Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Cell culture plays a crucial role in addressing fundamental research questions, particularly in studying insulin resistance (IR) mechanisms. Multiple models are utilized for this purpose, but their technical distinctions and relevance to conditions remain unclear. This study aims to assess the effectiveness of existing models in inducing IR and their ability to replicate IR conditions.

Background

Insulin resistance (IR) is a cellular condition linked to metabolic disorders. Despite the utility of cell culture in IR research, questions persist regarding the suitability of various models. This study seeks to evaluate these models' efficiency in inducing IR and their ability to mimic conditions. Insights gained from this research could enhance our understanding of model strengths and limitations, potentially advancing strategies to combat IR and related disorders.

Objective

1- Investigate the technical differences between existing cell culture models used to study molecular mediators of insulin resistance (IR).

2- Compare the effectiveness of present models in inducing insulin resistance (IR).

3- Assess the relevance of the existing cell culture models in simulating the conditions and environment that provoke the induction of insulin resistance (IR).

Methods and Material

, eight sets of 3T3-L1 cells were cultured until they reached 90% confluence. Subsequently, adipogenic differentiation was induced using a differentiation cocktail (media). These cells were then divided into four groups, with four subjected to normal conditions and the other four to hypoxic conditions. Throughout the differentiation process, each cell group was exposed to specific factors known to induce insulin resistance (IR). These factors included 2.5 nM tumor necrosis factor-alpha (TNFα), 20 ng/ml interleukin-6 (IL-6), 10 micromole 4-hydroxynonenal (4HNE), and high insulin (HI) at a concentration of 100 nM. To assess cell proliferation, DAPI staining was employed, and the expression of genes associated with various metabolic pathways affected by insulin resistance was investigated using Real-Time PCR. Additionally, insulin signaling was examined using the Bio-plex Pro cell signaling Akt panel.

Results

We induced insulin resistance in 3T3-L1 cells using IL-6, TNFα, 4HNE, and high insulin in both hypoxic and normoxic conditions. Hypoxia increased HIF1a gene expression by approximately 30% (0.01). TNFα reduced cell proliferation by 10-20%, and chronic TNFα treatment significantly decreased mature adipocytes due to its cytotoxicity. We assessed the impact of insulin resistance (IR) on metabolic pathways, focusing on genes linked to branched-chain amino acid metabolism, detoxification, and chemotaxis. Notably, ALDH6A1 and MCCC1 genes, related to amino acid metabolism, were significantly affected under hypoxic conditions. TNFα treatment notably influenced MCP-1 and MCP-2 genes linked to chemotaxis, with remarkable increases in MCP-1 levels and MCP-2 expression primarily under hypoxia. Detoxification-related genes showed minimal impact, except for a significant increase in MAO-A expression under acute hypoxic conditions with TNFα treatment. Additional genes displayed varying effects, warranting further investigation. To investigate insulin signaling's influence by IR-inducing factors, we assessed phospho-protein levels. Our results reveal a significant p-Akt induction with chronic high insulin (10%) and acute TNFα (12%) treatment under hypoxia (both 0.05). Other insulin resistance-related phospho-proteins (GSK3B, mTOR, PTEN) increased with IL-6, 4HNE, TNFα, and high insulin under hypoxia, while p-IRS1 levels remained unaffected.

Conclusion

In summary, different models using inflammatory, oxidative stress, and high insulin conditions under hypoxic conditions can capture various aspects of adipose tissue insulin resistance (IR). Among these models, acute TNFα treatment may offer the most robust approach for inducing IR in 3T3-L1 cells.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998263359231211044539
2024-01-09
2024-11-22
Loading full text...

Full text loading...

References

  1. BlüherM. Metabolically healthy obesity.Endocr. Rev.2020413bnaa00410.1210/endrev/bnaa00432128581
    [Google Scholar]
  2. ScullyT. EttelaA. LeRoithD. GallagherE.J. Obesity, type 2 diabetes, and cancer risk.Front. Oncol.20211061537510.3389/fonc.2020.61537533604295
    [Google Scholar]
  3. ZatteraleF. LongoM. NaderiJ. RacitiG.A. DesiderioA. MieleC. BeguinotF. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes.Front. Physiol.202010160710.3389/fphys.2019.0160732063863
    [Google Scholar]
  4. CampbellJ.E. NewgardC.B. Mechanisms controlling pancreatic islet cell function in insulin secretion.Nat. Rev. Mol. Cell Biol.202122214215810.1038/s41580‑020‑00317‑733398164
    [Google Scholar]
  5. KhalidM. AlkaabiJ. KhanM.A.B. AdemA. Insulin signal transduction perturbations in insulin resistance.Int. J. Mol. Sci.20212216859010.3390/ijms2216859034445300
    [Google Scholar]
  6. ImierskaM. KurianiukA. Błachnio-ZabielskaA. The influence of physical activity on the bioactive lipids metabolism in obesity-induced muscle insulin resistance.Biomolecules20201012166510.3390/biom1012166533322719
    [Google Scholar]
  7. ErtuncM.E. HotamisligilG.S. Lipid signaling and lipotoxicity in metaflammation: Indications for metabolic disease pathogenesis and treatment.J. Lipid Res.201657122099211410.1194/jlr.R06651427330055
    [Google Scholar]
  8. YaribeygiH. AtkinS.L. Simental-MendíaL.E. SahebkarA. Molecular mechanisms by which aerobic exercise induces insulin sensitivity.J. Cell. Physiol.20192348123851239210.1002/jcp.2806630605232
    [Google Scholar]
  9. LoK.A. LabadorfA. KennedyN.J. HanM.S. YapY.S. MatthewsB. XinX. SunL. DavisR.J. LodishH.F. FraenkelE. Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance.Cell Rep.20135125927010.1016/j.celrep.2013.08.03924095730
    [Google Scholar]
  10. ZhaoJ. Turpin-NolanS. FebbraioM.A. IL-6 family cytokines as potential therapeutic strategies to treat metabolic diseases.Cytokine202114415554910.1016/j.cyto.2021.15554933962843
    [Google Scholar]
  11. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.7090222228951
    [Google Scholar]
  12. MaM. QuanY. LiY. HeX. XiaoJ. ZhanM. ZhaoW. XinY. LuL. LuoL. Bidirectional modulation of insulin action by reactive oxygen species in 3T3‑L1 adipocytes.Mol. Med. Rep.201818180781410.3892/mmr.2018.901629767231
    [Google Scholar]
  13. DufauJ. ShenJ.X. CouchetM. De Castro BarbosaT. MejhertN. MassierL. GrisetiE. MouiselE. AmriE.Z. LauschkeV.M. RydénM. LanginD. In vitro and ex vivo models of adipocytes.Am. J. Physiol. Cell Physiol.20213205C822C84110.1152/ajpcell.00519.202033439778
    [Google Scholar]
  14. Ruiz-OjedaF. RupérezA. Gomez-LlorenteC. GilA. AguileraC. Cell models and their application for studying adipogenic differentiation in relation to obesity: A review.Int. J. Mol. Sci.2016177104010.3390/ijms1707104027376273
    [Google Scholar]
  15. KayserB. VergesS. Hypoxia, energy balance, and obesity: An update.Obes. Rev.202122S2Suppl. 2e1319210.1111/obr.1319233470528
    [Google Scholar]
  16. KolbH. Obese visceral fat tissue inflammation: From protective to detrimental?BMC Med.202220149410.1186/s12916‑022‑02672‑y36575472
    [Google Scholar]
  17. AkashM.S.H. RehmanK. LiaqatA. Tumor necrosis factor‐alpha: Role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus.J. Cell. Biochem.2018119110511010.1002/jcb.2617428569437
    [Google Scholar]
  18. RegazzettiC. PeraldiP. GrémeauxT. Najem-LendomR. Ben-SahraI. CormontM. BostF. Le Marchand-BrustelY. TantiJ.F. Giorgetti-PeraldiS. Hypoxia decreases insulin signaling pathways in adipocytes.Diabetes20095819510310.2337/db08‑045718984735
    [Google Scholar]
  19. RotterV. NagaevI. SmithU. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects.J. Biol. Chem.200327846457774578410.1074/jbc.M30197720012952969
    [Google Scholar]
  20. JaganjacM. MilkovicL. GegotekA. CindricM. ZarkovicK. SkrzydlewskaE. ZarkovicN. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases.Free Radic. Biol. Med.202015712815310.1016/j.freeradbiomed.2019.11.02331756524
    [Google Scholar]
  21. GuoL. ZhangX.M. ZhangY.B. HuangX. ChiM.H. Association of 4-hydroxynonenal with classical adipokines and insulin resistance in a Chinese non-diabetic obese population.Nutr. Hosp.201734236336810.20960/nh.21228421791
    [Google Scholar]
  22. Al-JaberH. MohamedN.A. GovindharajanV.K. TahaS. JohnJ. HalimS. AlserM. Al-MuraikhyS. AnwardeenN.R. AgouniA. ElhissiA. Al-NaemiH.A. Al-MansooriL. ElrayessM.A. In vitro and in vivo validation of GATA-3 suppression for induction of adipogenesis and improving insulin sensitivity.Int. J. Mol. Sci.202223191114210.3390/ijms23191114236232443
    [Google Scholar]
  23. SuL-J ZhangJ-H GomezH MuruganR HongX XuD Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.2019201910.1155/2019/5080843
    [Google Scholar]
  24. MurphyM.P. BayirH. BelousovV. ChangC.J. DaviesK.J.A. DaviesM.J. DickT.P. FinkelT. FormanH.J. Janssen-HeiningerY. GemsD. KaganV.E. KalyanaramanB. LarssonN.G. MilneG.L. NyströmT. PoulsenH.E. RadiR. Van RemmenH. SchumackerP.T. ThornalleyP.J. ToyokuniS. WinterbournC.C. YinH. HalliwellB. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo.Nat. Metab.20224665166210.1038/s42255‑022‑00591‑z35760871
    [Google Scholar]
  25. KoracB. KalezicA. Pekovic-VaughanV. KoracA. JankovicA. Redox changes in obesity, metabolic syndrome, and diabetes.Redox Biol.20214210188710.1016/j.redox.2021.10188733579666
    [Google Scholar]
  26. MilkovicL. ZarkovicN. MarusicZ. ZarkovicK. JaganjacM. The 4-hydroxynonenal–protein adducts and their biological relevance: Are some proteins preferred targets?Antioxidants202312485610.3390/antiox1204085637107229
    [Google Scholar]
  27. RahmanM.S. HossainK.S. DasS. KunduS. AdegokeE.O. RahmanM.A. HannanM.A. UddinM.J. PangM.G. Role of insulin in health and disease: An update.Int. J. Mol. Sci.20212212640310.3390/ijms2212640334203830
    [Google Scholar]
  28. van LooG. BertrandM.J.M. Death by TNF: A road to inflammation.Nat. Rev. Immunol.202323528930310.1038/s41577‑022‑00792‑336380021
    [Google Scholar]
  29. YeungM.C. LauA.S. Mechanism of tumor necrosis factor(TNF)-induced cytotoxicity: Apoptosis, oncogene, and interferon signaling • 934.Pediatr. Res.199843416110.1203/00006450‑199804001‑00955
    [Google Scholar]
  30. ZhangH.H. KumarS. BarnettA.H. EggoM.C. Dexamethasone inhibits tumor necrosis factor-α-induced apoptosis and interleukin-1 β release in human subcutaneous adipocytes and preadipocytes.J. Clin. Endocrinol. Metab.20018662817282510.1210/jc.86.6.281711397893
    [Google Scholar]
  31. WarneJ. New perspectives on endocrine signalling: Tumor necrosis factor α: A key regulator of adipose tissue mass.J. Endocrinol.2003200317735135510.1677/joe.0.177035112773114
    [Google Scholar]
  32. KolaczynskiJ.W. NyceM.R. ConsidineR.V. BodenG. NolanJ.J. HenryR. MudaliarS.R. OlefskyJ. CaroJ.F. Acute and chronic effect of insulin on leptin production in humans.Diabetes199645569970110.2337/diab.45.5.6998621027
    [Google Scholar]
  33. StenkulaK.G. Erlanson-AlbertssonC. Adipose cell size: Importance in health and disease.Am. J. Physiol. Regul. Integr. Comp. Physiol.20183152R284R29510.1152/ajpregu.00257.201729641234
    [Google Scholar]
  34. SakaiT. SakaueH. NakamuraT. OkadaM. MatsukiY. WatanabeE. HiramatsuR. NakayamaK. NakayamaK.I. KasugaM. Skp2 controls adipocyte proliferation during the development of obesity.J. Biol. Chem.200728232038204610.1074/jbc.M60814420017082193
    [Google Scholar]
  35. MuirL.A. NeeleyC.K. MeyerK.A. BakerN.A. BrosiusA.M. WashabaughA.R. VarbanO.A. FinksJ.F. ZamarronB.F. FlesherC.G. ChangJ.S. DelPropostoJ.B. GeletkaL. Martinez-SantibanezG. KacirotiN. LumengC.N. O’RourkeR.W. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity.Obesity (Silver Spring)201624359760510.1002/oby.2137726916240
    [Google Scholar]
  36. CheathamB. KahnC.R. Insulin action and the insulin signaling network.Endocr. Rev.19951621171427781591
    [Google Scholar]
  37. SuryawanA. SwansonL.V. HuC.Y. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture.J. Anim. Sci.199775110511110.2527/1997.751105x9027554
    [Google Scholar]
  38. Palacios-OrtegaS. Varela-GuruceagaM. AlgarabelM. MilagroF.I. MartínezJ.A. de MiguelC. Effect of TNF-alpha on caveolin-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes.Cell. Physiol. Biochem.20153641499151610.1159/00043031426159107
    [Google Scholar]
  39. ParkY.S. HuangY. ParkY.J. DavidA.E. WhiteL. HeH. ChungH.S. YangV.C. Specific down regulation of 3T3-L1 adipocyte differentiation by cell-permeable antisense HIF1α-oligonucleotide.J. Control. Release20101441829010.1016/j.jconrel.2010.01.02620109509
    [Google Scholar]
  40. SahaiA. PatelM.S. ZavoshA.S. TannenR.L. Chronic hypoxia impairs the differentiation of 3T3‐L1 fibroblast in culture: Role of sustained protein kinase C activation.J. Cell. Physiol.1994160110711210.1002/jcp.10416001138021290
    [Google Scholar]
  41. LynchC.J. AdamsS.H. Branched-chain amino acids in metabolic signalling and insulin resistance.Nat. Rev. Endocrinol.2014101272373610.1038/nrendo.2014.17125287287
    [Google Scholar]
  42. BorbásT. BenkőB. DalmadiB. SzabóI. TihanyiK. Insulin in flavin-containing monooxygenase regulation.Eur. J. Pharm. Sci.2006281-2515810.1016/j.ejps.2005.12.01116488120
    [Google Scholar]
  43. KleinriddersA. PothosE.N. Impact of brain insulin signaling on dopamine function, food intake, reward, and emotional behavior.Curr. Nutr. Rep.201982839110.1007/s13668‑019‑0276‑z31001792
    [Google Scholar]
  44. ArmoniM. HarelC. ZongH. PessinJ.E. KarnieliE. Cyp2E1 role in insulin resistance and weight control: From GLUT4 to energy expenditure.DIABETESAmer diabetes assoc 1701 n beauregard stAlexandria, VA 22311-1717 USA.2011
    [Google Scholar]
  45. TazzariP.L. CappelliniA. RicciF. EvangelistiC. PapaV. GrafoneT. MartinelliG. ConteR. CoccoL. McCubreyJ.A. MartelliA.M. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts.Leukemia200721342743810.1038/sj.leu.240452317215852
    [Google Scholar]
  46. LiskovaA. SamecM. KoklesovaL. BrockmuellerA. ZhaiK. AbdellatifB. SiddiquiM. BiringerK. KudelaE. PecM. GadanecL.K. ŠudomováM. HassanS.T.S. ZulliA. ShakibaeiM. GiordanoF.A. BüsselbergD. GolubnitschajaO. KubatkaP. Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles.EPMA J.202112215517610.1007/s13167‑021‑00242‑534025826
    [Google Scholar]
  47. ShimobayashiM. AlbertV. WoelnerhanssenB. FreiI.C. WeissenbergerD. Meyer-GerspachA.C. ClementN. MoesS. ColombiM. MeierJ.A. SwierczynskaM.M. JenöP. BeglingerC. PeterliR. HallM.N. Insulin resistance causes inflammation in adipose tissue.J. Clin. Invest.201812841538155010.1172/JCI9613929528335
    [Google Scholar]
  48. FengJ. LuS. OuB. LiuQ. DaiJ. JiC. ZhouH. HuangH. MaY. The role of JNk signaling pathway in obesity-driven insulin resistance.Diabetes Metab. Syndr. Obes.2020131399140610.2147/DMSO.S23612732425571
    [Google Scholar]
  49. LiuY. DhallS. CastroA. ChanA. AlamatR. Martins-GreenM. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue.Biol. Open201871bio02618729101099
    [Google Scholar]
  50. ZakariaN.F. HamidM. KhayatM.E. Amino acid-induced impairment of insulin signaling and involvement of G-protein coupling receptor.Nutrients2021137222910.3390/nu1307222934209599
    [Google Scholar]
  51. NewgardC.B. AnJ. BainJ.R. MuehlbauerM.J. StevensR.D. LienL.F. HaqqA.M. ShahS.H. ArlottoM. SlentzC.A. RochonJ. GallupD. IlkayevaO. WennerB.R. YancyW.S.Jr EisensonH. MusanteG. SurwitR.S. MillingtonD.S. ButlerM.D. SvetkeyL.P. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance.Cell Metab.20099431132610.1016/j.cmet.2009.02.00219356713
    [Google Scholar]
  52. MugaboY. ZhaoS. LamontagneJ. Al-MassA. PeyotM.L. CorkeyB.E. JolyE. MadirajuS.R.M. PrentkiM. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells.J. Biol. Chem.2017292187407742210.1074/jbc.M116.76306028280244
    [Google Scholar]
  53. UmbarkarP. SinghS. ArkatS. BodhankarS.L. LohidasanS. SitasawadS.L. Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy.Free Radic. Biol. Med.20158726327310.1016/j.freeradbiomed.2015.06.02526122707
    [Google Scholar]
  54. EmoryH. MizrahiN. Monoamine oxidase inhibition in a patient with type 1 diabetes and depression.J. Diabetes Sci. Technol.20161051203120410.1177/193229681663810626961977
    [Google Scholar]
  55. CawthornW.P. SethiJ.K. TNF‐α and adipocyte biology.FEBS Lett.2008582111713110.1016/j.febslet.2007.11.05118037376
    [Google Scholar]
  56. NongX. ZhangC. WangJ. DingP. JiG. WuT. The mechanism of branched-chain amino acid transferases in different diseases: Research progress and future prospects.Front. Oncol.20221298829010.3389/fonc.2022.98829036119495
    [Google Scholar]
  57. YoonM.S. The emerging role of branched-chain amino acids in insulin resistance and metabolism.Nutrients20168740510.3390/nu807040527376324
    [Google Scholar]
  58. QuezadaC AlarcónS CárcamoJG YáñezA CasanelloP SobreviaL Increased expression of the multidrug resistance-associated protein 1 (MRP1) in kidney glomeruli of streptozotocin-induced diabetic rats.Biol Chem.20113926329337
    [Google Scholar]
  59. LeeG.H. OhK.J. KimH.R. HanH.S. LeeH.Y. ParkK.G. NamK.H. KooS.H. ChaeH.J. Effect of BI-1 on insulin resistance through regulation of CYP2E1.Sci. Rep.2016613222910.1038/srep3222927576594
    [Google Scholar]
  60. RullA CampsJ Alonso-VillaverdeC JovenJ Insulin resistance, inflammation, and obesity: Role of monocyte chemoattractant protein-1 (orCCL2) in the regulation of metabolism.Mediators Inflamm.20102010
    [Google Scholar]
  61. TorrenteY. FahimeE.E. CaronN.J. Del BoR. BelicchiM. PisatiF. TremblayJ.P. BresolinN. Tumor necrosis factor-α (TNF-α) stimulates chemotactic response in mouse myogenic cells.Cell Transplant.20031219110010.3727/00000000378398511512693669
    [Google Scholar]
  62. LiuH.Y. HongT. WenG.B. HanJ. ZuoD. LiuZ. CaoW. Increased basal level of Akt-dependent insulin signaling may be responsible for the development of insulin resistance.Am. J. Physiol. Endocrinol. Metab.20092974E898E90610.1152/ajpendo.00374.200919638508
    [Google Scholar]
  63. ZhangZ. LiuH. LiuJ. Akt activation: A potential strategy to ameliorate insulin resistance.Diabetes Res. Clin. Pract.201915610709210.1016/j.diabres.2017.10.00429111280
    [Google Scholar]
  64. OngP.S. WangL.Z. DaiX. TsengS.H. LooS.J. SethiG. Judicious toggling of mTOR activity to combat insulin resistance and cancer: Current evidence and perspectives.Front. Pharmacol.2016739510.3389/fphar.2016.0039527826244
    [Google Scholar]
  65. da CostaR.M. NevesK.B. MestrinerF.L. Louzada-JuniorP. Bruder-NascimentoT. TostesR.C. TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice.Cardiovasc. Diabetol.201615111910.1186/s12933‑016‑0443‑027562094
    [Google Scholar]
  66. XueB. RimJ.S. HoganJ.C. CoulterA.A. KozaR.A. KozakL.P. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat.J. Lipid Res.2007481415110.1194/jlr.M600287‑JLR20017041251
    [Google Scholar]
  67. DilworthL. FaceyA. OmoruyiF. Diabetes mellitus and its metabolic complications: The role of adipose tissues.Int. J. Mol. Sci.20212214764410.3390/ijms2214764434299261
    [Google Scholar]
  68. SethiJ.K. HotamisligilG.S. Metabolic Messengers: Tumour necrosis factor.Nat. Metab.20213101302131210.1038/s42255‑021‑00470‑z34650277
    [Google Scholar]
  69. PekalaP. KawakamiM. VineW. LaneM.D. CeramiA. Studies of insulin resistance in adipocytes induced by macrophage mediator.J. Exp. Med.198315741360136510.1084/jem.157.4.13606833952
    [Google Scholar]
  70. HotamisligilG.S. ShargillN.S. SpiegelmanB.M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance.Science19932595091879110.1126/science.76781837678183
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998263359231211044539
Loading
/content/journals/cdr/10.2174/0115733998263359231211044539
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): adipogenesis; differentiation; factors; hypoxia; in vitro; Insulin resistance; methods
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test