Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

The overexpression of the Protein Tyrosine Phosphatase 1B (PTP1B), a key role in the development of insulin resistance, diabetes (T2DM) and obesity, seems to have a substantial impact as a negative regulator of the insulin and leptin signaling pathways. Therefore, inhibiting PTP1B is a prospective therapeutic approach for the treatment of diabetes and obesity. However, the pyrazole scaffold is expected to be of significant pharmaceutical interest due to its broad spectrum of pharmacological actions. This study aims to focus on the significance of pyrazole scaffold in medicinal chemistry, the impact of PTP1B in diabetes and the therapeutic approach of pyrazole scaffold to treat T2DM.

Methods

A comprehensive analysis of the published literature in several pharmaceutical and medical databases, such as the Web of Science (WoS), PubMed, ResearchGate, ScienceDirect etc., were indeed successfully completed and classified accordingly.

Results

As reviewed, the various derivatives of the pyrazole scaffold exhibited prominent PTP1B inhibitory activity. The result showed that derivatives of oxadiazole and dibenzyl amine, chloro substituents, 1, 3-diaryl pyrazole derivatives with rhodanine-3-alkanoic acid groups, naphthalene and also 1, 3, 5-triazine-1-pyrazole-triazolothiadiazole derivatives, octyl and tetradecyl derivative, indole- and N-phenylpyrazole-glycyrrhetinic acid derivatives with trifluoromethyl group, 2,3-pyrazole ring-substituted-4,4-dimethyl lithocholic acid derivatives with 4-fluoro phenyl substituted and additional benzene ring in the pyrazole scaffold significantly inhibits PTP1B. study observed that pyrazole scaffold interacted with amino acid residues like TYR46, ASP48, PHE182, TYR46, ALA217 and ILE219.

Conclusion

Diabetes is a metabolic disorder that elevates the risk of mortality and severe complications. PTP1B is a crucial component in the management of diabetes and obesity. As a result, PTP1B is a promising therapeutic target for the treatment of T2DM and obesity in humans. We concluded that the pyrazole scaffold has prominent inhibitory potential against PTP1B.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998280245240130075909
2024-02-13
2024-11-19
Loading full text...

Full text loading...

References

  1. HeR. YuZ. ZhangR. ZhangZ. Protein tyrosine phosphatases as potential therapeutic targets.Acta Pharmacol. Sin.201435101227124610.1038/aps.2014.80 25220640
    [Google Scholar]
  2. MascarelloA. Orbem MenegattiA.C. CalcaterraA. Naturally occurring Diels-Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B.Eur. J. Med. Chem.201814427728810.1016/j.ejmech.2017.11.087 29275228
    [Google Scholar]
  3. TonksN.K. Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction.FEBS J.2013280234637810.1111/febs.12077 23176256
    [Google Scholar]
  4. LiuW.S. WangR.R. YueH. Design, synthesis, biological evaluation and molecular dynamics studies of 4-thiazolinone derivatives as protein tyrosine phosphatase 1B (PTP1B) inhibitors.J. Biomol. Struct. Dyn.202038133814382410.1080/07391102.2019.1664333 31490104
    [Google Scholar]
  5. FeldhammerM. UetaniN. Miranda-SaavedraD. TremblayM.L. PTP1B: A simple enzyme for a complex world.Crit. Rev. Biochem. Mol. Biol.201348543044510.3109/10409238.2013.819830 23879520
    [Google Scholar]
  6. SeelyB.L. StaubsP.A. ReichartD.R. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor.Diabetes199645101379138510.2337/diab.45.10.1379 8826975
    [Google Scholar]
  7. KennerK.A. AnyanwuE. OlefskyJ.M. KusariJ. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling.J. Biol. Chem.199627133198101981610.1074/jbc.271.33.19810 8702689
    [Google Scholar]
  8. SantaniemiM. UkkolaO. KesäniemiY.A. Tyrosine phosphatase 1B and leptin receptor genes and their interaction in type 2 diabetes.J. Intern. Med.20042561485510.1111/j.1365‑2796.2004.01339.x 15189365
    [Google Scholar]
  9. GoldsteinB.J. Bittner-KowalczykA. WhiteM.F. HarbeckM. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein.J. Biol. Chem.200027564283428910.1074/jbc.275.6.4283 10660596
    [Google Scholar]
  10. FuZ. GilbertE.R. LiuD. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes.Curr. Diabetes Rev.201391255310.2174/157339913804143225 22974359
    [Google Scholar]
  11. JohnsonT.O. ErmolieffJ. JirousekM.R. Protein tyrosine phosphatase 1B inhibitors for diabetes.Nat. Rev. Drug Discov.20021969670910.1038/nrd895 12209150
    [Google Scholar]
  12. KimJ. WeiY. SowersJ.R. Role of mitochondrial dysfunction in insulin resistance.Circ. Res.2008102440141410.1161/CIRCRESAHA.107.165472 18309108
    [Google Scholar]
  13. KlamanL.D. BossO. PeroniO.D. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice.Mol. Cell. Biol.200020155479548910.1128/MCB.20.15.5479‑5489.2000 10891488
    [Google Scholar]
  14. KrishnanN. KonidarisK.F. GasserG. TonksN.K. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models.J. Biol. Chem.201829351517152510.1074/jbc.C117.819110 29217773
    [Google Scholar]
  15. ZhengY. LeyS.H. HuF.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.Nat. Rev. Endocrinol.2018142889810.1038/nrendo.2017.151 29219149
    [Google Scholar]
  16. PerreaultL. SkylerJ.S. RosenstockJ. Novel therapies with precision mechanisms for type 2 diabetes mellitus.Nat. Rev. Endocrinol.202117636437710.1038/s41574‑021‑00489‑y 33948015
    [Google Scholar]
  17. MushtaqA. AzamU. MehreenS. NaseerM.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges.Eur. J. Med. Chem.202324911511910.1016/j.ejmech.2023.115119 36680985
    [Google Scholar]
  18. RokdeV. DanaoK. BaliN. MahajanU. The severity of COVID-19 in diabetes patients.Curr. Diabetes Rev.2023195e06102220963310.2174/1573399819666221006103113 36201275
    [Google Scholar]
  19. RinesA.K. SharabiK. TavaresC.D.J. PuigserverP. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes.Nat. Rev. Drug Discov.2016151178680410.1038/nrd.2016.151 27516169
    [Google Scholar]
  20. International Diabetes FederationIDF Diabetes Atlas.10th edBrussels, Belgium2021
    [Google Scholar]
  21. SeewoodharyJ. BainS.C. Novel treatments for type 2 diabetes.Br. J. Gen. Pract.2011615825610.3399/bjgp11X548884 21401982
    [Google Scholar]
  22. AnsariA. AliA. AsifM. ShamsuzzamanS. Review: Biologically active pyrazole derivatives.New J. Chem.2017411164110.1039/C6NJ03181A
    [Google Scholar]
  23. SantosC. SilvaV. SilvaA. Synthesis of chromone-related pyrazole compounds.Molecules20172210166510.3390/molecules22101665 28981465
    [Google Scholar]
  24. ChoH. Protein tyrosine phosphatase 1B (PTP1B) and obesity.Vitam. Horm.20139140542410.1016/B978‑0‑12‑407766‑9.00017‑1 23374726
    [Google Scholar]
  25. SilvaV.L.M. ElgueroJ. SilvaA.M.S. Current progress on antioxidants incorporating the pyrazole core.Eur. J. Med. Chem.201815639442910.1016/j.ejmech.2018.07.007 30015075
    [Google Scholar]
  26. DewiR.M. MegawatiM. AntikaL.D. Antidiabetic properties of dietary chrysin: A cellular mechanism review.Mini Rev. Med. Chem.202222101450145710.2174/1389557521666211101162449 34720081
    [Google Scholar]
  27. PanzhinskiyE. HuaY. LapchakP.A. Novel curcumin derivative CNB-001 mitigates obesity-associated insulin resistance.J. Pharmacol. Exp. Ther.2014349224825710.1124/jpet.113.208728 24549372
    [Google Scholar]
  28. WangL.J. JiangB. WuN. WangS.Y. ShiD.Y. Small molecules as potent protein tyrosine phosphatase 1B (PTP1B) inhibitors documented in patents from 2009 to 2013.Mini Rev. Med. Chem.201515210412210.2174/1389557515666150203144339 25643610
    [Google Scholar]
  29. SunL. WangP. XuL. GaoL. LiJ. PiaoH. Discovery of 1,3-diphenyl-1H-pyrazole derivatives containing rhodanine-3-alkanoic acid groups as potential PTP1B inhibitors.Bioorg. Med. Chem. Lett.201929101187119310.1016/j.bmcl.2019.03.023 30910462
    [Google Scholar]
  30. ChengluZ. ChuanyinL. YaodongG. XiaonaS. Synthesis and bioactivity evaluation of novel 1, 3, 5-triazine-1h-pyrazole-triazol-ethiadiazole derivatives.Youji Huaxue20193812231232
    [Google Scholar]
  31. ChoS.Y. AhnJ.H. HaJ.D. Protein tyrosine phosphatase 1b inhibitors: Heterocyclic carboxylic acids.Bull. Korean Chem. Soc.200324101455146410.5012/bkcs.2003.24.10.1455
    [Google Scholar]
  32. De-la-Cruz-MartínezL. Duran-BecerraC. González-AndradeM. Indole-and pyrazole-glycyrrhetinic acid derivatives as PTP1B inhibitors: Synthesis, in vitro and in silico studies.Molecules20212614437510.3390/molecules26144375 34299651
    [Google Scholar]
  33. MaoS.W. ShuaiL. HeH.B. Synthesis and biological evaluation of novel 2,3-pyrazole ring-substituted-4,4-dimethyl lithocholic acid derivatives as selective protein tyrosine phosphatase 1B (PTP1B) inhibitors with cellular efficacy.RSC Advances2015512910655110656010.1039/C5RA20238H
    [Google Scholar]
  34. NandurkarD. MenghaniS. DanaoK. New benzopyrrole derivatives: Synthesis and appraisal of their potential as antimicrobial agents.Chem. Biodivers.2023207e20230039410.1002/cbdv.202300394 37300516
    [Google Scholar]
  35. DanaoK. NandurkarD. RokdeV. ShivhareR. MahajanU. Molecular docking: Metamorphosis in drug discovery. In: Molecular Docking-Recent Advances 2022 Sep 2.IntechOpen2022
    [Google Scholar]
  36. RokdeV. DanaoK. NimjeJ. Design, synthesis, antimicrobial evaluation of novel 2‐Oxo‐4‐substituted aryl‐azetidine benzotriazole derivatives**.Chem. Biodivers.2023207e20230043310.1002/cbdv.202300433 37306062
    [Google Scholar]
  37. ShivhareR. DanaoK. NandurkarD. Schiff base as multifaceted bioactive core. In: Schiff Base in Organic.Inorganic and Physical Chemistry. Intechopen2022
    [Google Scholar]
  38. DanaoK. KaleS. RokdeV. In silico prediction of antidiabetic activity of phytoconstituents of pterocarpus marsupium targeting α-amylase enzyme.Biosci. Biotechnol. Res. Asia202320114716210.13005/bbra/3077
    [Google Scholar]
  39. RochaR.F. RodriguesT. MenegattiA.C.O. BernardesG.J.L. TerenziH. The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B activity.Bioorg. Chem.202010010392710.1016/j.bioorg.2020.103927 32422389
    [Google Scholar]
  40. TamrakarA.K. MauryaC.K. RaiA.K. PTP1B inhibitors for type 2 diabetes treatment: A patent review (2011 – 2014).Expert Opin. Ther. Pat.201424101101111510.1517/13543776.2014.947268 25120222
    [Google Scholar]
  41. ZabolotnyJ.M. Bence-HanulecK.K. Stricker-KrongradA. PTP1B regulates leptin signal transduction in vivo.Dev. Cell20022448949510.1016/S1534‑5807(02)00148‑X 11970898
    [Google Scholar]
  42. VermaM. GuptaS.J. ChaudharyA. GargV.K. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents - A brief review.Bioorg. Chem.20177026728310.1016/j.bioorg.2016.12.004 28043717
    [Google Scholar]
  43. LiuM. WangL. SunX. ZhaoX. Investigating the impact of Asp181 point mutations on interactions between PTP1B and phosphotyrosine substrate.Sci. Rep.201441509510.1038/srep05095 24865376
    [Google Scholar]
  44. BasuS. PrathipatiP. ThoratS. Rational design, synthesis, and structure-activity relationships of 5-amino-1H-pyrazole-4-carboxylic acid derivatives as protein tyrosine phosphatase 1B inhibitors.Bioorg. Med. Chem.2017251677410.1016/j.bmc.2016.10.012 28340988
    [Google Scholar]
  45. MontalibetJ. KennedyB.P. Therapeutic strategies for targeting PTP1B in diabetes.Drug Discov. Today Ther. Strateg.20052212913510.1016/j.ddstr.2005.05.002
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998280245240130075909
Loading
/content/journals/cdr/10.2174/0115733998280245240130075909
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Diabetes; insulin; PTP1B; pyrazole; pyrazole scaffold; T2DM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test