Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Introduction

Neonatal diabetes mellitus (NDM) is characterized by severe hyperglycemia, usually diagnosed in the first few months of an individual’s life. It is a genetic disease and one of the main forms of monogenic diabetes. Changes in different genes have already been associated with NDM, including changes in the gene .

Methods

In this review, we intend to summarize all neonatal diabetes cases caused by mutations reported in the literature. For this purpose, we searched keywords in the literature from PubMed and articles cited by the HGMD database. The search retrieved 84 articles, of which 41 had their full text accessed. After applying the study exclusion criteria, nine articles were included.

Results

Of those articles, we detected thirteen cases of NDM associated with changes in ; the majority in homozygous or compound heterozygous patients. Until now, variants in the gene have been a rare cause of NDM; however, few studies have included the screening of this gene in the investigation of neonatal diabetes.

Conclusion

In this review, we reinforce the importance of the gene inclusion in genetic NGS panels for molecular diagnosis of NDM, and systematic morphological and functional exams of the pancreas when NDM is present.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998265866231204070606
2024-01-29
2025-06-22
Loading full text...

Full text loading...

References

  1. CareD. SupplS.S. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021.Diabetes Care202144Suppl. 1S15S3310.2337/dc21‑S002 33298413
    [Google Scholar]
  2. De FrancoE. FlanaganS.E. HoughtonJ.A.L. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: An international cohort study.Lancet2015386999795796310.1016/S0140‑6736(15)60098‑8 26231457
    [Google Scholar]
  3. GreeleyS.A.W. TuckerS.E. NaylorR.N. BellG.I. PhilipsonL.H. Neonatal diabetes mellitus: A model for personalized medicine.Trends Endocrinol. Metab.201021846447210.1016/j.tem.2010.03.004 20434356
    [Google Scholar]
  4. YangY. ChanL. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes.Endocr. Rev.201637319022210.1210/er.2015‑1116 27035557
    [Google Scholar]
  5. HattersleyA.T. GreeleyS.A.W. PolakM. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents.Pediatr. Diabetes201819Suppl. 27476310.1111/pedi.12772 30225972
    [Google Scholar]
  6. Grulich-HennJ. WagnerV. ThonA. Entities and frequency of neonatal diabetes: Data from the diabetes documentation and quality management system (DPV).Diabet. Med.201027670971210.1111/j.1464‑5491.2010.02965.x 20546293
    [Google Scholar]
  7. DahlA. KumarS. Recent advances in neonatal diabetes. Diabetes.Diabetes Metab. Syndr. Obes.20201335536410.2147/DMSO.S198932 32104032
    [Google Scholar]
  8. NayakS. SarangiA.N. SahooS.K. Neonatal Diabetes Mellitus: Novel Mutations.Indian J. Pediatr.202188878579210.1007/s12098‑020‑03567‑7 33409956
    [Google Scholar]
  9. NaylorR.N. GreeleyS.A.W. BellG.I. PhilipsonL.H. Genetics and pathophysiology of neonatal diabetes mellitus.J. Diabetes Investig.20112315816910.1111/j.2040‑1124.2011.00106.x 24843477
    [Google Scholar]
  10. BeltrandJ. BusiahK. Vaivre-DouretL. Neonatal Diabetes Mellitus.Front Pediatr.2020854071810.3389/fped.2020.540718 33102403
    [Google Scholar]
  11. Aguilar-BryanL. BryanJ. Neonatal diabetes mellitus.Endocr. Rev.200829326529110.1210/er.2007‑0029 18436707
    [Google Scholar]
  12. TempleI.K. ShieldJ.P.H. 6q24 transient neonatal diabetes.Rev. Endocr. Metab. Disord.201011319920410.1007/s11154‑010‑9150‑4 20922569
    [Google Scholar]
  13. SchwitzgebelV.M. MaminA. BrunT. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1.J. Clin. Endocrinol. Metab.20038894398440610.1210/jc.2003‑030046 12970316
    [Google Scholar]
  14. WangX SterrM Ansarullah Point mutations in the PDX1 transactivation domain impair human β-cell development and function.Mol. Metab.201924809710.1016/j.molmet.2019.03.006 30930126
    [Google Scholar]
  15. OhlssonH. KarlssonK. EdlundT. IPF1, a homeodomain-containing transactivator of the insulin gene.EMBO J.199312114251425910.1002/j.1460‑2075.1993.tb06109.x 7901001
    [Google Scholar]
  16. WatadaH. KajimotoY. UmayaharaY. The human glucokinase gene β-cell-type promoter: An essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells.Diabetes199645111478148810.2337/diab.45.11.1478 8866550
    [Google Scholar]
  17. WatadaH. KajimotoY. KanetoH. Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription.Biochem. Biophys. Res. Commun.1996229374675110.1006/bbrc.1996.1875 8954967
    [Google Scholar]
  18. WaeberG. ThompsonN. NicodP. BonnyC. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor.Mol. Endocrinol.199610111327133410.1210/mend.10.11.8923459 8923459
    [Google Scholar]
  19. MarshakS. BenshushanE. ShoshkesM. HavinL. CerasiE. MelloulD. Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3β transcription factors mediate β-cell-specific expression.Mol. Cell. Biol.200020207583759010.1128/MCB.20.20.7583‑7590.2000 11003654
    [Google Scholar]
  20. BabuD.A. DeeringT.G. MirmiraR.G. A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis.Mol. Genet. Metab.2007921-2435510.1016/j.ymgme.2007.06.008 17659992
    [Google Scholar]
  21. RichardsS. AzizN. BaleS. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.Genet. Med.201517540542410.1038/gim.2015.30 25741868
    [Google Scholar]
  22. KopanosC. TsiolkasV. KourisA. VarSome: The human genomic variant search engine.Bioinformatics201935111978198010.1093/bioinformatics/bty897 30376034
    [Google Scholar]
  23. De FrancoE. Shaw-SmithC. FlanaganS.E. Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency.Diabet. Med.2013305e197e20010.1111/dme.12122 23320570
    [Google Scholar]
  24. EllardS. Lango AllenH. De FrancoE. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing.Diabetologia20135691958196310.1007/s00125‑013‑2962‑5 23771172
    [Google Scholar]
  25. StoffersD.A. ZinkinN.T. StanojevicV. ClarkeW.L. HabenerJ.F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence.Nat. Genet.199715110611010.1038/ng0197‑106 8988180
    [Google Scholar]
  26. StaffersD.A. FerrerJ. ClarkeW.L. HabenerJ.F. Early-onset type-ll diabetes mellitus (MODY4) linked to IPF1.Nat. Genet.199717213813910.1038/ng1097‑138 9326926
    [Google Scholar]
  27. ClocquetA.R. EganJ.M. StoffersD.A. Impaired insulin secretion and increased insulin sensitivity in familial maturity-onset diabetes of the young 4 (insulin promoter factor 1 gene).Diabetes200049111856186410.2337/diabetes.49.11.1856 11078452
    [Google Scholar]
  28. ThomasI.H. SainiN.K. AdhikariA. Neonatal diabetes mellitus with pancreatic agenesis in an infant with homozygous IPF-1 Pro63fsX60 mutation.Pediatr. Diabetes200910749249610.1111/j.1399‑5448.2009.00526.x 19496967
    [Google Scholar]
  29. FajansS.S. BellG.I. PazV.P. Obesity and hyperinsulinemia in a family with pancreatic agenesis and MODY caused by the IPF1 mutation Pro63fsX60.Transl. Res.2010156171410.1016/j.trsl.2010.03.003 20621032
    [Google Scholar]
  30. KulkarniA. SharmaV.K. NabiF. PDX1 gene mutation with permanent neonatal diabetes mellitus with annular pancreas, duodenal atresia, hypoplastic gall bladder and exocrine pancreatic insufficiency.Indian Pediatr.201754121052105310.1007/s13312‑017‑1211‑2 29317564
    [Google Scholar]
  31. SahebiL. NiknafsN. DaliliH. Iranian neonatal diabetes mellitus due to mutation in PDX1 gene: A case report.J. Med. Case Reports201913125810.1186/s13256‑019‑2149‑x 31366392
    [Google Scholar]
  32. NicolinoM. ClaibornK.C. SenéeV. BolandA. StoffersD.A. JulierC. A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine deficiency.Diabetes201059373374010.2337/db09‑1284 20009086
    [Google Scholar]
  33. KorulaS. RavichandranL. PaulP. Genetic heterogeneity and challenges in the management of permanent neonatal diabetes mellitus: A single-centre study from South India.Indian J. Endocrinol. Metab.2022261798610.4103/ijem.ijem_429_21 35662751
    [Google Scholar]
  34. AbreuG.M. TarantinoR.M. da FonsecaA.C.P. PDX1-MODY: A rare missense mutation as a cause of monogenic diabetes.Eur. J. Med. Genet.202164510419410.1016/j.ejmg.2021.104194 33746035
    [Google Scholar]
  35. World Health OrganizationLow birth weight data from the Nutrition Landscape Information System (NLIS).2023Available From: https://www.who.int/data/nutrition/nlis/info/low-birth
/content/journals/cdr/10.2174/0115733998265866231204070606
Loading
/content/journals/cdr/10.2174/0115733998265866231204070606
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): IPF1 gene; MODY4; mutation; Neonatal diabetes; PDX1 gene; PDX1-MODY
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test