Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Introduction: The widespread importance of the synthesis and modification of anticancer agents has given rise to many numbers of medicinal chemistry programs. In this regard, triazine derivatives have attracted attention due to their remarkable activity against a wide range of cancer cells. This evaluation covers work reports to define the anticancer activity, the most active synthesized compound for the target, the SAR and, when described, the probable MOA besides similarly considered to deliver complete and target-pointed data for the development of types of anti-tumour medicines of triazine derivatives. Triazine scaffold for the development of anticancer analogues. Triazine can also relate to numerous beneficial targets, and their analogues have auspicious and anti-tumour activity. Fused molecules can improve efficacy, and drug resistance and diminish side effects, and numerous hybrid molecules are beneath diverse stages of clinical trials, so hybrid derivatives of triazine may offer valuable therapeutic involvement for the dealing of tumours. Objective: The objective of the recent review was to summarize the recent reports on triazine as well as its analogues with respect to its anticancer therapeutic potential. Conclusion: The content of the review would be helpful to update the researchers working towards the synthesis and designing of new molecules for the treatment of various types of cancer disease with the recent molecules that have been produced from the triazine scaffold. Triazine scaffolds based on 1,3,5-triazine considerably boost molecular diversity levels and enable covering chemical space in key medicinal chemistry fields.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/1570163820666230717161610
2024-03-01
2025-05-23
Loading full text...

Full text loading...

/content/journals/cddt/10.2174/1570163820666230717161610
Loading

  • Article Type:
    Review Article
Keyword(s): anticancer; breast cancer; cell line; therapeutic potential; toxicity; Triazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test