Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

The onset of diabetes mellitus (DM), a metabolic disorder characterized by high blood glucose levels and disrupted glucose metabolism, results in 20% of people with diabetes suffering from diabetes-related wounds worldwide. A minor wound, such as a cut or abrasion, can lead to infections and complications in diabetic patients. We must understand the mechanism/s contributing to this delayed wound healing to develop effective prevention strategies. The potential benefits of bioactive phytochemicals for diabetic wound healing have been reported in numerous studies.

Methods

A bioactive compound may have multiple actions, including antioxidants, anti-inflammatory, antimicrobial, and angiogenesis. Compounds derived from these plants have shown promising results in wound healing, inflammation reduction, collagen synthesis, and neovascularization improvement.

Results

Consequently, this review provides an update to our understanding of how phytoconstituents promote wound healing in diabetics. A thorough literature review was conducted on diabetes, wound healing, and phytoconstituents for this study. Only English publications until June 2023 were included in the search, which used multiple search engines and the main keywords. Summing up, phytochemical-based interventions might improve the quality of life for diabetics by improving wound healing.

Conclusion

However, to fully understand the efficacy and safety of these phytochemicals in managing diabetic wounds, more research and clinical trials are needed.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998279112240129074457
2024-02-27
2024-11-19
Loading full text...

Full text loading...

References

  1. WildS. RoglicG. GreenA. SicreeR. KingH. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030.Diabetes Care20042751047105310.2337/diacare.27.5.1047 15111519
    [Google Scholar]
  2. Kumar DasB. GadadP.C. Impact of diabetes on the increased risk of hepatic cancer: An updated review of biological aspects.Diabetes Epidemiol Manage2021410002510.1016/j.deman.2021.100025
    [Google Scholar]
  3. SicreeR. ShawJ. ZimmetP. Prevalence and projections.Brussels, BelgiumInternational Diabetes Federation2006
    [Google Scholar]
  4. RobertsonR.P. Antagonist: Diabetes and insulin resistance--philosophy, science, and the multiplier hypothesis.J. Lab. Clin. Med.19951255560564 7738421
    [Google Scholar]
  5. RaoG JensenET Type 2 diabetes in youth.Glob Pediatr Health202172333794X20981343
    [Google Scholar]
  6. BlakytnyR. JudeE. The molecular biology of chronic wounds and delayed healing in diabetes.Diabet. Med.200623659460810.1111/j.1464‑5491.2006.01773.x 16759300
    [Google Scholar]
  7. WangP.H. HuangB.S. HorngH.C. YehC.C. ChenY.J. Wound healing.J. Chin. Med. Assoc.20188129410110.1016/j.jcma.2017.11.002 29169897
    [Google Scholar]
  8. PowersJ.G. HighamC. BroussardK. PhillipsT.J. Wound healing and treating wounds.J. Am. Acad. Dermatol.201674460762510.1016/j.jaad.2015.08.070 26979353
    [Google Scholar]
  9. HanG. CeilleyR. Chronic wound healing: A review of current management and treatments.Adv. Ther.201734359961010.1007/s12325‑017‑0478‑y 28108895
    [Google Scholar]
  10. ThangapazhamR.L. SharadS. MaheshwariR.K. Phytochemicals in wound healing.Adv. Wound Care20165523024110.1089/wound.2013.0505 27134766
    [Google Scholar]
  11. ReinkeJ.M. SorgH. Wound repair and regeneration.Eur. Surg. Res.2012491354310.1159/000339613 22797712
    [Google Scholar]
  12. GantwerkerE.A. HomD.B. Skin: Histology and physiology of wound healing.Clin. Plast. Surg.2012391859710.1016/j.cps.2011.09.005 22099852
    [Google Scholar]
  13. DesmoulièreA. ChaponnierC. GabbianiG. Perspective Article: Tissue repair, contraction, and the myofibroblast.Wound Repair Regen.200513171210.1111/j.1067‑1927.2005.130102.x 15659031
    [Google Scholar]
  14. LindleyL.E. StojadinovicO. PastarI. Tomic-CanicM. Biology and biomarkers for wound healing.Plast. Reconstr. Surg.20161383S18S28S10.1097/PRS.0000000000002682 27556760
    [Google Scholar]
  15. DelavaryB.M. van der VeerW.M. van EgmondM. NiessenF.B. BeelenR.H.J. Macrophages in skin injury and repair.Immunobiology2011216775376210.1016/j.imbio.2011.01.001 21281986
    [Google Scholar]
  16. ZhaoR. LiangH. ClarkeE. JacksonC. XueM. Inflammation in chronic wounds.Int. J. Mol. Sci.20161712208510.3390/ijms17122085 27973441
    [Google Scholar]
  17. Demidova-RiceT.N. HamblinM.R. HermanI.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care.Adv. Skin Wound Care201225730431410.1097/01.ASW.0000416006.55218.d0 22713781
    [Google Scholar]
  18. VelazquezO.C. Angiogenesis and vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing.J. Vasc. Surg.200745A39A47
    [Google Scholar]
  19. PrompersL. SchaperN. ApelqvistJ. Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study.Diabetologia200851574775510.1007/s00125‑008‑0940‑0 18297261
    [Google Scholar]
  20. BoatengJ.S. MatthewsK.H. StevensH.N.E. EcclestonG.M. Wound healing dressings and drug delivery systems: A review.J. Pharm. Sci.20089782892292310.1002/jps.21210 17963217
    [Google Scholar]
  21. PercivalN.J. Classification of wounds and their management.Surgery200220511411710.1383/surg.20.5.114.14626
    [Google Scholar]
  22. HardingK.G. MorrisH.L. PatelG.K. Science, medicine, and the future: Healing chronic wounds.BMJ2002324733016016310.1136/bmj.324.7330.160 11799036
    [Google Scholar]
  23. YunJ. ParkS. ParkH.Y. LeeK.A. Efficacy of polydeoxyribonucleotide in promoting the healing of diabetic wounds in a murine model of streptozotocin-induced diabetes: A pilot experiment.Int. J. Mol. Sci.2023243193210.3390/ijms24031932 36768255
    [Google Scholar]
  24. CaputoG.M. CavanaghP.R. UlbrechtJ.S. GibbonsG.W. KarchmerA.W. Assessment and management of foot disease in patients with diabetes.N. Engl. J. Med.19943311385486010.1056/NEJM199409293311307 7848417
    [Google Scholar]
  25. GoodsonW.H.III HuntT.K. Wound healing and the diabetic patient.Surg. Gynecol. Obstet.19791494600608 483144
    [Google Scholar]
  26. YueD.K. McLennanS. MarshM. Effects of experimental diabetes, uremia, and malnutrition on wound healing.Diabetes198736329529910.2337/diab.36.3.295 3803737
    [Google Scholar]
  27. SpampinatoS.F. CarusoG.I. De PasqualeR. SortinoM.A. MerloS. The treatment of impaired wound healing in diabetes: Looking among old drugs.Pharmaceuticals20201346010.3390/ph13040060 32244718
    [Google Scholar]
  28. SpiliopoulosS. FestasG. ParaskevopoulosI. MariappanM. BrountzosE. Overcoming ischemia in the diabetic foot: Minimally invasive treatment options.World J. Diabetes202112122011202610.4239/wjd.v12.i12.2011 35047116
    [Google Scholar]
  29. WetzlerC. KämpferH. StallmeyerB. PfeilschifterJ. FrankS. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: Prolonged persistence of neutrophils and macrophages during the late phase of repair.J. Invest. Dermatol.2000115224525310.1046/j.1523‑1747.2000.00029.x 10951242
    [Google Scholar]
  30. Grazul-BilskaA.T. JohnsonM.L. BilskiJ.J. Wound healing: The role of growth factors.Drugs Today2003391078780010.1358/dot.2003.39.10.799472 14668934
    [Google Scholar]
  31. BuchbergerB. FollmannM. FreyerD. HuppertzH. EhmA. WasemJ. The importance of growth factors for the treatment of chronic wounds in the case of diabetic foot ulcers.GMS Health Technol. Assess.20106Doc12 21289885
    [Google Scholar]
  32. GreenhalghD.G. SprugelK.H. MurrayM.J. RossR. PDGF and FGF stimulate wound healing in the genetically diabetic mouse.Am. J. Pathol.1990136612351246 2356856
    [Google Scholar]
  33. DinhT. ElderS. VevesA. Delayed wound healing in diabetes: Considering future treatments.Diabetes Manag.20111550951910.2217/dmt.11.44
    [Google Scholar]
  34. BarrientosS. StojadinovicO. GolinkoM.S. BremH. Tomic-CanicM. Growth factors and cytokines in wound healing.Wound Repair Regen.200816558560110.1111/j.1524‑475X.2008.00410.x 19128254
    [Google Scholar]
  35. LiH. FuX. ZhangL. HuangQ. WuZ. SunT. Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics.J. Surg. Res.20081451414810.1016/j.jss.2007.02.044 18082770
    [Google Scholar]
  36. ZubairM. AhmadJ. Role of growth factors and cytokines in diabetic foot ulcer healing: A detailed review.Rev. Endocr. Metab. Disord.201920220721710.1007/s11154‑019‑09492‑1 30937614
    [Google Scholar]
  37. GardnerJ.C. WuH. NoelJ.G. Keratinocyte growth factor supports pulmonary innate immune defense through maintenance of alveolar antimicrobial protein levels and macrophage function.Am. J. Physiol. Lung Cell. Mol. Physiol.20163109L868L87910.1152/ajplung.00363.2015 26919897
    [Google Scholar]
  38. MatsudaH. KoyamaH. SatoH. Role of nerve growth factor in cutaneous wound healing: Accelerating effects in normal and healing-impaired diabetic mice.J. Exp. Med.1998187329730610.1084/jem.187.3.297 9449710
    [Google Scholar]
  39. DoganS. DemirerS. KepenekciI. Epidermal growth factor‐containing wound closure enhances wound healing in non‐diabetic and diabetic rats.Int. Wound J.20096210711510.1111/j.1742‑481X.2009.00584.x 19432660
    [Google Scholar]
  40. FangY. ShenJ. YaoM. BeagleyK.W. HamblyB.D. BaoS. Granulocyte-macrophage colony-stimulating factor enhances wound healing in diabetes via upregulation of proinflammatory cytokines.Br. J. Dermatol.2010162347848610.1111/j.1365‑2133.2009.09528.x 19799605
    [Google Scholar]
  41. ZykovaS.N. BalandinaK.A. VorokhobinaN.V. KuznetsovaA.V. EngstadR. ZykovaT.A. Macrophage stimulating agent soluble yeast β‐1,3/1,6‐glucan as a topical treatment of diabetic foot and leg ulcers: A randomized, double blind, placebo‐controlled phase II study.J. Diabetes Investig.20145439239910.1111/jdi.12165 25411598
    [Google Scholar]
  42. Wound healing and management unit. Evidence Summary: Polyhexamethylene biguanide for chronic wounds.Wound Practice and Research2020284189191
    [Google Scholar]
  43. RxListDrug Description.Available from: https://www.rxlist.com/regranex-drug.htm#description (Accessed June 15, 2023).
    [Google Scholar]
  44. Woulgan Bioactive Beta-Glucan GelAvailable from: https://woulgan.com/ (Accessed June 15, 2023).
  45. Bharat BiotechAvailable from: https://www.bharatbiotech.com/regend150.html (Accessed June 15, 2023).
  46. Ferrer-TasiesL. SantanaH. Cabrera-PuigI. Recombinant human epidermal growth factor/quatsome nanoconjugates: A robust topical delivery system for complex wound healing.Adv. Ther.202146200026010.1002/adtp.202000260
    [Google Scholar]
  47. BoultonA.J.M. The diabetic foot: A global view.Diabetes Metab. Res. Rev.200016S1S2S510.1002/1520‑7560(200009/10)16:1+<::AID‑DMRR105>3.0.CO;2‑N 11054879
    [Google Scholar]
  48. KavithaK.V. TiwariS. PurandareV.B. KhedkarS. BhosaleS.S. UnnikrishnanA.G. Choice of wound care in diabetic foot ulcer: A practical approach.World J. Diabetes20145454655610.4239/wjd.v5.i4.546 25126400
    [Google Scholar]
  49. KumarB. VijayakumarM. GovindarajanR. PushpangadanP. Ethnopharmacological approaches to wound healing-Exploring medicinal plants of India.J. Ethnopharmacol.2007114210311310.1016/j.jep.2007.08.010 17884316
    [Google Scholar]
  50. KumarasamyrajaD. JeganathanN.S. ManavalanR. A review on medicinal plants with potential wound healing activity.Int. J. Pharm. Pharm. Sci.20122105111
    [Google Scholar]
  51. SinghS. AggarwalB.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected].J. Biol. Chem.199527042249952500010.1074/jbc.270.42.24995 7559628
    [Google Scholar]
  52. BhattacharjeeS. MandalD.P. Angiogenesis modulation: The spice effect.J. Environ. Pathol. Toxicol. Oncol.201231327328310.1615/JEnvironPatholToxicolOncol.v31.i3.80 23339701
    [Google Scholar]
  53. Vanden BergheW. HaegemanG. Epigenetic remedies by dietary phytochemicals against inflammatory skin disorders: Myth or reality?Curr. Drug Metab.201011543645010.2174/138920010791526079 20540697
    [Google Scholar]
  54. FuJ. HuangJ. LinM. XieT. YouT. Quercetin promotes diabetic wound healing via switching macrophages from M1 to M2 polarization.J. Surg. Res.202024621322310.1016/j.jss.2019.09.011 31606511
    [Google Scholar]
  55. ÖzayY. GüzelS. YumrutaşÖ. Wound healing effect of kaempferol in diabetic and nondiabetic rats.J. Surg. Res.201923328429610.1016/j.jss.2018.08.009 30502261
    [Google Scholar]
  56. ShaoY. DangM. LinY. XueF. Evaluation of wound healing activity of plumbagin in diabetic rats.Life Sci.201923111642210.1016/j.lfs.2019.04.048 31059689
    [Google Scholar]
  57. KimE. HamS. JungB.K. ParkJ.W. KimJ. LeeJ.H. Effect of Baicalin on wound healing in a mouse model of pressure ulcers.Int. J. Mol. Sci.202224132910.3390/ijms24010329 36613772
    [Google Scholar]
  58. MaoX. LiZ. LiB. WangH. Baicalin regulates mRNA expression of VEGF‐c, Ang‐1/Tie2, TGF‐β and Smad2/3 to inhibit wound healing in streptozotocin‐induced diabetic foot ulcer rats.J. Biochem. Mol. Toxicol.20213511e2289310.1002/jbt.22893 34414639
    [Google Scholar]
  59. OkurM.E. ŞakulA.A. AylaŞ. Wound healing effect of naringin gel in alloxan induced diabetic mice.Ankara Univer Eczacilik Fakultesi Dergisi202044339741410.33483/jfpau.742224
    [Google Scholar]
  60. HussanF TeohSL MuhamadN MazlanM LatiffAA Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression.J Wound Care2014238400-407, 402, 404-407.10.12968/jowc.2014.23.8.400 25139598
    [Google Scholar]
  61. DaemiA. LotfiM. FarahpourM.R. OryanA. GhayourS.J. SonboliA. Topical application of Cinnamomum hydroethanolic extract improves wound healing by enhancing re-epithelialization and keratin biosynthesis in streptozotocin-induced diabetic mice.Pharm. Biol.201957179980610.1080/13880209.2019.1687525 31760838
    [Google Scholar]
  62. KartiniK. WatiN. GustavR. Wound healing effects of Plantago major extract and its chemical compounds in hyperglycemic rats.Food Biosci.20214110093710093710.1016/j.fbio.2021.100937
    [Google Scholar]
  63. CaiH.A. HuangL. ZhengL.J. Ginsenoside (Rg-1) promoted the wound closure of diabetic foot ulcer through iNOS elevation via miR-23a/IRF-1 axis.Life Sci.201923311652510.1016/j.lfs.2019.05.081 31158376
    [Google Scholar]
  64. DoganE. YanmazL. GedikliS. ErsozU. OkumusZ. The effect of Pycnogenol on wound healing in diabetic rats.Ostomy Wound Manage.20176344147 28448268
    [Google Scholar]
  65. AlhakamyN.A. CarusoG. PriviteraA. Fluoxetine ecofriendly nanoemulsion enhances wound healing in diabetic rats: In vivo efficacy assessment.Pharmaceutics2022146113310.3390/pharmaceutics14061133 35745706
    [Google Scholar]
  66. KantV. GopalA. KumarD. Curcumin-induced angiogenesis hastens wound healing in diabetic rats.J. Surg. Res.2015193297898810.1016/j.jss.2014.10.019 25454972
    [Google Scholar]
  67. SoniR. MehtaN.M. SrivastavaD.N. Healing potential of ethyl acetate soluble fraction of ethanolic extract of Terminalia chebula on experimental cutaneous wounds in streptozotocin-induced diabetic rats.Asian J Biomed Pharm Sci20133253236
    [Google Scholar]
  68. HuangX. SunJ. ChenG. Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis.Front. Pharmacol.20191042110.3389/fphar.2019.00421 31068817
    [Google Scholar]
  69. ZengZ. ZhuB.H. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats.J. Ethnopharmacol.2014154365366210.1016/j.jep.2014.04.038 24794013
    [Google Scholar]
  70. ShahrimZ. MakpolS. TanG.C. MuhammadN.A. HasanZ.A.A. Topical application of the palm tocotrienol-rich fraction (trf) enhances cutaneous wound healing in type 2 diabetic mice.J. Oil Palm Res.2022343546110.21894/jopr.2021.0054
    [Google Scholar]
  71. McKayT.B. KaramichosD. Quercetin and the ocular surface: What we know and where we are going.Exp. Biol. Med.2017242656557210.1177/1535370216685187 28056553
    [Google Scholar]
  72. TokyolÇ. YilmazS. KahramanA. ÇakarH. PolatC. The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats.Acta Chir. Belg.20061061687210.1080/00015458.2006.11679837 16612918
    [Google Scholar]
  73. VessalM. HemmatiM. VaseiM. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2003135335736410.1016/S1532‑0456(03)00140‑6 12927910
    [Google Scholar]
  74. JangdeR. SrivastavaS. SinghM.R. SinghD. In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application.Int. J. Biol. Macromol.20181151211121710.1016/j.ijbiomac.2018.05.010 29730004
    [Google Scholar]
  75. HäkkinenS.H. KärenlampiS.O. HeinonenI.M. MykkänenH.M. TörrönenA.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries.J. Agric. Food Chem.19994762274227910.1021/jf9811065 10794622
    [Google Scholar]
  76. MieanK.H. MohamedS. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.J. Agric. Food Chem.20014963106311210.1021/jf000892m 11410016
    [Google Scholar]
  77. HerrmannK. Flavonols and flavones in food plants: A review.Int. J. Food Sci. Technol.197611543344810.1111/j.1365‑2621.1976.tb00743.x
    [Google Scholar]
  78. YangY. ChenZ. ZhaoX. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review.Front. Endocrinol.20221399029910.3389/fendo.2022.990299 36157449
    [Google Scholar]
  79. KishoreN. MishraB.B. TiwariV.K. TripathiV. Difuranonaphthoquinones from Plumbago zeylanica roots.Phytochem. Lett.201032626510.1016/j.phytol.2009.11.007
    [Google Scholar]
  80. SunilC. DuraipandiyanV. AgastianP. IgnacimuthuS. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats.Food Chem. Toxicol.201250124356436310.1016/j.fct.2012.08.046 22960630
    [Google Scholar]
  81. MoulinV. AugerF.A. GarrelD. GermainL. Role of wound healing myofibroblasts on re-epithelialization of human skin.Burns200026131210.1016/S0305‑4179(99)00091‑1 10630313
    [Google Scholar]
  82. SoaresM.A. CohenO.D. LowY.C. Restoration of Nrf2 signaling normalizes the regenerative niche.Diabetes201665363364610.2337/db15‑0453 26647385
    [Google Scholar]
  83. WaisundaraV.Y. HsuA. HuangD. TanB.K.H. Scutellaria baicalensis enhances the anti-diabetic activity of metformin in streptozotocin-induced diabetic Wistar rats.Am. J. Chin. Med.200836351754010.1142/S0192415X08005953 18543386
    [Google Scholar]
  84. FuY. LuoJ. JiaZ. Baicalein protects against type 2 diabetes via promoting islet β-cell function in obese diabetic mice.Int. J. Endocrinol.2014201411310.1155/2014/846742 25147566
    [Google Scholar]
  85. SyedA.A. RezaM.I. ShafiqM. Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis.Life Sci.202025711811810.1016/j.lfs.2020.118118 32702445
    [Google Scholar]
  86. EmranT.B. IslamF. NathN. Naringin and naringenin polyphenols in neurological diseases: Understandings from a therapeutic viewpoint.Life20221319910.3390/life13010099 36676048
    [Google Scholar]
  87. PunithavathiV.R. AnuthamaR. PrinceP.S.M. Combined treatment with naringin and vitamin C ameliorates streptozotocin‐induced diabetes in male Wistar rats.J. Appl. Toxicol.200828680681310.1002/jat.1343 18344197
    [Google Scholar]
  88. BalachandranA. ChoiS.B. BeataM.M. Antioxidant, wound healing potential and in silico assessment of Naringin, Eicosane and Octacosane.Molecules2023283104310.3390/molecules28031043 36770709
    [Google Scholar]
  89. KandhareA.D. AlamJ. PatilM.V.K. SinhaA. BodhankarS.L. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats.Pharm. Biol.201654341943210.3109/13880209.2015.1038755 25894211
    [Google Scholar]
  90. WelihindaJ. ArvidsonG. GylfeE. HellmanB. KarlssonE. The insulin-releasing activity of the tropical plant momordica charantia.Acta Biol. Med. Ger.1982411212291240 6765165
    [Google Scholar]
  91. WelihindaJ. KarunanayakeE.H. SheriffM.H.H. JayasingheK.S.A. Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes.J. Ethnopharmacol.198617327728210.1016/0378‑8741(86)90116‑9 3807390
    [Google Scholar]
  92. Villarreal-La TorreV.E. GuarnizW.S. Silva-CorreaC. Cruzado-RazcoL. SicheR. Antimicrobial activity and chemical composition of Momordica charantia: A review.Pharmacogn. J.202012121322210.5530/pj.2020.12.32
    [Google Scholar]
  93. KubolaJ. SiriamornpunS. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro.Food Chem.2008110488189010.1016/j.foodchem.2008.02.076 26047274
    [Google Scholar]
  94. LiuZ. GongJ. HuangW. LuF. DongH. The effect of Momordica charantia in treating diabetes mellitus: A review.Evid. Based Complement. Alternat. Med.202120213796265 33510802
    [Google Scholar]
  95. PrasadV. JainV. GirishD. DorleA.K. Wound-healing property of Momordica charantia L. fruit powder.J. Herb. Pharmacother.200663-410511510.1080/J157v06n03_05 17317652
    [Google Scholar]
  96. SharmaS. SharmaM. Formulation, evaluation, wound healing studies of benzene-95% absolute ethanol extract of leaves.Optoelectron200914375378
    [Google Scholar]
  97. SinghR. Garcia-GomezI. GudehithluK.P. SinghA.K. Bitter melon extract promotes granulation tissue growth and angiogenesis in the diabetic wound.Adv. Skin Wound Care2017301162610.1097/01.ASW.0000504758.86737.76 27984270
    [Google Scholar]
  98. Subash BabuP. PrabuseenivasanS. IgnacimuthuS. Cinnamaldehyde-A potential antidiabetic agent.Phytomedicine2007141152210.1016/j.phymed.2006.11.005 17140783
    [Google Scholar]
  99. RaoP.V. GanS.H. Cinnamon: A multifaceted medicinal plant.Evid. Based Complement. Alternat. Med.2014201411210.1155/2014/642942 24817901
    [Google Scholar]
  100. RojasJ. BermudezV. PalmarJ. Pancreatic beta cell death: Novel potential mechanisms in diabetes therapy.J. Diabetes Res.2018201811910.1155/2018/9601801 29670917
    [Google Scholar]
  101. DingH HuX XuX ZhangG GongD Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase.Int J Biol Macromol2018107(Pt B)18445510.1016/j.ijbiomac.2017.10.040
    [Google Scholar]
  102. KashyapD. SharmaA. TuliH.S. PuniaS. SharmaA.K. Ursolic Acid and Oleanolic Acid: Pentacyclic terpenoids with promising anti-inflammatory activities.Recent Pat. Inflamm. Allergy Drug Discov.2016101213310.2174/1872213X10666160711143904 27531153
    [Google Scholar]
  103. YangD-C. PonnurajS.P. SirajF. Amelioration of insulin resistance by Rk 1 + Rg 5 complex under endoplasmic reticulum stress conditions.Pharmacognosy Res.20146429229610.4103/0974‑8490.138257 25276065
    [Google Scholar]
  104. KrennL. SteitzM. SchlichtC. KurthH. GaedckeF. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements--analysis with problems.Pharmazie20076211803812 18065095
    [Google Scholar]
  105. DingY. ZhangZ. DaiX. Grape seed proanthocyanidins ameliorate pancreatic beta-cell dysfunction and death in low-dose streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats partially by regulating endoplasmic reticulum stress.Nutr. Metab.20131015110.1186/1743‑7075‑10‑51 23870481
    [Google Scholar]
  106. JeongM.J. JeongS.J. LeeS.H. Effect of Pycnogenol on skin wound healing.Appl. Microsc.201343413313910.9729/AM.2013.43.4.133
    [Google Scholar]
  107. ChithraP. SajithlalG.B. ChandrakasanG. Influence of aloe vera on the healing of dermal wounds in diabetic rats.J. Ethnopharmacol.199859319520110.1016/S0378‑8741(97)00124‑4 9507904
    [Google Scholar]
  108. AbbasM. AbbasM.M. Al-RawiN. Al-KhateebI. Naringenin potentiated β-sitosterol healing effect on the scratch wound assay.Res. Pharm. Sci.201914656657310.4103/1735‑5362.272565 32038736
    [Google Scholar]
  109. ChithraP. SajithlalG.B. ChandrakasanG. Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats.J. Ethnopharmacol.199859317918610.1016/S0378‑8741(97)00112‑8 9507902
    [Google Scholar]
  110. ChanM.M.Y. Inhibition of tumor necrosis factor by curcumin, a phytochemical.Biochem. Pharmacol.199549111551155610.1016/0006‑2952(95)00171‑U 7786295
    [Google Scholar]
  111. GopinathD. AhmedM.R. GomathiK. ChitraK. SehgalP.K. JayakumarR. Dermal wound healing processes with curcumin incorporated collagen films.Biomaterials200425101911191710.1016/S0142‑9612(03)00625‑2 14738855
    [Google Scholar]
  112. SidhuG.S. SinghA.K. ThaloorD. Enhancement of wound healing by curcumin in animals.Wound Repair Regen.19986216717710.1046/j.1524‑475X.1998.60211.x 9776860
    [Google Scholar]
  113. PhanT.T. SeeP. LeeS.T. ChanS.Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing.J. Trauma200151592793110.1097/00005373‑200111000‑00017 11706342
    [Google Scholar]
  114. KulacM. AktasC. TulubasF. The effects of topical treatment with curcumin on burn wound healing in rats.J. Mol. Histol.2013441839010.1007/s10735‑012‑9452‑9 23054142
    [Google Scholar]
  115. BierhausA. ZhangY. QuehenbergerP. The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B.Thromb. Haemost.199777477278210.1055/s‑0038‑1656049 9134658
    [Google Scholar]
  116. KumariA. RainaN. WahiA. Wound-healing effects of Curcumin and its nanoformulations: A comprehensive review.Pharmaceutics20221411228810.3390/pharmaceutics14112288 36365107
    [Google Scholar]
  117. LeeH.S. JungS.H. YunB.S. LeeK.W. Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes.Arch. Toxicol.200781321121810.1007/s00204‑006‑0139‑4 16932919
    [Google Scholar]
  118. SeoJ.B. JeongJ.Y. ParkJ.Y. Anti-arthritic and analgesic effect of NDI10218, a standardized extract of Terminalia chebula, on arthritis and pain model.Biomol. Ther. (Seoul)201220110411210.4062/biomolther.2012.20.1.104 24116282
    [Google Scholar]
  119. NairV. KumarR. SinghS. GuptaY.K. Anti-granuloma activity of Terminalia chebula retz. in wistar rats.Eur. J. Inflamm.201210218519210.1177/1721727X1201000203
    [Google Scholar]
  120. ChoudharyM. KumarV. MalhotraH. SinghS. Medicinal plants with potential anti-arthritic activity.J. Intercult. Ethnopharmacol.20154214717910.5455/jice.20150313021918 26401403
    [Google Scholar]
  121. BagA. Kumar BhattacharyyaS. Kumar PalN. Ranjan ChattopadhyayR. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits.Pharm. Biol.201351121515152010.3109/13880209.2013.799709 24004166
    [Google Scholar]
  122. VasuG. SundaramR. MuthuK. Chebulagic acid attenuates HFD/streptozotocin induced impaired glucose metabolism and insulin resistance via up regulations of PPAR γ and GLUT 4 in type 2 diabetic rats.Toxicol. Mech. Methods202232315917010.1080/15376516.2021.1976333 34470562
    [Google Scholar]
  123. ShyniG.L. KavithaS. InduS. Chebulagic acid from Terminalia chebula enhances insulin mediated glucose uptake in 3T3‐L1 adipocytes via PPARγ signaling pathway.Biofactors201440664665710.1002/biof.1193 25529897
    [Google Scholar]
  124. SzkudelskiT. SzkudelskaK. Resveratrol and diabetes: from animal to human studies.Biochim. Biophys. Acta Mol. Basis Dis.2015185261145115410.1016/j.bbadis.2014.10.013 25445538
    [Google Scholar]
  125. OyenihiO.R. OyenihiA.B. AdeyanjuA.A. OguntibejuO.O. Antidiabetic effects of Resveratrol: The way forward in its clinical utility.J. Diabetes Res.2016201611410.1155/2016/9737483 28050570
    [Google Scholar]
  126. SoufiF.G. Mohammad-nejadD. AhmadiehH. Resveratrol improves diabetic retinopathy possibly through oxidative stress – nuclear factor κB – apoptosis pathway.Pharmacol. Rep.20126461505151410.1016/S1734‑1140(12)70948‑9 23406761
    [Google Scholar]
  127. KumarA. SharmaS.S. NF-κB inhibitory action of resveratrol: A probable mechanism of neuroprotection in experimental diabetic neuropathy.Biochem. Biophys. Res. Commun.2010394236036510.1016/j.bbrc.2010.03.014 20211601
    [Google Scholar]
  128. SidhuG.S. SinghA.K. BanaudhaK.K. GaddipatiJ.P. PatnaikG.K. MaheshwariR.K. Arnebin-1 accelerates normal and hydrocortisone-induced impaired wound healing.J. Invest. Dermatol.1999113577378110.1046/j.1523‑1747.1999.00761.x 10571733
    [Google Scholar]
  129. PainulyP. KattiS.B. BajpaiS.K. TandonJ.S. Studies of Metal (II & III) complexes of Arnebin-l.Indian J. Chem.198423A166168
    [Google Scholar]
  130. ShedoevaA. LeavesleyD. UptonZ. FanC. Wound healing and the use of medicinal plants.Evid. Based Complement. Alternat. Med.2019201913010.1155/2019/2684108 31662773
    [Google Scholar]
  131. QiuZ. KwonA.H. KamiyamaY. Effects of plasma fibronectin on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats.J. Surg. Res.20071381647010.1016/j.jss.2006.06.034 17161431
    [Google Scholar]
  132. CostaP.Z. SoaresR. Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox.Life Sci.201392221037104510.1016/j.lfs.2013.04.001 23603139
    [Google Scholar]
  133. IslamM.N. IshitaI.J. JungH.A. ChoiJ.S. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties.Food Chem. Toxicol.201469556210.1016/j.fct.2014.03.042 24713265
    [Google Scholar]
  134. TanW.S. ArulselvanP. NgS.F. Mat TaibC.N. SarianM.N. FakuraziS. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats.BMC Complement. Altern. Med.20191912010.1186/s12906‑018‑2427‑y 30654793
    [Google Scholar]
  135. ZhaoL. FangX. MarshallM. ChungS. Regulation of obesity and metabolic complications by gamma and delta tocotrienols.Molecules201621334410.3390/molecules21030344 26978344
    [Google Scholar]
  136. WongR.S.Y. RadhakrishnanA.K. Tocotrienol research: Past into present.Nutr. Rev.201270948349010.1111/j.1753‑4887.2012.00512.x 22946849
    [Google Scholar]
  137. WongS.K. ChinK.Y. SuhaimiF.H. AhmadF. Ima-NirwanaS. Vitamin E as a potential interventional treatment for metabolic syndrome: Evidence from animal and human studies.Front. Pharmacol.2017844410.3389/fphar.2017.00444 28725195
    [Google Scholar]
  138. WongW.Y. WardL.C. FongC.W. YapW.N. BrownL. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats.Eur. J. Nutr.201756113315010.1007/s00394‑015‑1064‑1 26446095
    [Google Scholar]
  139. BurdeosG.C. NakagawaK. KimuraF. MiyazawaT. Tocotrienol attenuates triglyceride accumulation in HepG2 cells and F344 rats.Lipids201247547148110.1007/s11745‑012‑3659‑0 22367056
    [Google Scholar]
  140. AliS.F. NguyenJ.C.D. JenkinsT.A. WoodmanO.L. Tocotrienol-rich Tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet.Front. Cardiovasc. Med.201633910.3389/fcvm.2016.00039 27800483
    [Google Scholar]
  141. ParkerR.A. PearceB.C. ClarkR.W. GordonD.A. WrightJ.J. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.J. Biol. Chem.199326815112301123810.1016/S0021‑9258(18)82115‑9 8388388
    [Google Scholar]
  142. TorabiS. YeganehjooH. ShenC.L. MoH. Peroxisome proliferator–activated receptor γ down-regulation mediates the inhibitory effect of d-δ-tocotrienol on the differentiation of murine 3T3-F442A preadipocytes.Nutr. Res.201636121345135210.1016/j.nutres.2016.11.001 27884413
    [Google Scholar]
  143. SunW.G. SongR.P. WangY. γ-Tocotrienol-inhibited cell proliferation of human gastric cancer by regulation of nuclear factor-κb activity.J. Agric. Food Chem.201967144145110.1021/acs.jafc.8b05832 30562020
    [Google Scholar]
  144. BadhwarR. ManglaB. NeupaneY.R. KhannaK. PopliH. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing.Nanotechnology2021325050510210.1088/1361‑6528/ac2536 34500444
    [Google Scholar]
  145. SelvarajS. InbasekarC. PanduranganS. NishterN.F. Collagen-coated silk fibroin nanofibers with antioxidants for enhanced wound healing.J. Biomater. Sci. Polym. Ed.2023341355210.1080/09205063.2022.2106707 35892281
    [Google Scholar]
  146. YeoE. Yew ChiengC.J. ChoudhuryH. PandeyM. GorainB. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: fabrication, characterization and comparative in vitro evaluations.Curr Res Pharmacol Drug Discov2021210001910.1016/j.crphar.2021.100019 34909654
    [Google Scholar]
  147. Chijcheapaza-FloresH. TabaryN. ChaiF. Injectable chitosan-based hydrogels for trans-cinnamaldehyde delivery in the treatment of diabetic foot ulcer infections.Gels20239326210.3390/gels9030262 36975711
    [Google Scholar]
  148. MohantyC. PradhanJ. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing.Mater. Sci. Eng. C202011111075110.1016/j.msec.2020.110751 32279771
    [Google Scholar]
  149. PandeyS. ShamimA. ShaifM. KushwahaP. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer.Naunyn Schmiedebergs Arch. Pharmacol.202339681811182510.1007/s00210‑023‑02441‑5 36862150
    [Google Scholar]
  150. GallelliG. CioneE. SerraR. Nano‐hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study.Int. Wound J.202017248549010.1111/iwj.13299 31876118
    [Google Scholar]
  151. AlexanderH.R. Syed AlwiS.S. YazanL.S. Zakarial AnsarF.H. OngY.S. Migration and proliferation effects of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) and Thymoquinone (TQ) on in vitro wound healing models.Evid. Based Complement. Alternat. Med.2019201911410.1155/2019/9725738 31915456
    [Google Scholar]
  152. The healing effect of a two-herb recipe on foot ulcer in chinese patients with type 2 diabetes.NCT013893622011
    [Google Scholar]
  153. Herbal preparation used as adjuvant therapy on diabetic ulcers.NCT003935102010
    [Google Scholar]
  154. Effectiveness and safety of early-stage amputation and external herbs chitosan for diabetic foot ulcer.NCT024130862015
    [Google Scholar]
  155. Trial of herb yuyang ointment to diabetic foot ulcer.NCT008398652009
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998279112240129074457
Loading
/content/journals/cdr/10.2174/0115733998279112240129074457
Loading

Data & Media loading...

Supplements

PRISMA checklist and the published article are available as supplementary material on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test