Skip to content
2000
image of Evaluation of Cytotoxicity and Antimicrobial Activity of Thanatin Recombinant Peptide against Some Oral Bacteria: A Novel Approach against Bacterial Pathogens in Dentistry

Abstract

Objective

This study investigated the antimicrobial properties of the thanatin peptide against oral bacteria associated with dental caries and endodontic failures. Additionally, the cytotoxic effects of this peptide on human gingival fibroblast cells (HGFCs) were assessed.

Methods and Materials

The antimicrobial property of thanatin was tested on , , , and , using the microbroth dilution method. The 0.2% Chlorhexidine mouthwash was used as the control group. Additionally, the cytotoxicity was measured using the MTT assay. The results were presented descriptively and analyzed via one-way ANOVA and Tukey's HSD tests.

Results

Thanatin demonstrated the strongest bacteriostatic effect (MIC) against , measuring 4.68 μg/ml, which is approximately double that of and , with concentrations of 9.37 and 8.75 μg/ml, respectively. The highest bactericidal activity (MBC) of thanatin was noted in and at 9.37 μg/ml. The antibacterial effects of thanatin against evaluated bacteria were several times lower than those of Chlorhexidine. The cytotoxicity assessment indicated that over 70% and 60% of the HGFCs remained viable after 24 and 48 hours, respectively.

Conclusion

Although thanatin exhibited significantly higher biocompatibility, its antimicrobial effectiveness against the tested oral bacteria was inferior to that of 0.2% Chlorhexidine.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638332473250213064453
2025-03-24
2025-05-10
Loading full text...

Full text loading...

References

  1. Gudkina J. Brinkmane A. Caries experience in relation to oral hygiene, salivary cariogenic microflora, buffer capacity and secretion rate in 6-year olds and 12 year olds in Riga. Stomatologija 2008 10 2 76 80 18708741
    [Google Scholar]
  2. Tsai T.H. Tsai T.H. Chien Y.C. Lee C.W. Tsai P.J. In vitro antimicrobial activities against cariogenic streptococci and their antioxidant capacities: A comparative study of green tea versus different herbs. Food Chem. 2008 110 4 859 864 10.1016/j.foodchem.2008.02.085 26047271
    [Google Scholar]
  3. Azzimonti B. Cochis A. Beyrouthy M. Iriti M. Uberti F. Sorrentino R. Landini M. Rimondini L. Varoni E. Essential oil from berries of lebanese Juniperus excelsa M. Bieb displays similar antibacterial activity to chlorhexidine but higher cytocompatibility with human oral primary cells. Molecules 2015 20 5 9344 9357 10.3390/molecules20059344 26007187
    [Google Scholar]
  4. Motamedifar M. Khosropanah H. Dabiri S. Antimicrobial activity of Peganum Harmala L. on Streptococcus mutans Compared to 0.2% chlorhexidine. J. Dent. (Shiraz) 2016 17 3 213 218 27602397
    [Google Scholar]
  5. Featherstone J.D.B. Delivery challenges for fluoride, chlorhexidine and xylitol. BMC Oral Health 2006 6 S1 Suppl. 1 S8 10.1186/1472‑6831‑6‑S1‑S8 16934125
    [Google Scholar]
  6. Joy Sinha D. D S Nandha K. Jaiswal N. Vasudeva A. Prabha Tyagi S. Pratap Singh U. Antibacterial effect of Azadirachta indica (neem) or Curcuma longa (turmeric) against Enterococcus faecalis compared with that of 5% sodium hypochlorite or 2% chlorhexidine in vitro. Bull. Tokyo Dent. Coll. 2017 58 2 103 109 10.2209/tdcpublication.2015‑0029 28724858
    [Google Scholar]
  7. Najafi M.H. Taheri M. Mokhtari M.R. Forouzanfar A. Farazi F. Mirzaee M. Ebrahiminik Z. Mehrara R. Comparative study of 0.2% and 0.12% digluconate chlorhexidine mouth rinses on the level of dental staining and gingival indices. Dent. Res. J. (Isfahan) 2012 9 3 305 308 23087736
    [Google Scholar]
  8. Tanhaiean A. Azghandi M. Razmyar J. Mohammadi E. Sekhavati M.H. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microb. Pathog. 2018 122 73 78 10.1016/j.micpath.2018.06.012 29890331
    [Google Scholar]
  9. Rai A. Ferrão R. Palma P. Patricio T. Parreira P. Anes E. Tonda-Turo C. Martins M.C.L. Alves N. Ferreira L. Antimicrobial peptide-based materials: Opportunities and challenges. J. Mater. Chem. B Mater. Biol. Med. 2022 10 14 2384 2429 10.1039/D1TB02617H 35244122
    [Google Scholar]
  10. Li G. Lai Z. Shan A. Advances of antimicrobial peptide‐based biomaterials for the treatment of bacterial infections. Adv. Sci. (Weinh.) 2023 10 11 2206602 10.1002/advs.202206602 36722732
    [Google Scholar]
  11. Mohammadipour H.S. Akbari M. Tanhaeian A. Pourgonabadi S. Sekandari S. Karimian E. A new approach against some oral pathogenic bacteria using a chimeric antimicrobial peptide derived from the camel milk; lactoferrampin - lactoferricin chimer. Curr. Drug Discov. Technol. 2021 18 6 9 16 10.2174/1570163817999201111193507 33183206
    [Google Scholar]
  12. Forouzanfar F. Mohammadipour H.S. Akbari M. Beyraghshamshir R. Tanhaeian A. Karimian E. The application of a recombinant antimicrobial peptide of thrombocidin-1 expressed in Pichia pastoris as a novel approach against some oral pathogenic bacteria: An in vitro study. Protein Pept. Lett. 2022 29 1 102 109 10.2174/0929866528666211126161928 34825862
    [Google Scholar]
  13. Tanhaieian A. Pourgonabadi S. Akbari M. Mohammadipour H. The effective and safe method for preventing and treating bacteria-induced dental diseases by herbal plants and a recombinant peptide. J. Clin. Exp. Dent. 2020 12 6 e523 e532 10.4317/jced.55717 32665810
    [Google Scholar]
  14. Ma B. Niu C. Zhou Y. Xue X. Meng J. Luo X. Hou Z. The disulfide bond of the peptide thanatin is dispensible for its antimicrobial activity in vivo and in vitro. Antimicrob. Agents Chemother. 2016 60 7 4283 4289 10.1128/AAC.00041‑16 27161645
    [Google Scholar]
  15. Sinha S. Zheng L. Mu Y. Ng W.J. Bhattacharjya S. Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. Sci. Rep. 2017 7 1 17795 10.1038/s41598‑017‑18102‑6 29259246
    [Google Scholar]
  16. Wu G. Ding J. Li H. Li L. Zhao R. Shen Z. Fan X. Xi T. Effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332. Curr. Microbiol. 2008 57 6 552 557 10.1007/s00284‑008‑9241‑6 18810542
    [Google Scholar]
  17. Ma B. Fang C. Lu L. Wang M. Xue X. Zhou Y. Li M. Hu Y. Luo X. Hou Z. The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-β-lactamase. Nat. Commun. 2019 10 1 3517 10.1038/s41467‑019‑11503‑3 31388008
    [Google Scholar]
  18. Wu G. Wu H. Li L. Fan X. Ding J. Li X. Xi T. Shen Z. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin. Biochem. Biophys. Res. Commun. 2010 395 1 31 35 10.1016/j.bbrc.2010.03.107 20331979
    [Google Scholar]
  19. Chen N. Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. Eur. J. Med. Chem. 2023 255 115377 10.1016/j.ejmech.2023.115377 37099837
    [Google Scholar]
  20. Yavari B. Mahjub R. Saidijam M. Raigani M. Soleimani M. The potential use of peptides in cancer treatment. Curr. Protein Pept. Sci. 2018 19 8 759 770 10.2174/1389203719666180111150008 29332577
    [Google Scholar]
  21. Lee M.K. Cha L.N. Lee S.H. Hahm K.S. Role of amino acid residues within the disulfide loop of thanatin, a potent antibiotic peptide. BMB Rep. 2002 35 3 291 296 10.5483/BMBRep.2002.35.3.291 12297012
    [Google Scholar]
  22. Wu G. Li X. Fan X. Wu H. Wang S. Shen Z. Xi T. The activity of antimicrobial peptide S-thanatin is independent on multidrug-resistant spectrum of bacteria. Peptides 2011 32 6 1139 1145 10.1016/j.peptides.2011.03.019 21453736
    [Google Scholar]
  23. Wu G. Wu H. Fan X. Zhao R. Li X. Wang S. Ma Y. Shen Z. Xi T. Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Peptides 2010 31 9 1669 1673 10.1016/j.peptides.2010.06.009 20600431
    [Google Scholar]
  24. Wu G.Q. Ding J.X. Li L.X. Wang H. Zhao R. Shen Z.L. Activity of the antimicrobial peptide and thanatin analog S-thanatin on clinical isolates of Klebsiella pneumoniae resistant to conventional antibiotics with different structures. Curr. Microbiol. 2009 59 2 147 153 10.1007/s00284‑009‑9410‑2 19459007
    [Google Scholar]
  25. Besinis A. De Peralta T. Handy R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014 8 1 1 16 10.3109/17435390.2012.742935 23092443
    [Google Scholar]
  26. Peciuliene V. Balciuniene I. Eriksen H. Haapasalo M. Isolation of Enterococcus faecalis in previously root-filled canals in a Lithuanian population. J. Endod. 2000 26 10 593 595 10.1097/00004770‑200010000‑00004 11199800
    [Google Scholar]
  27. Portenier I. Waltimo T.M.T. Haapasalo M. Enterococcus faecalis – the root canal survivor and ‘star’ in post‐treatment disease. Endod. Topics 2003 6 1 135 159 10.1111/j.1601‑1546.2003.00040.x
    [Google Scholar]
  28. Feng X. Liu C. Guo J. Song X. Li J. Xu W. Li Z. Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33. Appl. Microbiol. Biotechnol. 2012 95 5 1191 1198 10.1007/s00253‑011‑3816‑z 22189867
    [Google Scholar]
  29. Grela E. Kozłowska J. Grabowiecka A. Current methodology of MTT assay in bacteria – A review. Acta Histochem. 2018 120 4 303 311 10.1016/j.acthis.2018.03.007 29606555
    [Google Scholar]
  30. Riss T.L. Moravec R.A. Niles A.L. Duellman S. Benink H.A. Worzella T.J. Minor L. Cell viability assays. Assay Guidance Manual 2016 Available from: https://www.ncbi.nlm.nih.gov/books/NBK144065/
    [Google Scholar]
  31. Wu G. Deng X. Wu P. Shen Z. Xu H. Subacute toxicity of antimicrobial peptide S-thanatin in ICR mice. Peptides 2012 36 1 109 113 10.1016/j.peptides.2012.04.005 22537943
    [Google Scholar]
  32. Cirioni O. Wu G. Li L. Orlando F. Silvestri C. Ghiselli R. Shen Z. Gabrielli E. Brescini L. Lezoche G. Provinciali M. Guerrieri M. Giacometti A. S-thanatin in vitro prevents colistin resistance and improves its efficacy in an animal model of Pseudomonas aeruginosa sepsis. Peptides 2011 32 4 697 701 10.1016/j.peptides.2011.01.016 21262298
    [Google Scholar]
  33. Shao Q. Feng D. Yu Z. Chen D. Ji Y. Ye Q. Cheng D. The role of microbial interactions in dental caries: Dental plaque microbiota analysis. Microb. Pathog. 2023 185 106390 10.1016/j.micpath.2023.106390 37858633
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638332473250213064453
Loading
/content/journals/cddt/10.2174/0115701638332473250213064453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test