Skip to content
2000
image of AI in Clinical Trials and Drug Development: Challenges and Potential and Advancements

Abstract

Artificial intelligence (AI) is one of the fastest-growing fields in various industries, including engineering, architecture, medical and clinical research, aerospace, and others. AI, which is a combination of machine learning (ML), deep learning (DL), and human intelligence (HI), is revolutionizing drug discovery and development by making it more cost-effective and efficient. It is also being used in fields such as medicinal chemistry, molecular and cell biology, pharmacology, pharmacokinetics, formulation development, and toxicology. AI plays a crucial role in clinical testing by enhancing patient stratification, patient sample evaluation, and trial design, assisting in the identification of biomarkers, determining efficacy criteria, dose selection, trial length, and target patient population selection. The primary objective of this study is to emphasize the importance of AI in clinical trials and drug development, while also exploring the existing challenges and potential advancements in AI within the healthcare industry. A comprehensive literature review was conducted, covering the period from 1998 to 2023. The Science Direct, PubMed, and Google Scholar databases were searched for relevant information. A variety of publications, including Research Gate, Nature, MDPI, and Springer Link, provided pertinent data. This study aimed to gain a deeper understanding of the use of AI in clinical research and drug development, as well as its potential and limitations. We also discuss the benefits and main data limitations of the traditional trial and drug development approach. AI approaches are currently being used to overcome research obstacles and eliminate conceptual or methodological limitations. After discussing possible obstacles and coping mechanisms, we provide several recommendations to help individuals understand the challenges and difficulties associated with clinical research and drug development. It is essential for pharmaceutical companies to have a cutting-edge AI strategy if AI is to become a routine tool for clinical research and drug development.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638314252241016165345
2024-10-28
2025-01-12
Loading full text...

Full text loading...

References

  1. Bajwa J. Munir U. Nori A. Williams B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021 8 2 e188 e194 10.7861/fhj.2021‑0095 34286183
    [Google Scholar]
  2. Alowais S.A. Alghamdi S.S. Alsuhebany N. Alqahtani T. Alshaya A.I. Almohareb S.N. Aldairem A. Alrashed M. Bin Saleh K. Badreldin H.A. Al Yami M.S. Al Harbi S. Albekairy A.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023 23 1 689 10.1186/s12909‑023‑04698‑z 37740191
    [Google Scholar]
  3. Randhawa G.K. Jackson M. The role of artificial intelligence in learning and professional development for healthcare professionals. Healthc. Manage. Forum 2020 33 1 19 24 10.1177/0840470419869032 31802725
    [Google Scholar]
  4. Secinaro S. Calandra D. Secinaro A. Muthurangu V. Biancone P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021 21 1 125 10.1186/s12911‑021‑01488‑9 33836752
    [Google Scholar]
  5. Tutorials - Javatpoint. 2011 Available from: https://www.javatpoint.com/
  6. Dwivedi Y.K. Hughes L. Ismagilova E. Aarts G. Coombs C. Crick T. Duan Y. Dwivedi R. Edwards J. Eirug A. Galanos V. Ilavarasan P.V. Janssen M. Jones P. Kar A.K. Kizgin H. Kronemann B. Lal B. Lucini B. Medaglia R. Le Meunier-FitzHugh K. Le Meunier-FitzHugh L.C. Misra S. Mogaji E. Sharma S.K. Singh J.B. Raghavan V. Raman R. Rana N.P. Samothrakis S. Spencer J. Tamilmani K. Tubadji A. Walton P. Williams M.D. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manage. 2021 57 101994 101994 10.1016/j.ijinfomgt.2019.08.002
    [Google Scholar]
  7. Raza M.A. Aziz S. Noreen M. Saeed A. Anjum I. Ahmed M. Raza S.M. Artificial Intelligence (AI) in pharmacy: An overview of innovations. Innov. Pharm. 2022 13 2 13 10.24926/iip.v13i2.4839 36654703
    [Google Scholar]
  8. Choudhury A. Asan O. Role of Artificial Intelligence in patient safety outcomes: Systematic literature review. JMIR Med. Inform. 2020 8 7 e18599 10.2196/18599 32706688
    [Google Scholar]
  9. WHO issues first global report on Artificial Intelligence (AI) in health and six guiding principles for its design and use. 2021 Available from: https://www.who.int/news/item/28-06-2021-who-issues-first-global-report-on-ai-in-health-and-six-guiding-principles-for-its-design-and-use(Accessed on: August 20, 2024)
  10. Nascimento I.J.S. de Aquino T.M. da Silva-Júnior E.F. The new era of drug discovery: The power of computer-aided drug design (CADD). Lett. Drug Des. Discov. 2022 19 11 951 955 10.2174/1570180819666220405225817
    [Google Scholar]
  11. Pushkaran A.C. Arabi A.A. From understanding diseases to drug design: Can artificial intelligence bridge the gap? Artif. Intell. Rev. 2024 57 4 86 10.1007/s10462‑024‑10714‑5
    [Google Scholar]
  12. Berdigaliyev N. Aljofan M. An overview of drug discovery and development. Future Med. Chem. 2020 12 10 939 947 10.4155/fmc‑2019‑0307 32270704
    [Google Scholar]
  13. Di Filippo J.I. Bollini M. Cavasotto C.N. A machine learning model to predict drug transfer across the human placenta barrier. Front Chem. 2021 9 714678 10.3389/fchem.2021.714678 34354979
    [Google Scholar]
  14. Sellwood M.A. Ahmed M. Segler M.H.S. Brown N. Artificial intelligence in drug discovery. Future Med. Chem. 2018 10 17 2025 2028 10.4155/fmc‑2018‑0212 30101607
    [Google Scholar]
  15. Blanco-González A. Cabezón A. Seco-González A. Conde-Torres D. Antelo-Riveiro P. Piñeiro Á. Garcia-Fandino R. The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals (Basel) 2023 16 6 891 891 10.3390/ph16060891 37375838
    [Google Scholar]
  16. Vamathevan J. Clark D. Czodrowski P. Dunham I. Ferran E. Lee G. Li B. Madabhushi A. Shah P. Spitzer M. Zhao S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019 18 6 463 477 10.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  17. Lo Y.C. Rensi S.E. Torng W. Altman R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 2018 23 8 1538 1546 10.1016/j.drudis.2018.05.010 29750902
    [Google Scholar]
  18. Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 2015 61 61 85 117 10.1016/j.neunet.2014.09.003 25462637
    [Google Scholar]
  19. Xue L. Bajorath J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb. Chem. High Throughput Screen. 2000 3 5 363 372 10.2174/1386207003331454 11032954
    [Google Scholar]
  20. Schneider G. Mind and machine in drug design. Nat. Mach. Intell. 2019 1 3 128 130 10.1038/s42256‑019‑0030‑7
    [Google Scholar]
  21. Feinberg E.N. Sur D. Wu Z. Husic B.E. Mai H. Li Y. Sun S. Yang J. Ramsundar B. Pande V.S. PotentialNet for molecular property prediction. ACS Cent. Sci. 2018 4 11 1520 1530 10.1021/acscentsci.8b00507 30555904
    [Google Scholar]
  22. Brown T. Wyatt J. Design thinking for social innovation. Dev. Outreach 2010 12 1 29 43 10.1596/1020‑797X_12_1_29
    [Google Scholar]
  23. Kroschinsky F. Stölzel F. von Bonin S. Beutel G. Kochanek M. Kiehl M. Schellongowski P. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management. Crit. Care 2017 21 1 89 10.1186/s13054‑017‑1678‑1 28407743
    [Google Scholar]
  24. Li Z. Li X. Liu X. Fu Z. Xiong Z. Wu X. Tan X. Zhao J. Zhong F. Wan X. Luo X. Chen K. Jiang H. Zheng M. KinomeX: A web application for predicting kinome-wide polypharmacology effect of small molecules. Bioinformatics 2019 35 24 5354 5356 10.1093/bioinformatics/btz519 31228181
    [Google Scholar]
  25. Miljković F. Vogt M. Bajorath J. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome. J. Comput. Aided Mol. Des. 2019 33 6 559 572 10.1007/s10822‑019‑00198‑9 30915709
    [Google Scholar]
  26. Chaudhari R. Tan Z. Huang B. Zhang S. Computational polypharmacology: A new paradigm for drug discovery. Expert Opin. Drug Discov. 2017 12 3 279 291 10.1080/17460441.2017.1280024 28067061
    [Google Scholar]
  27. Tan Z. Chaudhai R. Zhang S. Polypharmacology in drug development: A minireview of current technologies. ChemMedChem 2016 11 12 1211 1218 10.1002/cmdc.201600067 27154144
    [Google Scholar]
  28. Li H. Sze K.H. Lu G. Ballester P.J. Machine‐learning scoring functions for structure‐based drug lead optimization. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020 10 5 e1465 10.1002/wcms.1465
    [Google Scholar]
  29. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  30. Chaudhari R. Fong L.W. Tan Z. Huang B. Zhang S. An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opin. Drug Discov. 2020 15 9 1025 1044 10.1080/17460441.2020.1767063 32452701
    [Google Scholar]
  31. Shen C. Ding J. Wang Z. Cao D. Ding X. Hou T. From machine learning to deep learning: Advances in scoring functions for protein–ligand docking. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020 10 1 e1429 10.1002/wcms.1429
    [Google Scholar]
  32. Chua H.E. Bhowmick S.S. Tucker-Kellogg L. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology. Methods 2017 129 60 80 10.1016/j.ymeth.2017.05.015 28552265
    [Google Scholar]
  33. Al-Ali H. Lee D.H. Danzi M.C. Nassif H. Gautam P. Wennerberg K. Zuercher B. Drewry D.H. Lee J.K. Lemmon V.P. Bixby J.L. Rational polypharmacology: Systematically identifying and engaging multiple drug targets to promote axon growth. ACS Chem. Biol. 2015 10 8 1939 1951 10.1021/acschembio.5b00289 26056718
    [Google Scholar]
  34. Prasad K. Kumar V. Artificial intelligence-driven drug repurposing and structural biology for SARS-CoV-2. Curr. Res. Pharmacol. Drug Discov. 2021 2 100042 10.1016/j.crphar.2021.100042 34870150
    [Google Scholar]
  35. Piccialli F. di Cola V.S. Giampaolo F. Cuomo S. The role of Artificial Intelligence in fighting the COVID-19 pandemic. Inf. Syst. Front. 2021 23 6 1467 1497 10.1007/s10796‑021‑10131‑x 33935585
    [Google Scholar]
  36. Mottaqi M.S. Mohammadipanah F. Sajedi H. Contribution of machine learning approaches in response to SARS-CoV-2 infection. Inform. Med. Unlocked 2021 23 100526 10.1016/j.imu.2021.100526 33869730
    [Google Scholar]
  37. De Rosa M.C. Purohit R. García-Sosa A.T. Drug repurposing: A nexus of innovation, science, and potential. Sci. Rep. 2023 13 1 17887 10.1038/s41598‑023‑44264‑7 37857641
    [Google Scholar]
  38. Yang F. Zhang Q. Ji X. Zhang Y. Li W. Peng S. Xue F. Machine learning applications in drug repurposing. Interdiscip. Sci. 2022 14 1 15 21 10.1007/s12539‑021‑00487‑8 35066811
    [Google Scholar]
  39. Singh A. Artificial intelligence for drug repurposing against infectious diseases. Artif. Intell. Chem. 2024 2 2 100071 10.1016/j.aichem.2024.100071
    [Google Scholar]
  40. Aronova E.A. Belov B.S. Gridneva G.I. Revisiting the question of the safety of glucocorticoids use of in the treatment of rheumatoid arthritis. Mod. Rheumatol. J. 2023 17 3 89 95 10.14412/1996‑7012‑2023‑3‑89‑95
    [Google Scholar]
  41. Peska L. Buza K. Koller J. Drug-target interaction prediction: A Bayesian ranking approach. Comput. Methods Programs Biomed. 2017 152 15 21 10.1016/j.cmpb.2017.09.003 29054256
    [Google Scholar]
  42. Li Y.Y. An J. Jones S.J.M. A computational approach to finding novel targets for existing drugs. PLoS Comput. Biol. 7 9 2011 e1002139 10.1371/journal.pcbi.1002139
    [Google Scholar]
  43. Xia Z. Wu L.Y. Zhou X. Wong S.T.C. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 2010 4 S2 S6 10.1186/1752‑0509‑4‑S2‑S6 20840733
    [Google Scholar]
  44. Takarabe M. Kotera M. Nishimura Y. Goto S. Yamanishi Y. Drug target prediction using adverse event report systems: A pharmacogenomic approach. Bioinformatics 2012 28 18 i611 i618 10.1093/bioinformatics/bts413 22962489
    [Google Scholar]
  45. Whitebread S. Hamon J. Bojanic D. Urban L. Keynote review: In vitro safety pharmacology profiling: An essential tool for successful drug development. Drug Discov. Today 2005 10 21 1421 1433 10.1016/S1359‑6446(05)03632‑9 16243262
    [Google Scholar]
  46. Jang H.Y. Song J. Kim J.H. Lee H. Kim I.W. Moon B. Oh J.M. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. NPJ Digit. Med. 2022 5 1 88 10.1038/s41746‑022‑00639‑0 35817846
    [Google Scholar]
  47. Hansen K. Biegler F. Ramakrishnan R. Pronobis W. von Lilienfeld O.A. Müller K.R. Tkatchenko A. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 2015 6 12 2326 2331 10.1021/acs.jpclett.5b00831 26113956
    [Google Scholar]
  48. Pérez Santín E. Rodríguez Solana R. González García M. García Suárez M.D.M. Blanco Díaz G.D. Cima Cabal M.D. Moreno Rojas J.M. López Sánchez J.I. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021 11 5 e1516 10.1002/wcms.1516
    [Google Scholar]
  49. Krittanawong C. Johnson K.W. Tang W.H.W. How artificial intelligence could redefine clinical trials in cardiovascular medicine: Lessons learned from oncology. Per. Med. 2019 16 2 87 92 10.2217/pme‑2018‑0130 30838909
    [Google Scholar]
  50. Basile A.O. Yahi A. Tatonetti N.P. Artificial intelligence for drug toxicity and safety. Trends Pharmacol. Sci. 2019 40 9 624 635 10.1016/j.tips.2019.07.005 31383376
    [Google Scholar]
  51. Sangari N Qu Y. A comparative study on machine learning algorithms for predicting breast cancer prognosis in improving clinical trials. International Conference on Computational Science and Computational Intelligence (CSCI) Las Vegas, NV, USA 16-18 Dec, 2020 813 818 10.1109/CSCI51800.2020.00152
    [Google Scholar]
  52. Delso G. Cirillo D. Kaggie J.D. Valencia A. Metser U. Veit-Haibach P. How to design ai-driven clinical trials in nuclear medicine. Semin. Nucl. Med. 2021 51 2 112 119 10.1053/j.semnuclmed.2020.09.003 33509367
    [Google Scholar]
  53. Feijoo F. Palopoli M. Bernstein J. Siddiqui S. Albright T.E. Key indicators of phase transition for clinical trials through machine learning. Drug Discov. Today 2020 25 2 414 421 10.1016/j.drudis.2019.12.014 31926317
    [Google Scholar]
  54. Weissler E.H. Naumann T. Andersson T. Ranganath R. Elemento O. Luo Y. Freitag D.F. Benoit J. Hughes M.C. Khan F. Slater P. Shameer K. Roe M. Hutchison E. Kollins S.H. Broedl U. Meng Z. Wong J.L. Curtis L. Huang E. Ghassemi M. The role of machine learning in clinical research: Transforming the future of evidence generation. Trials 2021 22 1 537 10.1186/s13063‑021‑05489‑x 34399832
    [Google Scholar]
  55. Zhavoronkov A. Vanhaelen Q. Oprea T.I. Will Artificial Intelligence for drug discovery impact clinical pharmacology? Clin. Pharmacol. Ther. 2020 107 4 780 785 10.1002/cpt.1795 31957003
    [Google Scholar]
  56. Gligorijevic J. Gligorijevic D. Pavlovski M. Milkovits E. Glass L. Grier K. Vankireddy P. Obradovic Z. Optimizing clinical trials recruitment via deep learning. J. Am. Med. Inform. Assoc. 2019 26 11 1195 1202 10.1093/jamia/ocz064 31188432
    [Google Scholar]
  57. Frank I. Blute M.L. Cheville J.C. Lohse C.M. Weaver A.L. Zincke H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J. Urol. 2002 168 6 2395 2400 10.1016/S0022‑5347(05)64153‑5 12441925
    [Google Scholar]
  58. Jiang F. Jiang Y. Zhi H. Dong Y. Li H. Ma S. Wang Y. Dong Q. Shen H. Wang Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017 2 4 230 243 10.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  59. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  60. Hardman T.C. Aitchison R. Scaife R. Edwards J. Slater G. The future of clinical trials and drug development: 2050. Drugs Context 2023 12 1 11 10.7573/dic.2023‑2‑2 37313038
    [Google Scholar]
  61. Growth insight - Role of AI in the pharmaceutical industry, global, 2018-2022. Available from: https://www.researchandmarkets.com/reports/4846380/growth-insight-role-of-ai-in-the?srsltid=AfmBOopGkviX07GkvvP2As5i1yUcv8nK43meMau6bsH8FeXb4EURO3z9
  62. Jämsä-Jounela S-L. Future trends in process automation. Annu. Rev. Control. 31 2 2007 >211 220 10.3182/20070213‑3‑CU‑2913.00003
    [Google Scholar]
  63. Askin S Burkhalter D Calado G Artificial Intelligence applied to clinical trials: Opportunities and challenges. Health Technol. (Berl). 13 2 203 213 2023 10.1007/s12553‑023‑00738‑2
    [Google Scholar]
  64. Legacy communities - IBM TechXchange community. Available from: https://www.ibm.com/developerworks/community/blogs/InsideSystemStorage/entry/ibm_watson_how_to_build_your_own_watson_jr_in_your_basement7?lang=en (Accessed on: August 21, 2024)
  65. Dilsizian S.E. Siegel E.L. Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr. Cardiol. Rep. 2014 16 1 441 10.1007/s11886‑013‑0441‑8 24338557
    [Google Scholar]
  66. Park C.W. Seo S.W. Kang N. Ko B. Choi B.W. Park C. Chang D.K. Kim H. Kim H. Lee H. Jang J. Ye J.C. Jeon J.H. Seo J.B. Kim K.J. Jung K.H. Kim N. Paek S. Shin S.Y. Yoo S. Choi Y.S. Kim Y. Yoon H.J. Artificial Intelligence in health care: Current applications and issues. J. Korean Med. Sci. 2020 35 42 e379 10.3346/jkms.2020.35.e379 33140591
    [Google Scholar]
  67. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  68. Karekar S.R. Vazifdar A.K. Current status of clinical research using artificial intelligence techniques. Perspect. Clin. Res. 2021 12 1 48 52 10.4103/picr.PICR_25_20 33816209
    [Google Scholar]
  69. Bhatt A. Artificial intelligence in managing clinical trial design and conduct. Perspect. Clin. Res. 2021 12 1 1 3 10.4103/picr.PICR_312_20 33816201
    [Google Scholar]
  70. 7 applications of machine learning in pharma and medicine. 2020 Available from: https://emerj.com/ai-sector-overviews/machine-learning-in-pharma-medicine/(Accessed on: August 21, 2024)
  71. Liu X. Faes L. Kale A.U. Wagner S.K. Fu D.J. Bruynseels A. Mahendiran T. Moraes G. Shamdas M. Kern C. Ledsam J.R. Schmid M.K. Balaskas K. Topol E.J. Bachmann L.M. Keane P.A. Denniston A.K. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019 1 6 e271 e297 10.1016/S2589‑7500(19)30123‑2 33323251
    [Google Scholar]
  72. Mak K.K. Pichika M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019 24 3 773 780 10.1016/j.drudis.2018.11.014 30472429
    [Google Scholar]
  73. Harrer S. Shah P. Antony B. Hu J. artificial intelligence for clinical trial design. Trends Pharmacol. Sci. 2019 40 8 577 591 10.1016/j.tips.2019.05.005 31326235
    [Google Scholar]
  74. DSP-1181: Drug created using AI enters clinical trials. 2020 Available from: https://www.europeanpharmaceuticalreview.com/news/112044/dsp-1181-drug-created-using-ai-enters-clinical-trials/
  75. Garcia-Serna R. Vidal D. Remez N. Mestres J. Large-scale predictive drug safety: From structural alerts to biological mechanisms. Chem. Res. Toxicol. 2015 28 10 1875 1887 10.1021/acs.chemrestox.5b00260 26360911
    [Google Scholar]
  76. Xu D. Xu H. Zhang Y. Wang M. Chen W. Gao R. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities. J. Transl. Med. 2021 19 1 66 10.1186/s12967‑021‑02732‑6 33579301
    [Google Scholar]
  77. He T. Heidemeyer M. Ban F. Cherkasov A. Ester M. SimBoost: A read-across approach for predicting drug–target binding affinities using gradient boosting machines. J. Cheminform. 2017 9 1 24 10.1186/s13321‑017‑0209‑z 29086119
    [Google Scholar]
  78. Zhu H. Big data and Artificial Intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol. 2020 60 1 573 589 10.1146/annurev‑pharmtox‑010919‑023324 31518513
    [Google Scholar]
  79. Chan H.C.S. Shan H. Dahoun T. Vogel H. Yuan S. Advancing drug discovery via Artificial Intelligence. Trends Pharmacol. Sci. 2019 40 8 592 604 10.1016/j.tips.2019.06.004 31320117
    [Google Scholar]
  80. Ciallella H.L. Zhu H. Advancing computational toxicology in the big data era by Artificial Intelligence: Data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol. 2019 32 4 536 547 10.1021/acs.chemrestox.8b00393 30907586
    [Google Scholar]
  81. Brown N. In Silico Medicinal Chemistry: Computational Methods to Support Drug Design Royal Society of Chemistry 2015 10.1039/9781782622604
    [Google Scholar]
  82. Pereira J.C. Caffarena E.R. dos Santos C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model. 2016 56 12 2495 2506 10.1021/acs.jcim.6b00355 28024405
    [Google Scholar]
  83. Stork C. Wagner J. Friedrich N.O. de Bruyn Kops C. Šícho M. Kirchmair J. Hit dexter: A machine‐learning model for the prediction of frequent hitters. ChemMedChem 2018 13 6 564 571 10.1002/cmdc.201700673 29285887
    [Google Scholar]
  84. Gromski P.S. Granda J.M. Cronin L. Universal chemical synthesis and discovery with ‘The Chemputer’. Trends Chem. 2020 2 1 4 12 10.1016/j.trechm.2019.07.004
    [Google Scholar]
  85. AlphaFold: Protein structure database. Available from: https://alphafold.com/(Accessed on: August 21, 2024)
  86. Awasthi G. Fadewar H. Siddiqui A. Gaikwad B.P. Analysis of fingerprint recognition system using neural network SSRN 10.2139/ssrn.3648835
    [Google Scholar]
  87. Wang C. Zhang Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput. Chem. 2017 38 3 169 177 10.1002/jcc.24667 27859414
    [Google Scholar]
  88. Avdagic Z. Purisevic E. Omanovic S. Coralic Z. Artificial Intelligence in prediction of secondary protein structure using CB513 database. Summit. Transl. Bioinform. 2009 2009 1 5 21347158
    [Google Scholar]
  89. Aminul Islam M. Impact of big data analytics on digital marketing: Academic review. J. Electr. Syst. 2024 20 5s 786 820 10.52783/jes.2327
    [Google Scholar]
  90. Holzinger A. Dehmer M. Jurisica I. Knowledge Discovery and interactive Data Mining in Bioinformatics - State-of-the-Art, future challenges and research directions. BMC Bioinformatics 2014 15 S6 I1 10.1186/1471‑2105‑15‑S6‑I1 25078282
    [Google Scholar]
  91. Chen Y. Elenee Argentinis J.D. Weber G. IBM Watson: How cognitive computing can be applied to big data challenges in life sciences research. Clin. Ther. 2016 38 4 688 701 10.1016/j.clinthera.2015.12.001 27130797
    [Google Scholar]
  92. Petiwala FF. Shukla VK. Vyas S. IBM Watson: Redefining artificial intelligence through cognitive computing. Proceedings of International Conference on Machine Intelligence and Data Science Applications Springer Singapore Prateek M. Singh T.P. Choudhury T. Pandey H.M. Gia Nhu N. 173 185 10.1007/978‑981‑33‑4087‑9_15
    [Google Scholar]
  93. Spangler S. Myers J.N. Stanoi I. Automated hypothesis generation based on mining scientific literature. KDD '14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining 1877 1886 New York, New York, USA 24 Aug, 2014 10.1145/2623330.2623667
    [Google Scholar]
  94. Nagarajan M. Wilkins AD. Bachman BJ. Predicting future scientific discoveries based on a networked analysis of the past literature. KDD '15 Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Sydney, NSW, Australia 10 Aug, 2015 2019 2028 2015 10.1145/2783258.2788609
    [Google Scholar]
  95. Li B. Shin H. Gulbekyan G. Development of a drug-response modeling framework to identify cell line derived translational biomarkers that can predict treatment outcome to erlotinib or sorafenib. PLoS One 10 6 e0130700 2015 10.1371/journal.pone.0130700 26107615
    [Google Scholar]
  96. Hwang T.J. Carpenter D. Lauffenburger J.C. Wang B. Franklin J.M. Kesselheim A.S. Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Intern. Med. 2016 176 12 1826 1833 10.1001/jamainternmed.2016.6008 27723879
    [Google Scholar]
  97. van der Lee M. Swen J.J. Artificial intelligence in pharmacology research and practice. Clin. Transl. Sci. 2023 16 1 31 36 10.1111/cts.13431 36181380
    [Google Scholar]
  98. Li B. Dai C. Wang L. A novel drug repurposing approach for non-small cell lung cancer using deep learning. PLoS One 15 6 e0233112 2020 10.1371/journal.pone.0233112
    [Google Scholar]
  99. Kuenzi B.M. Park J. Fong S.H. Sanchez K.S. Lee J. Kreisberg J.F. Ma J. Ideker T. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 2020 38 5 672 684.e6 10.1016/j.ccell.2020.09.014 33096023
    [Google Scholar]
  100. Arnold C. Inside the nascent industry of AI-designed drugs. Nat. Med. 2023 29 6 1292 1295 10.1038/s41591‑023‑02361‑0 37264208
    [Google Scholar]
  101. Lamberti M.J. Wilkinson M. Donzanti B.A. Wohlhieter G.E. Parikh S. Wilkins R.G. Getz K. A study on the application and use of artificial intelligence to support drug development. Clin. Ther. 2019 41 8 1414 1426 10.1016/j.clinthera.2019.05.018 31248680
    [Google Scholar]
  102. Vasiljeva T. Kreituss I. Lulle I. Artificial Intelligence: The attitude of the public and representatives of various industries. J. Risk Financ. Manag. 2021 14 8 339 10.3390/jrfm14080339
    [Google Scholar]
  103. Jiménez-Luna J. Grisoni F. Schneider G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020 2 10 573 584 10.1038/s42256‑020‑00236‑4
    [Google Scholar]
  104. Bajorath J. Overington J. Jenkins J.L. Walters P. Drug discovery and development in the era of Big Data. Future Med. Chem. 2016 8 15 1807 1813 10.4155/fmc‑2014‑0081 27654148
    [Google Scholar]
  105. Khan B. Fatima H. Qureshi A. Drawbacks of Artificial Intelligence and their potential solutions in the healthcare sector. Biomed. Mater. Devices 2023 8 1 8 10.1007/s44174‑023‑00063‑2 36785697
    [Google Scholar]
  106. Ji S. Gu Q. Weng H. De-Health: All your online health information are belong to us. IEEE 36th International Conference on Data Engineering (ICDE) Dallas, TX, USA 20-24 Apr, 2020 1609 1620 10.1109/ICDE48307.2020.00143
    [Google Scholar]
  107. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. Case Med. Res. 2018 10.31525/fda2‑ucm604357.htm
    [Google Scholar]
  108. Neill D.B. Using Artificial Intelligence to improve hospital inpatient care. IEEE Intell. Syst. 2013 28 2 92 95 10.1109/MIS.2013.51
    [Google Scholar]
  109. Reed J.E. Howe C. Doyle C. Bell D. Simple rules for evidence translation in complex systems: A qualitative study. BMC Med. 2018 16 1 92 10.1186/s12916‑018‑1076‑9 29921274
    [Google Scholar]
  110. Mennella C. Maniscalco U. De Pietro G. Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024 10 4 e26297 e26297 10.1016/j.heliyon.2024.e26297 38384518
    [Google Scholar]
  111. Stoumpos A.I. Kitsios F. Talias M.A. Digital transformation in healthcare: Technology acceptance and its applications. Int. J. Environ. Res. Public Health 2023 20 4 3407 10.3390/ijerph20043407 36834105
    [Google Scholar]
  112. Shen Y. Zhang X. The impact of artificial intelligence on employment: The role of virtual agglomeration. Humanit. Soc. Sci. Commun. 2024 11 1 122 10.1057/s41599‑024‑02647‑9
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638314252241016165345
Loading
/content/journals/cddt/10.2174/0115701638314252241016165345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test