDDM38).J. Diabetes Investig.20167338639510.1111/jdi.1243027330726
    [Google Scholar]
  15. ChenchulaS. VarthyaS.B. PadmavathiR. Rationality, Efficacy, Tolerability of Empagliflozin Plus Linagliptin Combination for the Management of Type 2 Diabetes Mellitus: A Systematic Review of Randomized Controlled Trials and Observational Studies.Curr. Diabetes Rev.2022184e10092119639210.2174/157339981766621091016540234514991
    [Google Scholar]
  16. GottschalkM. DanneT. VlajnicA. CaraJ.F. Glimepiride versus metformin as monotherapy in pediatric patients with type 2 diabetes: a randomized, single-blind comparative study.Diabetes Care200730479079410.2337/dc06‑155417392540
    [Google Scholar]
  17. HemmingsenB. SchrollJ.B. WetterslevJ. GluudC. VaagA. SonneD.P. LundstrømL.H. AlmdalT. Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: a Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis.CMAJ Open201423E162E17510.9778/cmajo.2013007325295236
    [Google Scholar]
  18. QianD. ZhangT. ZhengP. LiangZ. WangS. XieJ. ZhaoL. ZhangY. SituB. Comparison of Oral Antidiabetic Drugs as Add-On Treatments in Patients with Type 2 Diabetes Uncontrolled on Metformin: A Network Meta-Analysis.Diabetes Ther.2018951945195810.1007/s13300‑018‑0482‑530121726
    [Google Scholar]
  19. EtoT. InoueS. KadowakiT. Effects of once‐daily teneligliptin on 24‐h blood glucose control and safety in Japanese patients with type 2 diabetes mellitus: a 4‐week, randomized, double‐blind, placebo‐controlled trial.Diabetes Obes. Metab.201214111040104610.1111/j.1463‑1326.2012.01662.x22776014
    [Google Scholar]
  20. Siriesha SharmaN. LuganiY. KaurA. AhujaV. Effect of metformin on insulin levels, blood sugar, and body mass index in polycystic ovarian syndrome cases.J. Family Med. Prim. Care2019882691269510.4103/jfmpc.jfmpc_490_1931548957
    [Google Scholar]
  21. ZafarS. Role of metformin in correcting hyperinsulinemia, menstrual irregularity and anovulation in polycystic ovary syndrome.J. Ayub Med. Coll. Abbottabad2005174545616599037
    [Google Scholar]
  22. LeightonE. SainsburyC.A.R. JonesG.C. A Practical Review of C-Peptide Testing in Diabetes.Diabetes Ther.20178347548710.1007/s13300‑017‑0265‑428484968
    [Google Scholar]
  23. KhanH.A. SobkiS.H. EkhzaimyA. KhanI. AlmusawiM.A. Biomarker potential of C-peptide for screening of insulin resistance in diabetic and non-diabetic individuals.Saudi J. Biol. Sci.20182581729173210.1016/j.sjbs.2018.05.02730591792
    [Google Scholar]
  24. KimS.T. KimB.J. LimD.M. SongI.G. JungJ.H. LeeK.W. ParkK.Y. ChoY.Z. LeeD.H. KohG.P. Basal C-peptide Level as a Surrogate Marker of Subclinical Atherosclerosis in Type 2 Diabetic Patients.Diabetes Metab. J.2011351414910.4093/dmj.2011.35.1.4121537412
    [Google Scholar]
  25. ChenC.H. TsaiS.T. ChouP. Correlation of fasting serum C-peptide and insulin with markers of metabolic syndrome-X in a homogeneous Chinese population with normal glucose tolerance.Int. J. Cardiol.199968217918610.1016/S0167‑5273(98)00366‑010189006
    [Google Scholar]
  26. XiangA.H. PetersR.K. KjosS.L. MarroquinA. GoicoJ. OchoaC. KawakuboM. BuchananT.A. Effect of pioglitazone on pancreatic beta-cell function and diabetes risk in Hispanic women with prior gestational diabetes.Diabetes200655251752210.2337/diabetes.55.02.06.db05‑106616443789
    [Google Scholar]
  27. RasouliN. KernP.A. ReeceE.A. ElbeinS.C. Effects of pioglitazone and metformin on β-cell function in nondiabetic subjects at high risk for type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20072921E359E36510.1152/ajpendo.00221.200616968813
    [Google Scholar]
  28. BunckM.C. CornérA. EliassonB. HeineR.J. ShaginianR.M. TaskinenM.R. SmithU. Yki-JärvinenH. DiamantM. Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes.Diabetes Care20113492041204710.2337/dc11‑029121868779
    [Google Scholar]
  29. JiL. LiL. MaJ. LiX. LiD. MengB. LuW. SunJ. LiuY. TakayanagiG. WangY. Efficacy and safety of teneligliptin added to metformin in Chinese patients with type 2 diabetes mellitus inadequately controlled with metformin: A phase 3, randomized, double‐blind, placebo‐controlled study.Endocrinol. Diabetes Metab.202142e0022210.1002/edm2.22233855222
    [Google Scholar]
  30. GillaniS. GhayediN. RoostaP. SeddighP. NasiriO. Effect of Metformin on Lipid Profiles of Type 2 Diabetes Mellitus: A Metaanalysis of Randomized Controlled Trials.J. Pharm. Bioallied Sci.2021131768210.4103/jpbs.JPBS_370_2034084051
    [Google Scholar]
  31. Incidence, Prevalence,Patient Characteristics, and Treatment Modalities.In: United States Renal Data System. 2018 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States.USRDS 2018. pp. 291-331.
    [Google Scholar]
  32. GhantaM.K. NayakaS.R. NuthalapatiP. Afzal KhanA.K. ElangoP. LakkakulaB.V.K.S. Molecular docking study of Momordica charantia Linn phytoconstituent with caspase 3 and implications for renoprotective actions in diabetes mellitus.J. Nephropharmacol.202111e1039410.34172/npj.2022.10394
    [Google Scholar]
  33. ChenchulaS. VidyasagarK. PathanS. SharmaS. ChavanM.R. BhagavathulaA.S. PadmavathiR. ManjulaM. ChhabraM. GuptaR. AmerneniK.C. GhantaM.K. MuddaS. Global prevalence and effect of comorbidities and smoking status on severity and mortality of COVID-19 in association with age and gender: a systematic review, meta-analysis and meta-regression.Sci. Rep.2023131641510.1038/s41598‑023‑33314‑937076543
    [Google Scholar]
  34. OtsukiH. KosakaT. NakamuraK. ShimomuraF. KuwaharaY. TsukamotoT. Safety and efficacy of teneligliptin: a novel DPP-4 inhibitor for hemodialysis patients with type 2 diabetes.Int. Urol. Nephrol.201446242743210.1007/s11255‑013‑0552‑624014134
    [Google Scholar]
  35. HalabiA. MaatoukH. SieglerK.E. FaisstN. LufftV. KlauseN. Pharmacokinetics of Teneligliptin in Subjects With Renal Impairment.Clin. Pharmacol. Drug Dev.20132324625410.1002/cpdd.2927121786
    [Google Scholar]
  36. HanedaM. KadowakiT. ItoH. SasakiK. HiraideS. IshiiM. MatsukawaM. UenoM. Safety and Efficacy of Teneligliptin in Patients with Type 2 Diabetes Mellitus and Impaired Renal Function: Interim Report from Post-marketing Surveillance.Diabetes Ther.2018931083109710.1007/s13300‑018‑0416‑229637459
    [Google Scholar]
  37. IdetaT. ShirakamiY. MiyazakiT. KochiT. SakaiH. MoriwakiH. ShimizuM. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice.Int. J. Mol. Sci.20151612292072921810.3390/ijms16122615626670228
    [Google Scholar]
  38. GhantaM.K. KhanA.K.A. BhaskarL.V.K.S. Diagnostic and Prognostic Implications of Cardiac Markers for Hepatocellular Carcinoma.Crit. Rev. Oncog.202126111010.1615/CritRevOncog.202003630533641280
    [Google Scholar]
  39. HolsteinA. HinzeS. THIEßEnE. PlaschkeA. EgbertsE-H. Clinical implications of hepatogenous diabetes in liver cirrhosis.J. Gastroenterol. Hepatol.200217667768110.1046/j.1440‑1746.2002.02755.x12100613
    [Google Scholar]
  40. MüllerG. SatohY. GeisenK. Extrapancreatic effects of sulfonylureas — a comparison between glimepiride and conventional sulfonylureas.Diabetes Res. Clin. Pract.199528Suppl.S115S13710.1016/0168‑8227(95)01089‑V8529504
    [Google Scholar]
  41. KimHS. KimDM. ChaBS. ParkTS. KimKA. KimDL. ChungCH. ParkJH. JangHC. ChoiDS. Efficacy of glimepiride/metformin fixed-dose combination vs metformin uptitration in type 2 diabetic patients inadequately controlled on low-dose metformin monotherapy: A randomized, open label, parallel group, multicenter study in Korea.J Diabetes Investig.201456701708
    [Google Scholar]
  42. CharpentierG. FleuryF. KabirM. VaurL. HalimiS. Improved glycaemic control by addition of glimepiride to metformin monotherapy in Type 2 diabetic patients.Diabet. Med.2001181082883410.1046/j.1464‑5491.2001.00582.x11678974
    [Google Scholar]
  43. ForoutanN. MuratovS. LevineM. Safety and efficacy of dipeptidyl peptidase-4 inhibitors vs sulfonylurea in metformin-based combination therapy for type 2 diabetes mellitus: Systematic review and meta-analysis.Clin. Invest. Med.20163924810.25011/cim.v39i2.2648127040861
    [Google Scholar]
  44. FarahD. LemeG.M. EliaschewitzF.G. FonsecaM.C.M. A safety and tolerability profile comparison between dipeptidyl peptidase-4 inhibitors and sulfonylureas in diabetic patients: A systematic review and meta-analysis.Diabetes Res. Clin. Pract.2019149476310.1016/j.diabres.2019.01.02530710655
    [Google Scholar]
  45. ZhangY. HongJ. ChiJ. GuW. NingG. WangW. Head‐to‐head comparison of dipeptidyl peptidase‐IV inhibitors and sulfonylureas – a meta‐analysis from randomized clinical trials.Diabetes Metab. Res. Rev.201430324125610.1002/dmrr.248224123720
    [Google Scholar]
  46. OuS.M. ShihC.J. ChaoP.W. ChuH. KuoS.C. LeeY.J. WangS.J. YangC.Y. LinC.C. ChenT.J. TarngD.C. LiS.Y. ChenY.T. Effects on Clinical Outcomes of Adding Dipeptidyl Peptidase-4 Inhibitors Versus Sulfonylureas to Metformin Therapy in Patients With Type 2 Diabetes Mellitus.Ann. Intern. Med.2015163966367210.7326/M15‑030826457538
    [Google Scholar]
  47. KimM.K. RheeE.J. HanK.A. WooA.C. LeeM.K. KuB.J. ChungC.H. KimK.A. LeeH.W. ParkI.B. ParkJ.Y. Chul JangH.C. ParkK.S. JangW.I. ChaB.Y. Efficacy and safety of teneligliptin, a dipeptidyl peptidase‐4 inhibitor, combined with metformin in K orean patients with type 2 diabetes mellitus: a 16‐week, randomized, double‐blind, placebo‐controlled phase III trial.Diabetes Obes. Metab.201517330931210.1111/dom.1242425475929
    [Google Scholar]
  48. NishanthT. MaheshwariC.U. LakshmiR.S. SriD. GoudP. TabassumK. A study to compare efficacy of metformin, glimepiride versus metformin-teneligliptin in Type ii diabetic patients.Int. J. Pharm. Sci. Res.2018952585264
    [Google Scholar]
  49. González-OrtizM. Guerrero-RomeroJ.F. Violante-OrtizR. Wacher-RodarteN. Martínez-AbundisE. Aguilar-SalinasC. Islas-AndradeS. Arechavaleta-GranellR. González-CanudasJ. Rodríguez-MoránM. Zavala-SuárezE. Ramos-ZavalaM.G. MethaR. Revilla-MonsalveC. Beltrán-JaramilloT.J. Efficacy of glimepiride/metformin combination versus glibenclamide/metformin in patients with uncontrolled type II diabetes mellitus.J. Diabetes Complications200923637637910.1016/j.jdiacomp.2008.09.00218849173
    [Google Scholar]
  50. HansN. The Efficacy and Safety of Teneligliptin and Metformin versus Glimepiride and Metformin in Patients of Type-2 Diabetes Mellitus Uncontrolled with Monotherapy.J. Diabetes Metab.201910829
    [Google Scholar]
  51. BrysonA. JenningsP.E. DeakL. PaveliuF.S. LawsonM. The efficacy and safety of teneligliptin added to ongoing metformin monotherapy in patients with type 2 diabetes: a randomized study with open label extension.Expert Opin. Pharmacother.201617101309131610.1080/14656566.2016.119033427181910
    [Google Scholar]
  52. ChenchulaS. SharmaS. TripathiM. ChavanM. MisraA.K. RangariG. Prevalence of overweight and obesity and their effect on COVID‐19 severity and hospitalization among younger than 50 years versus older than 50 years population: A systematic review and meta‐analysis.Obes. Rev.20232411e1361610.1111/obr.1361637574901
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998292943240730115310
Loading
/content/journals/cdr/10.2174/0115733998292943240730115310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test