Skip to content
2000
image of A Comprehensive Review on Immunoregulatory Effects of Phytochemicals

Abstract

An efficient immune system in the host body plays a crucial role in the preservation of normal biological and immune reactions and processes, as well as the intrinsic environment. This is because the immune system is responsible for fighting off foreign invaders. A healthy immune system strengthens the body's defense against infections, illnesses, and other unwelcome pathogens, thereby reducing the risk of allergic reactions and autoimmune diseases. Innate immune cells and acquired immune system components interact in a corrective fashion to produce optimal immune responses. In recent years, researchers have begun to focus on the immune system as a potential primary target of toxicity from chemical, pharmacological, and environmental exposure. Sex, age, stress, malnutrition, alcohol, genetic variability, lifestyles, environmental pollutants, and chemotherapy are just a few of the many elements that might modify the host's immunological responses. The production, amplification, attenuation, or suppression of immunological responses are all examples of immunomodulation. There are a wide variety of synthetic and traditional treatments available, and many of them cause major side effects and develop pathogenic resistance very quickly. Natural substances called phytochemicals play a crucial role in regulating the body's immune system. Risk factors for immune response changes are discussed, as is the immunomodulatory action of phytochemicals like glycosides, alkaloids, phenolic acids, flavonoids, saponins, tannins, sterols, and steroids.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638326442241118053543
2024-12-02
2025-01-12
Loading full text...

Full text loading...

References

  1. Coussens L.M. Werb Z. Inflammation and cancer. Nature 2002 420 6917 860 867 10.1038/nature01322 12490959
    [Google Scholar]
  2. Delves P.J. Roitt I.M. The immune system. First of two parts. N. Engl. J. Med. 2000 343 1 37 49 10.1056/NEJM200007063430107 10882768
    [Google Scholar]
  3. Kisielow P. How does the immune system learn to distinguish between good and evil? The first definitive studies of T cell central tolerance and positive selection. Immunogenetics 2019 71 8-9 513 518 10.1007/s00251‑019‑01127‑8 31418051
    [Google Scholar]
  4. Stephens L. Ellson C. Hawkins P. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell Biol. 2002 14 2 203 213 10.1016/S0955‑0674(02)00311‑3 11891120
    [Google Scholar]
  5. Greenberg S. Grinstein S. Phagocytosis and innate immunity. Curr. Opin. Immunol. 2002 14 1 136 145 10.1016/S0952‑7915(01)00309‑0 11790544
    [Google Scholar]
  6. Netea M.G. Quintin J. van der Meer J.W.M. Trained immunity: A memory for innate host defense. Cell Host Microbe 2011 9 5 355 361 10.1016/j.chom.2011.04.006 21575907
    [Google Scholar]
  7. Kawai T. Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010 11 5 373 384 10.1038/ni.1863 20404851
    [Google Scholar]
  8. Ueta M. Kinoshita S. Innate immunity of the ocular surface. Brain Res. Bull. 2010 81 2-3 219 228 10.1016/j.brainresbull.2009.10.001 19828129
    [Google Scholar]
  9. Brindha P. Role of phytochemicals as immunomodulatory agents: A review. Int J Green Pharm 2016 10 1 18
    [Google Scholar]
  10. Pancer Z. Cooper M.D. The evolution of adaptive immunity. Annu. Rev. Immunol. 2006 24 1 497 518 10.1146/annurev.immunol.24.021605.090542 16551257
    [Google Scholar]
  11. Devappa R.K. Rakshit S.K. Dekker R.F.H. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products. Biotechnol. Adv. 2015 33 6 681 716 10.1016/j.biotechadv.2015.02.012 25733011
    [Google Scholar]
  12. Kamboh A.A. Arain M.A. Mughal M.J. Zaman A. Arain Z.M. Soomro A.H. Flavonoids: health promoting phytochemicals for animal production-a review. Journal of Animal Health and Production 2015 3 1 6 13 10.14737/journal.jahp/2015/3.1.6.13
    [Google Scholar]
  13. Molyneux R.J. Lee S.T. Gardner D.R. Panter K.E. James L.F. Phytochemicals: The good, the bad and the ugly? Phytochemistry 2007 68 22-24 2973 2985 10.1016/j.phytochem.2007.09.004 17950388
    [Google Scholar]
  14. Barbieri R. Coppo E. Marchese A. Daglia M. Sobarzo-Sánchez E. Nabavi S.F. Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017 196 44 68 10.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  15. Clement F. Pramod S.N. Venkatesh Y.P. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. Int. Immunopharmacol. 2010 10 3 316 324 10.1016/j.intimp.2009.12.002 20004743
    [Google Scholar]
  16. Lu Y. Fan J. Zhao Y. Chen S. Zheng X. Yin Y. Fu C. Immunomodulatory activity of aqueous extract of Actinidia macrosperma. Asia Pac. J. Clin. Nutr. 2007 16 1 261 265 17392116
    [Google Scholar]
  17. Behl T. Kumar K. Brisc C. Rus M. Nistor-Cseppento D.C. Bustea C. Aron R.A.C. Pantis C. Zengin G. Sehgal A. Kaur R. Kumar A. Arora S. Setia D. Chandel D. Bungau S. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed. Pharmacother. 2021 133 110959 10.1016/j.biopha.2020.110959 33197758
    [Google Scholar]
  18. Pandey R. Maurya R. Singh G. Sathiamoorthy B. Naik S. Immunosuppressive properties of flavonoids isolated from Boerhaavia diffusa Linn. Int. Immunopharmacol. 2005 5 3 541 553 10.1016/j.intimp.2004.11.001 15683850
    [Google Scholar]
  19. Chiang L.C. Ng L.T. Chiang W. Chang M.Y. Lin C.C. Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med. 2003 69 7 600 604 10.1055/s‑2003‑41113 12898413
    [Google Scholar]
  20. Zeng Z. Lin C. Wang S. Wang P. Xu W. Ma W. Wang J. Xiang Q. Liu Y. Yang J. Ye F. Xie K. Xu J. Luo Y. Liu S.L. Liu H. Suppressive activities of mangiferin on human epithelial ovarian cancer. Phytomedicine 2020 76 153267 10.1016/j.phymed.2020.153267 32570111
    [Google Scholar]
  21. Akbay P. Basaran A.A. Undeger U. Basaran N. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother. Res. 2003 17 1 34 37 10.1002/ptr.1068 12557244
    [Google Scholar]
  22. Guo H.W. Yun C.X. Hou G.H. Du J. Huang X. Lu Y. Keller E.T. Zhang J. Deng J.G. Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model. PLoS One 2014 9 6 e100394 10.1371/journal.pone.0100394 24955743
    [Google Scholar]
  23. Naik S. Hule A. Evaluation of immunomodulatory activity of an extract of andrographolides from Andographis paniculata. Planta Med. 2009 75 8 785 791 10.1055/s‑0029‑1185398 19263340
    [Google Scholar]
  24. Wagner H. Search for plant derived natural products with immunostimulatory activity: recent advances. Pure Appl. Chem. 1990 62 7 1217 1222 10.1351/pac199062071217
    [Google Scholar]
  25. Sunila E.S. Kuttan G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J. Ethnopharmacol. 2004 90 2-3 339 346 10.1016/j.jep.2003.10.016 15013199
    [Google Scholar]
  26. Santos J. Brito M. Ferreira R. Moura A.P. Sousa T. Batista T. Mangueira V. Leite F. Cruz R. Vieira G. Lira B. Athayde-Filho P. Souza H. Costa N. Veras R. Barbosa-Filho J.M. Magalhães H. Sobral M. Th1-biased immunomodulation and in vivo antitumor effect of a novel piperine analogue. Int. J. Mol. Sci. 2018 19 9 2594 10.3390/ijms19092594 30200386
    [Google Scholar]
  27. Xue Y. Wang Y. Feng D. Xiao B. Xu L. Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-κB pathway. Acta Pharmacol. Sin. 2008 29 2 245 251 10.1111/j.1745‑7254.2008.00734.x 18215355
    [Google Scholar]
  28. Li F. Wang H. Lu D. Wang Y. Qi R. Fu Y. Li C. Neutral sulfate berberine modulates cytokine secretion and increases survival in endotoxemic mice. Acta Pharmacol. Sin. 2006 27 9 1199 1205 10.1111/j.1745‑7254.2006.00368.x 16923341
    [Google Scholar]
  29. Mark W. Schneeberger S. Seiler R. Stroka D.M. Amberger A. Offner F. Candinas D. Margreiter R. Sinomenine blocks tissue remodeling in a rat model of chronic cardiac allograft rejection. Transplantation 2003 75 7 940 945 10.1097/01.TP.0000056610.22062.03 12698077
    [Google Scholar]
  30. Wang J. Liu Y.M. Hu J. Chen C. Potential of natural products in combination with arsenic trioxide: Investigating cardioprotective effects and mechanisms. Biomed. Pharmacother. 2023 162 114464 10.1016/j.biopha.2023.114464 37060657
    [Google Scholar]
  31. Nguyen T.T.H. Qureshi D. Lim S. Jin J. Mok K. Pal K. Kim D. Introduction to polysaccharides Food, Medical, and Environmental Applications of Polysaccharides Elsevier 2021 3 46
    [Google Scholar]
  32. Gan L. Hua Zhang S. Liang Yang X. Bi Xu H. Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum. Int. Immunopharmacol. 2004 4 4 563 569 10.1016/j.intimp.2004.01.023 15099534
    [Google Scholar]
  33. Razali F.N. Sinniah S.K. Hussin H. Zainal Abidin N. Shuib A.S. Tumor suppression effect of Solanum nigrum polysaccharide fraction on Breast cancer via immunomodulation. Int. J. Biol. Macromol. 2016 92 185 193 10.1016/j.ijbiomac.2016.06.079 27365117
    [Google Scholar]
  34. Sun S. Li K. Lei Z. Xiao L. Gao R. Zhang Z. Immunomodulatory activity of polysaccharide from Helicteres angustifolia L. on 4T1 tumor-bearing mice. Biomed. Pharmacother. 2018 101 881 888 10.1016/j.biopha.2018.03.029 29635897
    [Google Scholar]
  35. Li W. Hu X. Wang S. Jiao Z. Sun T. Liu T. Song K. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int. J. Biol. Macromol. 2020 145 985 997 10.1016/j.ijbiomac.2019.09.189 31669273
    [Google Scholar]
  36. Manu K.A. Kuttan G. Immunomodulatory activities of Punarnavine, an alkaloid from Boerhaavia diffusa. Immunopharmacol. Immunotoxicol. 2009 31 3 377 387 10.1080/08923970802702036 19555203
    [Google Scholar]
  37. Yatim K.M. Lakkis F.G. A brief journey through the immune system. Clin. J. Am. Soc. Nephrol. 2015 10 7 1274 1281 10.2215/CJN.10031014 25845377
    [Google Scholar]
  38. Florindo H. Lopes J. Silva L. Corvo M. Martins M. Gaspar R. Regulatory development of nanotechnology-based vaccines. Micro Nanotechnol Vacc Dev 2017 393 410 10.1016/B978‑0‑323‑39981‑4.00021‑X
    [Google Scholar]
  39. Lutsiak M.E.C. Kwon G.S. Samuel J. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J. Pharm. Pharmacol. 2010 58 6 739 747 10.1211/jpp.58.6.0004 16734975
    [Google Scholar]
  40. Petrovsky N. Novel human polysaccharide adjuvants with dual Th1 and Th2 potentiating activity. Vaccine 2006 24 Suppl 2 S26 S29 10.1016/j.vaccine.2005.01.107 16823913
    [Google Scholar]
  41. Trujillo-Vargas C.M. Mayer K.D. Bickert T. Palmetshofer A. Grunewald S. Ramirez-Pineda J.R. Polte T. Hansen G. Wohlleben G. Erb K.J. Vaccinations with T‐helper type 1 directing adjuvants have different suppressive effects on the development of allergen‐induced T‐helper type 2 responses. Clin. Exp. Allergy 2005 35 8 1003 1013 10.1111/j.1365‑2222.2005.02287.x 16120081
    [Google Scholar]
  42. Weiskopf D. Weinberger B. Grubeck-Loebenstein B. The aging of the immune system. Transpl. Int. 2009 22 11 1041 1050 10.1111/j.1432‑2277.2009.00927.x 19624493
    [Google Scholar]
  43. Dorshkind K. Swain S. Age-associated declines in immune system development and function: causes, consequences, and reversal. Curr. Opin. Immunol. 2009 21 4 404 407 10.1016/j.coi.2009.07.001 19632102
    [Google Scholar]
  44. Yilmaz E. Acar G. Onal U. Erdogan E. Baltaci A.K. Mogulkoc R. Effect of 2-Week Naringin Supplementation on Neurogenesis and BDNF Levels in Ischemia-Reperfusion Model of Rats Neuromolecular Med 2024 26 1 4 10.1007/s12017‑023‑08771‑0
    [Google Scholar]
  45. Somuncu M. Dasdelen D. Baltaci S.B. Mogulkoc R. Baltaci A.K. The Effect of 2 Weeks of Naringenin on AQP4, IL-2 and DNA Damage in Brain Ischemia Reperfusion in Rats Arch Ital Biol 2021 159 3-4 151 158 10.12871/000398292021344
    [Google Scholar]
  46. Graham J.E. Christian L.M. Kiecolt-Glaser J.K. Stress, age, and immune function: toward a lifespan approach. J. Behav. Med. 2006 29 4 389 400 10.1007/s10865‑006‑9057‑4 16715331
    [Google Scholar]
  47. Klein S.L. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci. Biobehav. Rev. 2000 24 6 627 638 10.1016/S0149‑7634(00)00027‑0 10940438
    [Google Scholar]
  48. Giefing-Kröll C. Berger P. Lepperdinger G. Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 2015 14 3 309 321 10.1111/acel.12326 25720438
    [Google Scholar]
  49. Meier A. Chang J.J. Chan E.S. Pollard R.B. Sidhu H.K. Kulkarni S. Wen T.F. Lindsay R.J. Orellana L. Mildvan D. Bazner S. Streeck H. Alter G. Lifson J.D. Carrington M. Bosch R.J. Robbins G.K. Altfeld M. Sex differences in the Toll-like receptor–mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 2009 15 8 955 959 10.1038/nm.2004 19597505
    [Google Scholar]
  50. Cook M.B. McGlynn K.A. Devesa S.S. Freedman N.D. Anderson W.F. Sex disparities in cancer mortality and survival. Cancer Epidemiol. Biomarkers Prev. 2011 20 8 1629 1637 10.1158/1055‑9965.EPI‑11‑0246 21750167
    [Google Scholar]
  51. Kiecolt-Glaser J.K. Glaser R. Gravenstein S. Malarkey W.B. Sheridan J. Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc. Natl. Acad. Sci. USA 1996 93 7 3043 3047 10.1073/pnas.93.7.3043 8610165
    [Google Scholar]
  52. Yatoo M.I. Dimri U. Gopalakrishnan A. Saxena A. Wani S.A. Dhama K. In vitro and in vivo immunomodulatory potential of Pedicularis longiflora and Allium carolinianum in alloxan-induced diabetes in rats. Biomed. Pharmacother. 2018 97 375 384 10.1016/j.biopha.2017.10.133 29091887
    [Google Scholar]
  53. Park H.Y. Oh M.J. Kim Y. Choi I. Immunomodulatory activities of Corchorus olitorius leaf extract: Beneficial effects in macrophage and NK cell activation immunosuppressed mice. J. Funct. Foods 2018 46 220 226 10.1016/j.jff.2018.05.005
    [Google Scholar]
  54. Alves M.M.M. Brito L.M. Souza A.C. Queiroz B.C.S.H. de Carvalho T.P. Batista J.F. Oliveira J.S.S.M. de Mendonça I.L. Lira S.R.S. Chaves M.H. Gonçalves J.C.R. Carneiro S.M.P. Arcanjo D.D.R. Carvalho F.A.A. Gallic and ellagic acids: Two natural immunomodulator compounds solve infection of macrophages by Leishmania major. Naunyn Schmiedebergs Arch. Pharmacol. 2017 390 9 893 903 10.1007/s00210‑017‑1387‑y 28643086
    [Google Scholar]
  55. Glaser R. Pearson G.R. Bonneau R.H. Esterling B.A. Atkinson C. Kiecolt-Glaser J.K. Stress and the memory T-cell response to the Epstein-Barr virus in healthy medical students. Health Psychol. 1993 12 6 435 442 10.1037/0278‑6133.12.6.435 8293726
    [Google Scholar]
  56. Yang E.V. Glaser R. Stress-induced immunomodulation: Impact on immune defenses against infectious disease. Biomed. Pharmacother. 2000 54 5 245 250 10.1016/S0753‑3322(00)80066‑9 10917461
    [Google Scholar]
  57. Chang S.L. Chiang Y.M. Chang C.L.T. Yeh H.H. Shyur L. Yueh-Hsiung Kuo Y.H. Wu T.K. Yang W.C. Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-gamma expression. J Ethnopharmacol 2007 112 2 232 6 10.1016/j.jep.2007.03.001
    [Google Scholar]
  58. Romeo J. Wärnberg J. Nova E. Díaz L.E. Gómez-Martinez S. Marcos A. Moderate alcohol consumption and the immune system: A review. Br. J. Nutr. 2007 98 S1 S111 S115 10.1017/S0007114507838049 17922947
    [Google Scholar]
  59. Molina P.E. Happel K.I. Zhang P. Kolls J.K. Nelson S. Focus on: Alcohol and the immune system. Alcohol Res. Health 2010 33 1-2 97 108 23579940
    [Google Scholar]
  60. Gharagozloo M. Karimi M. Amirghofran Z. Immunomodulatory effects of silymarin in patients with β-thalassemia major. Int. Immunopharmacol. 2013 16 2 243 247 10.1016/j.intimp.2013.04.016 23624215
    [Google Scholar]
  61. Sureshchandra S. Raus A. Jankeel A. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses. Sci. Rep. 2009 9 1 7847 31127176
    [Google Scholar]
  62. Chandrasekaran P. Saravanan N. Bethunaickan R. Tripathy S. Malnutrition: Modulator of immune responses in tuberculosis. Front. Immunol. 2017 8 1316 10.3389/fimmu.2017.01316 29093710
    [Google Scholar]
  63. Vila C.C. Saracino M.P. Falduto G.H. Calcagno M.A. Venturiello S.M. Pallaro A.N. Baldi P.C. Protein malnutrition impairs the immune control of Trichinella spiralis infection. Nutrition 2019 60 161 169 10.1016/j.nut.2018.10.024 30599460
    [Google Scholar]
  64. Gascon M. Morales E. Sunyer J. Vrijheid M. Effects of persistent organic pollutants on the developing respiratory and immune systems: A systematic review. Environ. Int. 2013 52 51 65 10.1016/j.envint.2012.11.005 23291098
    [Google Scholar]
  65. Winans B. Humble M.C. Lawrence B.P. Environmental toxicants and the developing immune system: A missing link in the global battle against infectious disease? Reprod. Toxicol. 2011 31 3 327 336 10.1016/j.reprotox.2010.09.004 20851760
    [Google Scholar]
  66. Ramanadham M. Nageshwari B. Anti-proliferative effect of levamisole on human myeloma cell lines in vitro. J. Immunotoxicol. 2010 7 4 327 332 10.3109/1547691X.2010.514871 20860474
    [Google Scholar]
  67. Yasui K. Kobayashi N. Yamazaki T. Agematsu K. Thalidomide as an immunotherapeutic agent: the effects on neutrophil-mediated inflammation. Curr. Pharm. Des. 2005 11 3 395 401 10.2174/1381612053382179 15723633
    [Google Scholar]
  68. Larsen E.S. Joensen U.N. Poulsen A.M. Goletti D. Johansen I.S. Bacillus Calmette–Guérin immunotherapy for bladder cancer: A review of immunological aspects, clinical effects and BCG infections. Acta Pathol. Microbiol. Scand. Suppl. 2020 128 2 92 103 10.1111/apm.13011 31755155
    [Google Scholar]
  69. Moorlag S.J.C.F.M. Arts R.J.W. van Crevel R. Netea M.G. Non-specific effects of BCG vaccine on viral infections. Clin. Microbiol. Infect. 2019 25 12 1473 1478 10.1016/j.cmi.2019.04.020 31055165
    [Google Scholar]
  70. Lee S. Margolin K. Cytokines in cancer immunotherapy. Cancers 2011 3 4 3856 3893 10.3390/cancers3043856 24213115
    [Google Scholar]
  71. Ilangkovan M. Jantan I. Mesaik M.A. Bukhari S.N. Immunosuppressive effects of the standardized extract of Phyllanthus amarus on cellular immune responses in Wistar-Kyoto rats. Drug Des. Devel. Ther. 2015 9 4917 4930 26347462
    [Google Scholar]
  72. Russell R.G.G. Graveley R. Coxon F. Skjodt H. Pozo E.D. Elford P. Mackenzie A. Cyclosporin A. Mode of action and effects on bone and joint tissues. Scand. J. Rheumatol. 1992 21 sup95 9 18 10.3109/03009749209101478 1475634
    [Google Scholar]
  73. Tyagi S. Singh G. Sharma A. Aggarwal G. Phytochemicals as candidate therapeutics: An overview. Int. J. Pharm. Sci. Rev. Res. 2010 3 53 55
    [Google Scholar]
  74. Kurmukov A.G. Medicinal Plants of Central Asia: Uzbekistan and Kyrgyzstan Springer 2012 13 14
    [Google Scholar]
  75. Nalbantsoy A. Nesil T. Yılmaz-Dilsiz Ö. Aksu G. Khan S. Bedir E. Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. J. Ethnopharmacol. 2012 139 2 574 581 10.1016/j.jep.2011.11.053 22155389
    [Google Scholar]
  76. Sun H. He S. Shi M. Adjuvant-active fraction from Albizia julibrissin saponins improves immune responses by inducing cytokine and chemokine at the site of injection. Int. Immunopharmacol. 2014 22 2 346 355 10.1016/j.intimp.2014.07.021 25075718
    [Google Scholar]
  77. Liu R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013 4 3 384S 392S 10.3945/an.112.003517 23674808
    [Google Scholar]
  78. Martinez K. Mackert J. McIntosh M. Chapter 18 - Polyphenols and Intestinal Health. Nutrition and Functional Foods for Healthy Aging Academic Press 2017 191 210
    [Google Scholar]
  79. Koche D. Shirsat R. Kawale M. An overview of major classes of phytochemicals: their types and role in disease prevention. Hislopia J 2018 9 1 11
    [Google Scholar]
  80. Nenaah G. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J. Microbiol. Biotechnol. 2013 29 7 1255 1262 10.1007/s11274‑013‑1288‑2 23417281
    [Google Scholar]
  81. Li C. Zha W. Li W. Wang J. You A. Advances in the biosynthesis of terpenoids and their ecological functions in plant resistance. Int. J. Mol. Sci. 2023 24 14 11561 10.3390/ijms241411561 37511319
    [Google Scholar]
  82. Chiou W.F. Chen C.F. Lin J.J. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide. Br. J. Pharmacol. 2000 129 8 1553 1560 10.1038/sj.bjp.0703191 10780958
    [Google Scholar]
  83. Podder B. Jang W.S. Nam K.W. Lee B.E. Song H.Y. Ursolic acid activates intracellular killing effect of macrophages during Mycobacterium tuberculosis infection. J. Microbiol. Biotechnol. 2015 25 5 738 744 10.4014/jmb.1407.07020 25406534
    [Google Scholar]
  84. Mukherjee N. Banerjee S. Amin S.A. Jha T. Datta S. Das Saha K. Host P2X7R-p38MAPK axis mediated intra-macrophage leishmanicidal activity of Spergulin-A. Exp. Parasitol. 2022 241 108365 10.1016/j.exppara.2022.108365 36007587
    [Google Scholar]
  85. Rasool M. Varalakshmi P. Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vascul. Pharmacol. 2006 44 6 406 410 10.1016/j.vph.2006.01.015 16713367
    [Google Scholar]
  86. Logie E. Vanden Berghe W. Tackling Chronic Inflammation with Withanolide Phytochemicals—A Withaferin A Perspective. Antioxidants 2020 9 11 1107 10.3390/antiox9111107 33182809
    [Google Scholar]
  87. Dubey S. Singh M. Nelson A. Karan D. A perspective on Withania somnifera modulating antitumor immunity in targeting prostate cancer. J. Immunol. Res. 2021 2021 1 11 10.1155/2021/9483433 34485538
    [Google Scholar]
  88. Cushnie T.P.T. Cushnie B. Lamb A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014 44 5 377 386 10.1016/j.ijantimicag.2014.06.001 25130096
    [Google Scholar]
  89. Souto A.L. Tavares J.F. Da Silva M.S. Diniz M.F.F.M. De Athayde-Filho P.F. Barbosa Filho J.M. Anti-inflammatory activity of alkaloids: an update from 2000 to 2010. Molecules 2011 16 10 8515 8534 10.3390/molecules16108515 21989312
    [Google Scholar]
  90. Zhao Z. Xiao J. Wang J. Dong W. Peng Z. An D. Anti-inflammatory effects of novel sinomenine derivatives. Int. Immunopharmacol. 2015 29 2 354 360 10.1016/j.intimp.2015.10.030 26525983
    [Google Scholar]
  91. Paudel S. Mishra N. Agarwal R. Phytochemicals as Immunomodulatory Molecules in Cancer Therapeutics. Pharmaceuticals 2023 16 12 1652 10.3390/ph16121652 38139779
    [Google Scholar]
  92. Burgos R.A. Seguel K. Perez M. Meneses A. Ortega M. Guarda M.I. Loaiza A. Hancke J.L. Andrographolide inhibits IFN-gamma and IL-2 cytokine production and protects against cell apoptosis. Planta Med. 2005 71 5 429 434 10.1055/s‑2005‑864138 15931581
    [Google Scholar]
  93. Gokhale A.B. Damre A.S. Saraf M.N. Investigations into the immunomodulatory activity of Argyreia speciosa. J. Ethnopharmacol. 2003 84 1 109 114 10.1016/S0378‑8741(02)00168‑X 12499085
    [Google Scholar]
  94. Amina M. Al Musayeib N.M. Alarfaj N.A. El-Tohamy M.F. Al-Hamoud G.A. Antibacterial and Immunomodulatory Potentials of Biosynthesized Ag, Au, Ag-Au Bimetallic Alloy Nanoparticles Using the Asparagus racemosus Root Extract. Nanomaterials 2020 10 12 2453 10.3390/nano10122453 33302432
    [Google Scholar]
  95. Patil K. Jalalpure S.S. Wadekar R.R. Effect of Baliospermum montanum root extract on phagocytosis by human neutrophils. Indian J. Pharm. Sci. 2009 71 1 68 71 10.4103/0250‑474X.51966 20177463
    [Google Scholar]
  96. Das S. Singh P.K. Ameeruddin S. Bindhani B.K. Wajdi J. Obaidullah W.J. Obaidullah A.J. Mishra S. Mohapatra R.K. Ethnomedicinal values of Boerhaavia diffusa L. as a panacea against multiple human ailments Medicinal and Pharmaceutical Chemistry 2023 11 1297300 10.3389/fchem.2023.1297300
    [Google Scholar]
  97. Hartmann R.M. Morgan Martins M.I. Tieppo J. Fillmann H.S. Marroni N.P. Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by acetic acid. Dig. Dis. Sci. 2012 57 8 2038 2044 10.1007/s10620‑012‑2134‑3 22451119
    [Google Scholar]
  98. Sini K.R. Sinha B.N. Rajasekaran A. Protective Effects of Capparis zeylanica Linn. leaf extract on gastric lesions in experimental animals. Avicenna J. Med. Biotechnol. 2011 3 1 31 35 23407576
    [Google Scholar]
  99. Amin A.H. Bughdadi F.A. Abo-Zaid M.A. Ismail A.H. El-Agamy S.A. Alqahtani A. El-Sayyad H.I.H. Rezk B.M. Ramadan M.F. Immunomodulatory effect of papaya ( Carica papaya ) pulp and seed extracts as a potential natural treatment for bacterial stress. J. Food Biochem. 2019 43 12 e13050 10.1111/jfbc.13050 31571245
    [Google Scholar]
  100. Kumar B.S. Kishore T.C. Phytochemical screening and immunomodulatory activities of methanolic extract of Eclipta alba and Centella asiatica. RJPPD 2021 13 1 5 8
    [Google Scholar]
  101. Popovic A. Deljanin M. Popovic S. Todorovic D. Djurdjevic P. Matic S. Stankovic M. Avramovic D. Baskic D. Chelidonium majus crude extract induces activation of peripheral blood mononuclear cells and enhances their cytotoxic effect toward HeLa cells. Int. J. Environ. Health Res. 2022 32 7 1554 1566 10.1080/09603123.2021.1897534 33706629
    [Google Scholar]
  102. Palaksha M.N. Ravishankar K. Nandini V. Evaluation of the immunomodulatory effect of Eclipta prostrata whole plant extract on albino rats. RJPPD 2017 9 2 41 45 10.5958/2321‑5836.2017.00008.8
    [Google Scholar]
  103. Idoko N.D. Chukwuma I.F. Sopuruchukwu F.N. Mba E. Joshua P.E. Nwodo O.F.C. Abusudah W.F. Almohmadi N.H. Michel de Waard Immunomodulatory effects of epiphytic Loranthus micranthus leaf extracts collected from two host plants: Psidium guajava and Parkia biglobosa BMC Complement Med 2024 24 1 7 10.1186/s12906‑023‑04282‑4
    [Google Scholar]
  104. Zhu Z. Yu Y. Wang B. Ding M. Tian Y. Jiang R. Sun G. Han R. Kang X. Yan F. Guo Y. Dietary supplementation with pseudostellaria heterophylla polysaccharide enhanced immunity and changed mRNA expression of spleen in chicks. Dev. Comp. Immunol. 2024 151 105094 10.1016/j.dci.2023.105094 37951325
    [Google Scholar]
  105. Zhang Y. Xu Q. Wang Y. Zhang C. Xu S. Luo M. Yang S. Caragana sinica (Buc'hoz) Rehd. (jin ji er) polysaccharide regulates the immune function and intestinal microbiota of cyclophosphamide (CTX) induced immunosuppressed mice. J Ethnopharmacol 2024 322 117551 10.1016/j.jep.2023.117551
    [Google Scholar]
  106. Wang X. Chen J. Chan Y. Li S. Li M. Lin F. Mehmood A. Idrees K. Lin R. Su Y. Wang C. Sh D. Effect of Echinacea purpurea (L.) Moench and its extracts on the immunization outcome of avian influenza vaccine in broilers J Ethnopharmacol 2024 319 Pt 3 117306 10.1016/j.jep.2023.117306
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638326442241118053543
Loading
/content/journals/cddt/10.2174/0115701638326442241118053543
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: steroids ; natural products ; Immunomodulator ; phytoconstituents ; alkaloids
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test