Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications.

Methodology

In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin-producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations.

Conclusion

This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998275428231210055650
2024-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. AtlasD.J.I.D.A. International Diabetes Federation, International diabetes federation7th edn.Brussels, Belgium2015
    [Google Scholar]
  2. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. IDF Diabetes Atlas Committee Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.10784331518657
    [Google Scholar]
  3. American Diabetes Association Classification and diagnosis of diabetes.Diabetes Care201538Suppl. 1S8S1610.2337/dc15‑S00525537714
    [Google Scholar]
  4. SusmanJ.L. HelsethL.D. Reducing the complications of type II diabetes: A patient-centered approach.Am. Fam. Physician19975624714809262528
    [Google Scholar]
  5. ChawlaR. ChawlaA. JaggiS. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?Indian J. Endocrinol. Metab.201620454655110.4103/2230‑8210.18348027366724
    [Google Scholar]
  6. BiehlJ.K. RussellB. Introduction to stem cell therapy.J. Cardiovasc. Nurs.20092429810310.1097/JCN.0b013e318197a6a519242274
    [Google Scholar]
  7. DenhamM. ConleyB. OlssonF. ColeT.J. MollardR. Stem cells: an overview. Current protocols in cell biology2005Chapter 23Unit 23.21
    [Google Scholar]
  8. VatsA. BielbyR.C. TolleyN.S. NeremR. PolakJ.M. Stem cells.Lancet2005366948559260210.1016/S0140‑6736(05)66879‑116099296
    [Google Scholar]
  9. SalinnoC. CotaP. Bastidas-PonceA. Tarquis-MedinaM. LickertH. BakhtiM. β-cell maturation and identity in health and disease.Int. J. Mol. Sci.20192021541710.3390/ijms2021541731671683
    [Google Scholar]
  10. AtlasD. International diabetes federation. IDF Diabetes Atlas.7th edBrussels, BelgiumInternational Diabetes Federation2015
    [Google Scholar]
  11. RamachandranA. Know the signs and symptoms of diabetes.Indian J. Med. Res.2014140557958125579136
    [Google Scholar]
  12. American Diabetes, A., Diagnosis and classification of diabetes mellitus.Diabetes care2013361567574
    [Google Scholar]
  13. SkylerJ.S. BakrisG.L. BonifacioE. DarsowT. EckelR.H. GroopL. GroopP.H. HandelsmanY. InselR.A. MathieuC. McElvaineA.T. PalmerJ.P. PuglieseA. SchatzD.A. SosenkoJ.M. WildingJ.P.H. RatnerR.E. Differentiation of diabetes by pathophysiology, natural history, and prognosis.Diabetes201766224125510.2337/db16‑080627980006
    [Google Scholar]
  14. LongA.E. GeorgeG. WilliamsC.L. Persistence of islet autoantibodies after diagnosis in type 1 diabetes.Diabet. Med.20213812e1471210.1111/dme.1471234614253
    [Google Scholar]
  15. ChenL. MaglianoD.J. ZimmetP.Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives.Nat. Rev. Endocrinol.20128422823610.1038/nrendo.2011.18322064493
    [Google Scholar]
  16. ZhengY. LeyS.H. HuF.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.Nat. Rev. Endocrinol.2018142889810.1038/nrendo.2017.15129219149
    [Google Scholar]
  17. KleinB.E.K. KleinR. MossS.E. CruickshanksK.J. Parental history of diabetes in a population-based study.Diabetes Care199619882783010.2337/diacare.19.8.8278842599
    [Google Scholar]
  18. DameshekW. Bone marrow transplantation: A present-day challenge.Blood195712432132310.1182/blood.V12.4.321.32113412760
    [Google Scholar]
  19. de la MorenaM.T. GattiR.A. A history of bone marrow transplantation.Immunol. Allergy Clin. North Am.201030111510.1016/j.iac.2009.11.00520113883
    [Google Scholar]
  20. Le BlancK. RingdénO. Mesenchymal stem cells: Properties and role in clinical bone marrow transplantation.Curr. Opin. Immunol.200618558659110.1016/j.coi.2006.07.00416879957
    [Google Scholar]
  21. McCormickJ.B. HusoH.A. Stem cells and ethics: Current issues.J. Cardiovasc. Transl. Res.20103212212710.1007/s12265‑009‑9155‑020560025
    [Google Scholar]
  22. MaggaJ. SavchenkoE. MalmT. RolovaT. PollariE. ValonenP. LehtonenŠ. JantunenE. AarnioJ. LehenkariP. KoistinahoM. MuonaA. KoistinahoJ. Production of monocytic cells from bone marrow stem cells: Therapeutic usage in Alzheimer’s disease.J. Cell. Mol. Med.20121651060107310.1111/j.1582‑4934.2011.01390.x21777378
    [Google Scholar]
  23. SmithA. A glossary for stem-cell biology.Nature200644170971060106010.1038/nature04954
    [Google Scholar]
  24. PagliucaF.W. MillmanJ.R. GürtlerM. SegelM. Van DervortA. RyuJ.H. PetersonQ.P. GreinerD. MeltonD.A. Generation of functional human pancreatic β cells in vitro.Cell2014159242843910.1016/j.cell.2014.09.04025303535
    [Google Scholar]
  25. VoltarelliJ.C. CouriC.E.B. OliveiraM.C. MoraesD.A. StracieriA.B.P.L. PieroniF. BarrosG.M.N. MalmegrimK.C.R. SimõesB.P. LealA.M.O. FossM.C. Stem cell therapy for diabetes mellitus.Kidney Int. Suppl.201113949810.1038/kisup.2011.2225018908
    [Google Scholar]
  26. Bonner-WeirS. BaxterL.A. SchuppinG.T. SmithF.E. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development.Diabetes199342121715172010.2337/diab.42.12.17158243817
    [Google Scholar]
  27. WangR.N. KlöppelG. BouwensL. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats.Diabetologia199538121405141110.1007/BF004006008786013
    [Google Scholar]
  28. XuX. D’HokerJ. StangéG. BonnéS. De LeuN. XiaoX. Van De CasteeleM. MellitzerG. LingZ. PipeleersD. BouwensL. ScharfmannR. GradwohlG. HeimbergH. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas.Cell2008132219720710.1016/j.cell.2007.12.01518243096
    [Google Scholar]
  29. InadaA. NienaberC. KatsutaH. FujitaniY. LevineJ. MoritaR. SharmaA. Bonner-WeirS. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth.Proc. Natl. Acad. Sci. USA200810550199151991910.1073/pnas.080580310519052237
    [Google Scholar]
  30. Bonner-WeirS. LiW.C. Ouziel-YahalomL. GuoL. WeirG.C. SharmaA. Beta-cell growth and regeneration: Replication is only part of the story.Diabetes201059102340234810.2337/db10‑008420876724
    [Google Scholar]
  31. SmuklerS.R. ArntfieldM.E. RazaviR. BikopoulosG. KarpowiczP. SeabergR. DaiF. LeeS. AhrensR. FraserP.E. WheelerM.B. van der KooyD. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin.Cell Stem Cell20118328129310.1016/j.stem.2011.01.01521362568
    [Google Scholar]
  32. ZhuS. RussH.A. WangX. ZhangM. MaT. XuT. TangS. HebrokM. DingS. Human pancreatic beta-like cells converted from fibroblasts.Nat. Commun.2016711008010.1038/ncomms1008026733021
    [Google Scholar]
  33. ChengC.W. VillaniV. BuonoR. WeiM. KumarS. YilmazO.H. CohenP. SneddonJ.B. PerinL. LongoV.D. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes.Cell20171685775788.e1210.1016/j.cell.2017.01.04028235195
    [Google Scholar]
  34. WangY. DorrellC. NauglerW.E. HeskettM. SpellmanP. LiB. GalivoF. HaftA. WakefieldL. GrompeM. Long-term correction of diabetes in mice by in vivo reprogramming of pancreatic ducts.J. Am. Soc. Gene Ther.201826513271342
    [Google Scholar]
  35. XiaoX. GuoP. ShiotaC. ZhangT. CoudrietG.M. FischbachS. PrasadanK. FuscoJ. RamachandranS. WitkowskiP. PiganelliJ.D. GittesG.K. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes.Cell Stem Cell20182217890.e410.1016/j.stem.2017.11.02029304344
    [Google Scholar]
  36. FuruyamaK. CheraS. van GurpL. OropezaD. GhilaL. DamondN. VetheH. PauloJ.A. JoostenA.M. BerneyT. BoscoD. DorrellC. GrompeM. RæderH. RoepB.O. ThorelF. HerreraP.L. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells.Nature20195677746434810.1038/s41586‑019‑0942‑830760930
    [Google Scholar]
  37. HiranoM. SoY. TsunekawaS. KabataM. OhtaS. SagaraH. SankodaN. TaguchiJ. YamadaY. UkaiT. KatoM. NakamuraJ. OzawaM. YamamotoT. YamadaY. MYCL-mediated reprogramming expands pancreatic insulin-producing cells.Nat. Metab.20224225426810.1038/s42255‑022‑00530‑y35145326
    [Google Scholar]
  38. ZaretK.S. GrompeM. Generation and regeneration of cells of the liver and pancreas.Science200832259071490149410.1126/science.116143119056973
    [Google Scholar]
  39. BerI. ShternhallK. PerlS. OhanunaZ. GoldbergI. BarshackI. Benvenisti-ZarumL. Meivar-LevyI. FerberS. Functional, persistent, and extended liver to pancreas transdifferentiation.J. Biol. Chem.200327834319503195710.1074/jbc.M30312720012775714
    [Google Scholar]
  40. YechoorV. LiuV. EspirituC. PaulA. OkaK. KojimaH. ChanL. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes.Dev. Cell200916335837310.1016/j.devcel.2009.01.01219289082
    [Google Scholar]
  41. YangL.J. Liver stem cell-derived β-cell surrogates for treatment of type 1 diabetes.Autoimmun. Rev.20065640941310.1016/j.autrev.2005.10.00916890895
    [Google Scholar]
  42. LiuX. WangY. LiY. PeiX. Research status and prospect of stem cells in the treatment of diabetes mellitus.Sci. China Life Sci.201356430631210.1007/s11427‑013‑4469‑123564185
    [Google Scholar]
  43. PollingerJ. MerkD. Therapeutic applications of the versatile fatty acid mimetic WY14643.Expert Opin. Ther. Pat.201727451752510.1080/13543776.2017.127257827967266
    [Google Scholar]
  44. BangaA. GrederL.V. DuttonJ.R. SlackJ.M.W. Stable insulin-secreting ducts formed by reprogramming of cells in the liver using a three-gene cocktail and a PPAR agonist.Gene Ther.2014211192710.1038/gt.2013.5024089243
    [Google Scholar]
  45. HillC.M. BangaA. AbrahanteJ.E. YuanC. MutchL.A. JanecekJ. O’BrienT. GrahamM.L. DuttonJ.R. Establishing a large-animal model for in vivo reprogramming of bile duct cells into insulin-secreting cells to treat diabetes.Hum. Gene Ther. Clin. Dev.2017282879510.1089/humc.2017.01128363269
    [Google Scholar]
  46. YangX.F. RenL.W. YangL. DengC.Y. LiF.R. In vivo direct reprogramming of liver cells to insulin producing cells by virus-free overexpression of defined factors.Endocr. J.201764329130210.1507/endocrj.EJ16‑046328100871
    [Google Scholar]
  47. CardinaleV. WangY. CarpinoG. MendelG. AlpiniG. GaudioE. ReidL.M. AlvaroD. The biliary tree—a reservoir of multipotent stem cells.Nat. Rev. Gastroenterol. Hepatol.20129423124010.1038/nrgastro.2012.2322371217
    [Google Scholar]
  48. ChenF. LiT. SunY. LiuQ. YangT. ChenJ. ZhuH. ShiY. HuY.P. WangM.J. Generation of insulin-secreting cells from mouse gallbladder stem cells by small molecules in vitro.Stem Cell Res. Ther.201910128910.1186/s13287‑019‑1407‑631547878
    [Google Scholar]
  49. KiskinisE. EgganK. Progress toward the clinical application of patient-specific pluripotent stem cells.J. Clin. Invest.20101201515910.1172/JCI4055320051636
    [Google Scholar]
  50. ReubinoffB.E. PeraM.F. FongC.Y. TrounsonA. BongsoA. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro.Nat. Biotechnol.200018439940410.1038/7444710748519
    [Google Scholar]
  51. LimbertC. PäthG. JakobF. SeufertJ. Beta-cell replacement and regeneration: Strategies of cell-based therapy for type 1 diabetes mellitus.Diabetes Res. Clin. Pract.200879338939910.1016/j.diabres.2007.06.01617854943
    [Google Scholar]
  52. KroonE. MartinsonL.A. KadoyaK. BangA.G. KellyO.G. EliazerS. YoungH. RichardsonM. SmartN.G. CunninghamJ. AgulnickA.D. D’AmourK.A. CarpenterM.K. BaetgeE.E. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo.Nat. Biotechnol.200826444345210.1038/nbt139318288110
    [Google Scholar]
  53. AgulnickA.D. AmbruzsD.M. MoormanM.A. BhoumikA. CesarioR.M. PayneJ.K. KellyJ.R. HaakmeesterC. SrijemacR. WilsonA.Z. KerrJ. FrazierM.A. KroonE.J. D’AmourK.A. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo.Stem Cells Transl. Med.20154101214122210.5966/sctm.2015‑007926304037
    [Google Scholar]
  54. SuiL. DanzlN. CampbellS.R. ViolaR. WilliamsD. XingY. WangY. PhillipsN. PoffenbergerG. JohannessonB. OberholzerJ. PowersA.C. LeibelR.L. ChenX. SykesM. EgliD. β-cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells.Diabetes2018671263510.2337/db17‑012028931519
    [Google Scholar]
  55. TakahashiK. YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006126466367610.1016/j.cell.2006.07.02416904174
    [Google Scholar]
  56. AgrawalA. NarayanG. GogoiR. ThummerR.P. Recent advances in the generation of β-cells from induced pluripotent stem cells as a potential cure for diabetes mellitus.Adv. Exp. Med. Biol.2021134712710.1007/5584_2021_65334426962
    [Google Scholar]
  57. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.01918035408
    [Google Scholar]
  58. HaridhasapavalanK.K. BorgohainM.P. DeyC. SahaB. NarayanG. KumarS. ThummerR.P. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells.Gene201968614615910.1016/j.gene.2018.11.06930472380
    [Google Scholar]
  59. BorgohainM.P. HaridhasapavalanK.K. DeyC. AdhikariP. ThummerR.P. An insight into DNA-free reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications.Stem Cell Rev.201915228631310.1007/s12015‑018‑9861‑630417242
    [Google Scholar]
  60. MaehrR. ChenS. SnitowM. LudwigT. YagasakiL. GolandR. LeibelR.L. MeltonD.A. Generation of pluripotent stem cells from patients with type 1 diabetes.Proc. Natl. Acad. Sci. USA200910637157681577310.1073/pnas.090689410619720998
    [Google Scholar]
  61. AlipioZ. LiaoW. RoemerE.J. WanerM. FinkL.M. WardD.C. MaY. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells.Proc. Natl. Acad. Sci. USA201010730134261343110.1073/pnas.100788410720616080
    [Google Scholar]
  62. ZhuY. TonneJ.M. LiuQ. SchreiberC.A. ZhouZ. RakshitK. MatveyenkoA.V. TerzicA. WigleD. KudvaY.C. IkedaY. Targeted derivation of organotypic glucose- and GLP-1-responsive β cells prior to transplantation into diabetic recipients.Stem Cell Reports201913230732110.1016/j.stemcr.2019.07.00631378674
    [Google Scholar]
  63. KongC.M. ArjunanS. GanS.U. BiswasA. BongsoA. FongC.Y. Tissues derived from reprogrammed Wharton’s jelly stem cells of the umbilical cord as a platform to study gestational diabetes mellitus.Stem Cell Res.20204710188010.1016/j.scr.2020.10188032622342
    [Google Scholar]
  64. PileggiA. Mesenchymal stem cells for the treatment of diabetes.Diabetes20126161355135610.2337/db12‑035522618774
    [Google Scholar]
  65. UrbánV.S. KissJ. KovácsJ. GóczaE. VasV. MonostoriĖ. UherF. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes.Stem Cells200826124425310.1634/stemcells.2007‑026717932424
    [Google Scholar]
  66. DingY. XuD. FengG. BushellA. MuschelR.J. WoodK.J. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9.Diabetes20095881797180610.2337/db09‑031719509016
    [Google Scholar]
  67. ZhaoM. AmielS.A. AjamiS. JiangJ. RelaM. HeatonN. HuangG.C. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells.PLoS One200837e266610.1371/journal.pone.000266618628974
    [Google Scholar]
  68. KimS.Y. KimY.R. ParkW.J. KimH.S. JungS.C. WooS.Y. JoI. RyuK.H. ParkJ.W. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells. In: Differentiation; research in biological diversity2015901-32739
    [Google Scholar]
  69. KimS.J. ChoiY.S. KoE.S. LimS.M. LeeC.W. KimD.I. Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation.J. Biosci. Bioeng.2012113677177710.1016/j.jbiosc.2012.02.00722425523
    [Google Scholar]
  70. HoJ.H. TsengT.C. MaW.H. OngW.K. ChenY.F. ChenM.H. LinM.W. HongC.Y. LeeO.K. Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and β-cell differentiation in streptozocin-induced diabetic mice.Cell Transplant.2012215997100910.3727/096368911X60361122004871
    [Google Scholar]
  71. DangL.T.-T. PhanN.K. TruongK.D.J.B.R. Therapy, mesenchymal stem cells for diabetes mellitus treatment: New advances.Biomed. Res. Ther.20174110621081
    [Google Scholar]
  72. ChhabraP. BraymanK.L. Stem cell therapy to cure type 1 diabetes: From hype to hope.Stem Cells Transl. Med.20132532833610.5966/sctm.2012‑011623572052
    [Google Scholar]
  73. TalebiS. AleyasinA. SoleimaniM. MassumiM. Derivation of islet‐like cells from mesenchymal stem cells using PDX1‐transducing lentiviruses.Biotechnol. Appl. Biochem.201259320521210.1002/bab.101323586830
    [Google Scholar]
  74. KaraozE. OkcuA. ÜnalZ.S. SubasiC. SaglamO. DuruksuG. Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo.Cytotherapy201315555757010.1016/j.jcyt.2013.01.00523388582
    [Google Scholar]
  75. CarlssonP.O. EspesD. SisayS. DaviesL.C. SmithC.I.E. SvahnM.G. Umbilical cord-derived mesenchymal stromal cells preserve endogenous insulin production in type 1 diabetes: A Phase I/II randomised double-blind placebo-controlled trial.Diabetologia20236681431144110.1007/s00125‑023‑05934‑337221247
    [Google Scholar]
  76. BoonkaewB. SuwanpitakS. PattanapanyasatK. SermsathanasawadiN. WattanapanitchM. Efficient generation of endothelial cells from induced pluripotent stem cells derived from a patient with peripheral arterial disease.Cell Tissue Res.202238818910410.1007/s00441‑022‑03576‑235072793
    [Google Scholar]
  77. YanaiG. HayashiT. ZhiQ. YangK.C. ShirouzuY. ShimabukuroT. HiuraA. InoueK. SumiS. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: A rat model.PLoS One201385e6449910.1371/journal.pone.006449923724055
    [Google Scholar]
  78. TomaJ.G. AkhavanM. FernandesK.J.L. Barnabé-HeiderF. SadikotA. KaplanD.R. MillerF.D. Isolation of multipotent adult stem cells from the dermis of mammalian skin.Nat. Cell Biol.20013977878410.1038/ncb0901‑77811533656
    [Google Scholar]
  79. TomaJ.G. McKenzieI.A. BagliD. MillerF.D. Isolation and characterization of multipotent skin-derived precursors from human skin.Stem Cells200523672773710.1634/stemcells.2004‑013415917469
    [Google Scholar]
  80. JoannidesA. GaughwinP. SchwieningC. MajedH. SterlingJ. CompstonA. ChandranS. Efficient generation of neural precursors from adult human skin: Astrocytes promote neurogenesis from skin-derived stem cells.Lancet2004364942917217810.1016/S0140‑6736(04)16630‑015246730
    [Google Scholar]
  81. MehrabiM. MansouriK. HosseinkhaniS. YaraniR. YariK. BakhtiariM. MostafaieA. Differentiation of human skin-derived precursor cells into functional islet-like insulin-producing cell clusters. In vitro Cell. Dev. Biol. Anim.201551659560310.1007/s11626‑015‑9866‑225630536
    [Google Scholar]
  82. YangJ.H. LeeS.H. HeoY.T. UhmS.J. LeeH.T. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells.Biochem. Biophys. Res. Commun.2010397467968410.1016/j.bbrc.2010.05.15820594970
    [Google Scholar]
  83. Pereyra-BonnetF. GimenoM.L. ArgumedoN.R. IelpiM. CardozoJ.A. GiménezC.A. HyonS.H. BalzarettiM. LoresiM. Fainstein-DayP. LitwakL.E. ArgibayP.F. Skin fibroblasts from patients with type 1 diabetes (T1D) can be chemically transdifferentiated into insulin-expressing clusters: a transgene-free approach.PLoS One201496e10036910.1371/journal.pone.010036924963634
    [Google Scholar]
  84. PennarossaG. MaffeiS. CampagnolM. RahmanM.M. BreviniT.A.L. GandolfiF. Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine.Stem Cell Rev.2014101314310.1007/s12015‑013‑9477‑924072393
    [Google Scholar]
  85. ChandravanshiB. BhondeR. Reprogramming mouse embryo fibroblasts to functional islets without genetic manipulation.J. Cell. Physiol.201823321627163710.1002/jcp.2606828657136
    [Google Scholar]
  86. YenB.L. HuangH.I. ChienC.C. JuiH.Y. KoB.S. YaoM. ShunC.T. YenM. LeeM.C. ChenY.C. Isolation of multipotent cells from human term placenta.Stem Cells20052313910.1634/stemcells.2004‑009815625118
    [Google Scholar]
  87. Le BlancK. Immunomodulatory effects of fetal and adult mesenchymal stem cells.Cytotherapy20035648548910.1080/1465324031000361114660044
    [Google Scholar]
  88. ChienC.C. YenB.L. LeeF.K. LaiT.H. ChenY.C. ChanS.H. HuangH.I. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells.Stem Cells20062471759176810.1634/stemcells.2005‑052116822884
    [Google Scholar]
  89. Portmann-LanzC.B. SchoeberleinA. HuberA. SagerR. MalekA. HolzgreveW. SurbekD.V. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration.Am. J. Obstet. Gynecol.2006194366467310.1016/j.ajog.2006.01.10116522395
    [Google Scholar]
  90. ChiouS.H. ChenS.J. ChangY.L. ChenY.C. LiH.Y. ChenD.T. WangH.H. ChangC.M. ChenY.J. KuH.H. MafA promotes the reprogramming of placenta-derived multipotent stem cells into pancreatic islets-like and insulin+ cells.J. Cell. Mol. Med.201115361262410.1111/j.1582‑4934.2010.01034.x20158571
    [Google Scholar]
  91. LeeS.H. RheeM. KimJ.W. YoonK.H. Generation of insulin-expressing cells in mouse small intestine by Pdx1, MafA, and BETA2/NeuroD.Diabetes Metab. J.201741540541610.4093/dmj.2017.41.5.40529086539
    [Google Scholar]
  92. ChenY.J. FinkbeinerS.R. WeinblattD. EmmettM.J. TameireF. YousefiM. YangC. MaehrR. ZhouQ. ShemerR. DorY. LiC. SpenceJ.R. StangerB.Z. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts.Cell Rep.2014661046105810.1016/j.celrep.2014.02.01324613355
    [Google Scholar]
  93. ForbesJ.M. CooperM.E. Mechanisms of diabetic complications.Physiol Rev. 2013931137188
    [Google Scholar]
  94. YamazakiD. HitomiH. NishiyamaA. Hypertension with diabetes mellitus complications.Hypertens Res.2018413147156
    [Google Scholar]
  95. BernardiS. SeveriniG.M. ZauliG. SecchieroP. Cell-based therapies for diabetic complications.Exp. Diabetes Res.2012201211010.1155/2012/87250421822425
    [Google Scholar]
  96. KhamaisiM. BalansonS.E. Stem cells for diabetes complications: A future potential cure.Rambam Maimonides Med. J.201781e000810.5041/RMMJ.1028328178432
    [Google Scholar]
  97. LimA. Diabetic nephropathy – complications and treatment.Int. J. Nephrol. Renovasc. Dis.2014736138110.2147/IJNRD.S4017225342915
    [Google Scholar]
  98. GilbertsonD.T. LiuJ. XueJ.L. LouisT.A. SolidC.A. EbbenJ.P. CollinsA.J. Projecting the number of patients with end-stage renal disease in the United States to the year 2015.J. Am. Soc. Nephrol.200516123736374110.1681/ASN.200501011216267160
    [Google Scholar]
  99. VargheseR.T. JialalI. In StatPearls; StatPearls Publishing Copyright © 2022.Treasure Island, FLStatPearls Publishing LLC2022
    [Google Scholar]
  100. MogensenC.E. ChristensenC.K. VittinghusE. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy.Diabetes198332Suppl. 2647810.2337/diab.32.2.S646400670
    [Google Scholar]
  101. GallM.A. HougaardP. Borch-JohnsenK. ParvingH.H. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: Prospective, observational study.BMJ1997314708378378810.1136/bmj.314.7083.7839080995
    [Google Scholar]
  102. GroopP.H. ThomasM.C. MoranJ.L. WadènJ. ThornL.M. MäkinenV.P. Rosengård-BärlundM. SaraheimoM. HietalaK. HeikkiläO. ForsblomC. FinnDiane Study Group The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes.Diabetes20095871651165810.2337/db08‑154319401416
    [Google Scholar]
  103. ParkJ.H. HwangI. HwangS.H. HanH. HaH. Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action.Diabetes Res. Clin. Pract.201298346547310.1016/j.diabres.2012.09.03423026513
    [Google Scholar]
  104. NarayananK. SchumacherK.M. TasnimF. KandasamyK. SchumacherA. NiM. GaoS. GopalanB. ZinkD. YingJ.Y. Human embryonic stem cells differentiate into functional renal proximal tubular–like cells.Kidney Int.201383459360310.1038/ki.2012.44223389418
    [Google Scholar]
  105. NagaishiK. MizueY. ChikenjiT. OtaniM. NakanoM. KonariN. FujimiyaM. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes.Sci. Rep.2016613484210.1038/srep3484227721418
    [Google Scholar]
  106. HamzaA.H. Al-BishriW.M. DamiatiL.A. AhmedH.H. Mesenchymal stem cells: A future experimental exploration for recession of diabetic nephropathy.Ren. Fail.2017391677610.1080/0886022X.2016.124408027774826
    [Google Scholar]
  107. GrangeC. TrittaS. TapparoM. CedrinoM. TettaC. CamussiG. BrizziM.F. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy.Sci. Rep.201991446810.1038/s41598‑019‑41100‑930872726
    [Google Scholar]
  108. AntonettiD.A. KleinR. GardnerT.W. Diabetic retinopathy.N. Engl. J. Med.2012366131227123910.1056/NEJMra100507322455417
    [Google Scholar]
  109. EismaJ.H. DulleJ.E. FortP.E. Current knowledge on diabetic retinopathy from human donor tissues.World J. Diabetes20156231232010.4239/wjd.v6.i2.31225789112
    [Google Scholar]
  110. ShuklaU.V. TripathyK. In StatPearls; StatPearls Publishing Copyright © 2022.Treasure Island, FLStatPearls Publishing LLC2022
    [Google Scholar]
  111. InoueY. IriyamaA. UenoS. TakahashiH. KondoM. TamakiY. AraieM. YanagiY. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration.Exp. Eye Res.200785223424110.1016/j.exer.2007.04.00717570362
    [Google Scholar]
  112. WangS. LuB. GirmanS. DuanJ. McFarlandT. ZhangQ. GrompeM. AdamusG. AppukuttanB. LundR. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology.PLoS One201052e920010.1371/journal.pone.000920020169166
    [Google Scholar]
  113. YangZ. LiK. YanX. DongF. ZhaoC. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats.Graefes Arch. Clin. Exp. Ophthalmol.2010248101415142210.1007/s00417‑010‑1384‑z20437245
    [Google Scholar]
  114. ScalinciS.Z. ScalinciS.Z. ScorolliL. Corradetti Domanico VingoloE.M. BifaniM. SiravoD. Potential role of intravitreal human placental stem cell implants in inhibiting progression of diabetic retinopathy in type 2 diabetes: Neuroprotective growth factors in the vitreous.Clin. Ophthalmol.2011569169610.2147/OPTH.S2116121629576
    [Google Scholar]
  115. RitterM.R. BaninE. MorenoS.K. AguilarE. DorrellM.I. FriedlanderM. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy.J. Clin. Invest.2006116123266327610.1172/JCI2968317111048
    [Google Scholar]
  116. BansalV. KalitaJ. MisraU.K. Diabetic neuropathy.Postgrad. Med. J.2006829649510010.1136/pgmj.2005.03613716461471
    [Google Scholar]
  117. IqbalZ. AzmiS. YadavR. FerdousiM. KumarM. CuthbertsonD.J. LimJ. MalikR.A. AlamU. Diabetic peripheral neuropathy: Epidemiology, diagnosis, and pharmacotherapy.Clin. Ther.201840682884910.1016/j.clinthera.2018.04.00129709457
    [Google Scholar]
  118. MartinC.L. AlbersJ.W. Pop-BusuiR. DCCT/EDIC Research Group Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study.Diabetes Care2014371313810.2337/dc13‑211424356595
    [Google Scholar]
  119. GhotaslouR. MemarM.Y. AlizadehN. Classification, microbiology and treatment of diabetic foot infections.J. Wound Care201827743444110.12968/jowc.2018.27.7.43430016139
    [Google Scholar]
  120. WatermanR.S. MorgenweckJ. NossamanB.D. ScandurroA.E. ScandurroS.A. BetancourtA.M. Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy.Stem Cells Transl. Med.20121755756510.5966/sctm.2012‑002523197860
    [Google Scholar]
  121. KimB.J. JinH.K. BaeJ. Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy.Lab. Anim. Res.201127217117610.5625/lar.2011.27.2.17121826178
    [Google Scholar]
  122. HanJ.W. ChoiD. LeeM.Y. HuhY.H. YoonY.S. Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves.Cell Transplant.201625231332610.3727/096368915X68820925975801
    [Google Scholar]
  123. HsiehJ.Y. WangH.W. ChangS.J. LiaoK.H. LeeI.H. LinW.S. WuC.H. LinW.Y. ChengS.M. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis.PLoS One201388e7260410.1371/journal.pone.007260423991127
    [Google Scholar]
  124. OkawaT. KamiyaH. HimenoT. KatoJ. SeinoY. FujiyaA. KondoM. TsunekawaS. NaruseK. HamadaY. OzakiN. ChengZ. KitoT. SuzukiH. ItoS. OisoY. NakamuraJ. IsobeK.I. Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice.Cell Transplant.201322101767178310.3727/096368912X65771023051637
    [Google Scholar]
  125. ShibataT. NaruseK. KamiyaH. KozakaeM. KondoM. YasudaY. NakamuraN. OtaK. TosakiT. MatsukiT. NakashimaE. HamadaY. OisoY. NakamuraJ. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats.Diabetes200857113099310710.2337/db08‑003118728233
    [Google Scholar]
  126. NaruseK. HamadaY. NakashimaE. KatoK. MizubayashiR. KamiyaH. YuzawaY. MatsuoS. MuroharaT. MatsubaraT. OisoY. NakamuraJ. Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy.Diabetes20055461823182810.2337/diabetes.54.6.182315919805
    [Google Scholar]
  127. JeongJ.O. KimM.O. KimH. LeeM.Y. KimS.W. IiM. LeeJ. LeeJ. ChoiY.J. ChoH.J. LeeN. SilverM. WeckerA. KimD.W. YoonY. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy.Circulation2009119569970810.1161/CIRCULATIONAHA.108.78929719171856
    [Google Scholar]
  128. KimH. ParkJ. ChoiY.J. KimM.O. HuhY.H. KimS.W. HanJ.W. LeeJ. KimS. HougeM.A. IiM. YoonY. Bone marrow mononuclear cells have neurovascular tropism and improve diabetic neuropathy.Stem Cells20092771686169610.1002/stem.8719544451
    [Google Scholar]
  129. HasegawaT. KosakiA. ShimizuK. MatsubaraH. MoriY. MasakiH. ToyodaN. Inoue-ShibataM. NishikawaM. IwasakaT. Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocin-induced diabetic rats.Exp. Neurol.2006199227428010.1016/j.expneurol.2005.11.00116337192
    [Google Scholar]
  130. MatheusA.S.M. TannusL.R.M. CobasR.A. PalmaC.C.S. NegratoC.A. GomesM.B. Impact of diabetes on cardiovascular disease: An update.Int. J. Hypertens.2013201311510.1155/2013/65378923533715
    [Google Scholar]
  131. ShahA.D. LangenbergC. RapsomanikiE. DenaxasS. Pujades-RodriguezM. GaleC.P. DeanfieldJ. SmeethL. TimmisA. HemingwayH. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1·9 million people.Lancet Diabetes Endocrinol.20153210511310.1016/S2213‑8587(14)70219‑025466521
    [Google Scholar]
  132. HuangD. RefaatM. MohammediK. JayyousiA. Al SuwaidiJ. Abi KhalilC. Macrovascular complications in patients with diabetes and prediabetes.BioMed Res. Int.201720171910.1155/2017/783910129238721
    [Google Scholar]
  133. KanelidisA.J. PremerC. LopezJ. BalkanW. HareJ.M. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction.Circ. Res.201712071139115010.1161/CIRCRESAHA.116.30981928031416
    [Google Scholar]
  134. KarantalisV. DiFedeD.L. GerstenblithG. PhamS. SymesJ. ZambranoJ.P. FishmanJ. PattanyP. McNieceI. ConteJ. SchulmanS. WuK. ShahA. BretonE. Davis-SproulJ. SchwarzR. FeigenbaumG. MushtaqM. SuncionV.Y. LardoA.C. BorrelloI. MendizabalA. KarasT.Z. ByrnesJ. LoweryM. HeldmanA.W. HareJ.M. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial.Circ. Res.201411481302131010.1161/CIRCRESAHA.114.30318024565698
    [Google Scholar]
  135. ZwetslootP.P. VéghA.M.D. Jansen of LorkeersS.J. van HoutG.P.J. CurrieG.L. SenaE.S. GremmelsH. BuikemaJ.W. GoumansM.J. MacleodM.R. DoevendansP.A. ChamuleauS.A.J. SluijterJ.P.G. Cardiac stem cell treatment in myocardial infarction.Circ. Res.201611881223123210.1161/CIRCRESAHA.115.30767626888636
    [Google Scholar]
  136. MummeryC.L. ZhangJ. NgE.S. ElliottD.A. ElefantyA.G. KampT.J. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview.Circ. Res.2012111334435810.1161/CIRCRESAHA.110.22751222821908
    [Google Scholar]
  137. MenaschéP. VanneauxV. HagègeA. BelA. CholleyB. CacciapuotiI. ParouchevA. BenhamoudaN. TachdjianG. ToscaL. TrouvinJ.H. FabreguettesJ.R. BellamyV. GuillemainR. Suberbielle BoisselC. TartourE. DesnosM. LargheroJ. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: Figure 1.Eur. Heart J.201536302011201710.1093/eurheartj/ehv18925990469
    [Google Scholar]
  138. CitroL. NaiduS. HassanF. KuppusamyM.L. KuppusamyP. AngelosM.G. KhanM. Comparison of human induced pluripotent stem-cell derived cardiomyocytes with human mesenchymal stem cells following acute myocardial infarction.PLoS One2014912e11628110.1371/journal.pone.011628125551230
    [Google Scholar]
  139. YeL. ChangY.H. XiongQ. ZhangP. ZhangL. SomasundaramP. LepleyM. SwingenC. SuL. WendelJ.S. GuoJ. JangA. RosenbushD. GrederL. DuttonJ.R. ZhangJ. KampT.J. KaufmanD.S. GeY. ZhangJ. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells.Cell Stem Cell201415675076110.1016/j.stem.2014.11.00925479750
    [Google Scholar]
  140. ZhangN. LiJ. LuoR. JiangJ. WangJ.A. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology.Germ. Diab. Assoc.20081162104111
    [Google Scholar]
  141. LiJ.H. ZhangN. WangJ.A. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy.J. Endocrinol. Invest.200831210311010.1007/BF0334557518362500
    [Google Scholar]
  142. ChenW. HouC.H. ChenY.L. ShenH.H. LinC.H. WuC.Y. LinM.H. LiaoC.C. HuangJ.J. YangC.Y. LiY.C. YipH.K. Safety and efficacy of intracoronary artery administration of human bone marrow-derived mesenchymal stem cells in STEMI of Lee-Sung pigs—A preclinical study for supporting the feasibility of the OmniMSC-AMI phase I clinical trial.Front. Cardiovasc. Med.202310115342810.3389/fcvm.2023.115342837063964
    [Google Scholar]
  143. KamihataH. MatsubaraH. NishiueT. FujiyamaS. TsutsumiY. OzonoR. MasakiH. MoriY. IbaO. TateishiE. KosakiA. ShintaniS. MuroharaT. ImaizumiT. IwasakaT. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.Circulation200110491046105210.1161/hc3501.09381711524400
    [Google Scholar]
  144. RansohoffJ.D. WuJ.C. Imaging stem cell therapy for the treatment of peripheral arterial disease.Curr. Vasc. Pharmacol.201210336137310.2174/15701611279995940422239638
    [Google Scholar]
  145. GreenhalghD.G. Wound healing and diabetes mellitus.Clin. Plast. Surg.2003301374510.1016/S0094‑1298(02)00066‑412636214
    [Google Scholar]
  146. JarajapuY.P.R. GrantM.B. The promise of cell-based therapies for diabetic complications: Challenges and solutions.Circ. Res.2010106585486910.1161/CIRCRESAHA.109.21314020299675
    [Google Scholar]
  147. McFarlinK. GaoX. LiuY.B. DulchavskyD.S. KwonD. ArbabA.S. BansalM. LiY. ChoppM. DulchavskyS.A. GautamS.C. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat.Wound Repair Regen.2006144471478
    [Google Scholar]
  148. AminA.H. Abd ElmageedZ.Y. NairD. PartykaM.I. KadowitzP.J. BelmadaniS. MatrouguiK. Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice.Lab. Invest.201090798599610.1038/labinvest.2010.8620440273
    [Google Scholar]
  149. KwonD.S. GaoX. LiuY.B. DulchavskyD.S. DanylukA.L. BansalM. ChoppM. McIntoshK. ArbabA.S. DulchavskyS.A. GautamS.C. Treatment with bone marrow‐derived stromal cells accelerates wound healing in diabetic rats.Int. Wound J.20085345346310.1111/j.1742‑481X.2007.00408.x18593394
    [Google Scholar]
  150. MaharlooeiM.K. BagheriM. SolhjouZ. JahromiB.M. AkramiM. RohaniL. MonabatiA. NoorafshanA. OmraniG.R.J.D.r. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract.201193222823410.1016/j.diabres.2011.04.01821632142
    [Google Scholar]
  151. KaushikK. DasA. TWIST1 -reprogrammed endothelial cell transplantation potentiates neovascularization-mediated diabetic wound tissue regeneration.Diabetes20206961232124710.2337/db20‑013832234721
    [Google Scholar]
  152. Gerami-NainiB. SmithA. MaioneA.G. KashpurO. CarpinitoG. VevesA. MooneyD.J. GarlickJ.A. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative sendai virus.Cell. Reprogram.201618421422310.1089/cell.2015.008727328415
    [Google Scholar]
  153. KashpurO. SmithA. Gerami-NainiB. MaioneA.G. CalabreseR. TellecheaA. TheocharidisG. LiangL. PastarI. Tomic-CanicM. MooneyD. VevesA. GarlickJ.A. Differentiation of diabetic foot ulcer–derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes.FASEB J.20193311262127710.1096/fj.20180105930088952
    [Google Scholar]
  154. PastarI. MarjanovicJ. LiangL. StoneR.C. KashpurO. JozicI. HeadC.R. SmithA. Gerami-NainiB. GarlickJ.A. Tomic-CanicM. Cellular reprogramming of diabetic foot ulcer fibroblasts triggers pro‐healing miRNA‐mediated epigenetic signature.Exp. Dermatol.20213081065107210.1111/exd.1440534114688
    [Google Scholar]
  155. ZhangJ. ZhaoB. WeiW. WangD. WangH. ZhangA. TaoC. LiX. LiQ. JinP. Prospective, randomized, and controlled study of a human umbilical cord mesenchymal stem cell injection for treating diabetic foot ulcers.J Vis Exp2023193
    [Google Scholar]
  156. León-QuintoT. JonesJ. SkoudyA. BurcinM. SoriaB. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells.Diabetologia20044781442145110.1007/s00125‑004‑1458‑815309294
    [Google Scholar]
  157. KohS. PiedrahitaJ.A. Generation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts.Methods Mol. Biol.20151330697810.1007/978‑1‑4939‑2848‑4_726621590
    [Google Scholar]
  158. TolarJ. NautaA.J. OsbornM.J. Panoskaltsis MortariA. McElmurryR.T. BellS. XiaL. ZhouN. RiddleM. SchroederT.M. WestendorfJ.J. McIvorR.S. HogendoornP.C.W. SzuhaiK. OsethL. HirschB. YantS.R. KayM.A. PeisterA. ProckopD.J. FibbeW.E. BlazarB.R. Sarcoma derived from cultured mesenchymal stem cells.Stem Cells200725237137910.1634/stemcells.2005‑062017038675
    [Google Scholar]
  159. Le BlancK. PittengerM.F. Mesenchymal stem cells: Progress toward promise.Cytotherapy200571364510.1016/S1465‑3249(05)70787‑816040382
    [Google Scholar]
  160. AtsmaD.E. FibbeW.E. RabelinkT.J. Opportunities and challenges for mesenchymal stem cell-mediated heart repair.Curr. Opin. Lipidol.200718664564910.1097/MOL.0b013e3282f0dd1f17993810
    [Google Scholar]
  161. LiuM. HanZ.C. Mesenchymal stem cells: Biology and clinical potential in type 1 diabetes therapy.J. Cell. Mol. Med.20081241155116810.1111/j.1582‑4934.2008.00288.x18298656
    [Google Scholar]
  162. AbdiR. FiorinaP. AdraC.N. AtkinsonM. SayeghM.H. Immunomodulation by mesenchymal stem cells: A potential therapeutic strategy for type 1 diabetes.Diabetes20085771759176710.2337/db08‑018018586907
    [Google Scholar]
  163. TengC. GuoY. ZhangH. ZhangH. DingM. DengH. Identification and characterization of label-retaining cells in mouse pancreas. In: Differentiation; research in biological diversity2007758702712
    [Google Scholar]
  164. TangD.Q. LuS. SunY.P. RodriguesE. ChouW. YangC. CaoL.Z. ChangL.J. YangL.J. Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors.Lab. Invest.2006861839310.1038/labinvest.370036816294197
    [Google Scholar]
  165. BangaA. AkinciE. GrederL.V. DuttonJ.R. SlackJ.M.W. In vivo reprogramming of Sox9 + cells in the liver to insulin-secreting ducts.Proc. Natl. Acad. Sci. USA201210938153361534110.1073/pnas.120170110922949652
    [Google Scholar]
  166. DadheechN. SrivastavaA. VakaniM. ShrimaliP. BhondeR. GuptaS. Direct lineage tracing reveals Activin-a potential for improved pancreatic homing of bone marrow mesenchymal stem cells and efficient ß-cell regeneration in vivo.Stem Cell Res. Ther.202011132710.1186/s13287‑020‑01843‑z32731883
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998275428231210055650
Loading
/content/journals/cdr/10.2174/0115733998275428231210055650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test