Skip to content
2000
image of Preliminary  Characterization of the Vasorelaxant Effect of Thymus atlanticus (Ball) Roussine Using Optical Methods

Abstract

Background

is a Moroccan endemic thyme species that is traditionally used as an aromatic and medicinal plant. Several studies have demonstrated its pharmacological significance and therapeutic value.

Objective

The current study aimed to assess the vasorelaxant effect of the aqueous extract of this species.

Methods

The contractility of isolated rat aortas was investigated using the multi-well organ bath technique. This method was adapted and validated in our experimental conditions using epinephrine and hydralazine as vasoconstrictive and vasodilator agents, respectively. The application of 10 µM epinephrine induced a clear vasoconstriction of the aorta rings (Lumen reduction = 31.8±0.4%). However, hydralazine induced a dose-dependent relaxation with an EC value of 6.1±1.2 mM. For the aqueous extract of , the aortic rings were precontracted with epinephrine, and then increasing concentrations (0.125-1 mg/mL) of this extract were added cumulatively.

Results

The results have indicated extract to have a significant vasodilatory effect in a dose-dependent manner (EC = 0.52±0.03 mg/mL).

Conclusion

The findings provide preliminary evidence of the vasorelaxant effect of the aqueous extract of using a low-cost optical approach. However, the cellular and molecular mechanisms underlying this effect have yet to be revealed.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638309612240726060844
2024-11-04
2024-11-26
Loading full text...

Full text loading...

References

  1. Salehi B. Abu-Darwish M.S. Tarawneh A.H. Cabral C. Gadetskaya A.V. Salgueiro L. Hosseinabadi T. Rajabi S. Chanda W. Sharifi-Rad M. Mulaudzi R.B. Ayatollahi S.A. Kobarfard F. Arserim-Uçar D.K. Sharifi-Rad J. Ata A. Baghalpour N. Contreras M.M. Thymus spp. plants - Food applications and phytopharmacy properties. Trends Food Sci. Technol. 2019 85 287 306 10.1016/j.tifs.2019.01.020
    [Google Scholar]
  2. Elbouny H. Ouahzizi I. Bakali A. Sellam K. Alem C. A review on Moroccan thyme species: Ethnopharmacological, phytochemical, and biological aspects. Egyptian Pharmaceut J 2022 21 4 401 410 10.4103/epj.epj_83_22
    [Google Scholar]
  3. El Yaagoubi M. Mechqoq H. El Hamdaoui A. Jrv Mukku V. El Mousadik A. Msanda F. El Aouad N. A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects. J. Ethnopharmacol. 2021 278 114205 10.1016/j.jep.2021.114205 34000364
    [Google Scholar]
  4. Afonso A.F. Pereira O.R. Cardoso S.M. Health-promoting effects of Thymus phenolic-rich extracts: Antioxidant, anti-inflammatory and antitumoral properties. Antioxidants 2020 9 9 814 10.3390/antiox9090814 32882987
    [Google Scholar]
  5. Elbouny H. Ouahzizi B. Sellam K. Alem C. antioxidant potential of Thymus willdenowii boiss & reut. aqueous extract and effect of its supplementation on hyperlipidemia and paraoxonase-1 arylesterase activity in high-fat diet-fed rats. Curr. Drug Ther. 2023 18 1 1 10.2174/1574885518666230724163758
    [Google Scholar]
  6. Elbouny H. Ouahzizi B. Sellam K. Alem C. Hypolipidemic effect of Thymus munbyanus subsp. ciliatus Greuter & Burdet.: Guinea pig as a model for tyloxapol-induced hyperlipidemia. J Biol Act Prod Nat 2022 12 6 507 513 10.1080/22311866.2022.2162580
    [Google Scholar]
  7. Khouya T. Ramchoun M. Hmidani A. Amrani S. Benlyas M. Kasbi Chadli F. Ouguerram K. Alem C. Effect of supplementation with polyphenol extract of Thymus atlanticus on paraoxonase-1 activity, insulin resistance, and lipid profile in high-fat diet-fed hamsters. J. Food Biochem. 2022 46 9 e14225 10.1111/jfbc.14225 35575425
    [Google Scholar]
  8. Elbouny H. Ouahzizi B. El-guourrami O. Drioua S. Mbarek A.N. Sellam K. Alem C. Chemical profile and biological properties of the essential oil of Thymus atlanticus (Ball) Roussine. S. Afr. J. Bot. 2022 151 475 480 10.1016/j.sajb.2022.10.028
    [Google Scholar]
  9. Ramchoun M. Khouya T. Alibrahim E.A. Hmidani A. Sellam K. Amrani S. Harnafi H. Benlyas M. Kasbi Chadli F. Ouguerram K. Alem C. Thymus atlanticus polyphenol-rich extract regulates cholesterol metabolism by inhibiting its biosynthesis without affecting its excretion in hamsters fed a high-fat diet. Arch. Physiol. Biochem. 2023 129 3 618 625 10.1080/13813455.2020.1854308 33320714
    [Google Scholar]
  10. Khouya T. Ramchoun M. Amrani S. Harnafi H. Rouis M. Couchie D. Simmet T. Alem C. Anti-inflammatory and anticoagulant effects of polyphenol-rich extracts from Thymus atlanticus: An in vitro and in vivo study. J. Ethnopharmacol. 2020 252 112475 10.1016/j.jep.2019.112475 31843575
    [Google Scholar]
  11. Elbouny H. Ouahzizi B. Bekkouch O. Bennani A. Amrani S. Ramchoun M. Sellam K. Alem C. Thymus atlanticus supplementation attenuates hepatic steatosis in high-fat diet fed guinea pigs. J. Herbs Spices Med. Plants 2024 30 1 26 38 10.1080/10496475.2023.2248908
    [Google Scholar]
  12. Elbouny H. Ouahzizi B. Bekkouch O. Bennani A. Amrani S. Ramchoun M. Sellam K. Alem C. Thymus atlanticus (Ball) Roussine aqueous extract exerts lipid-lowering and anti-atherosclerotic effects in hyperlipidemic guinea pigs. Cardiovasc. Hematol. Disord. Drug Targets 2023 23 4 256 262 10.2174/011871529X270863231123063744 38038002
    [Google Scholar]
  13. Díaz-Martín D. Hernández-Jiménez J. Rodríguez-Valido M. Borges R. Measuring the contractile response of isolated tissue using an image sensor. Sensors 2015 15 4 9179 9188 10.3390/s150409179 25903550
    [Google Scholar]
  14. Borges R. Díaz-Martín D. Hernández-Jiménez J.G. Rodríguez-Valido M. Beltrán B. Analyzing isolated blood vessel contraction in multi-well plates. Naunyn Schmiedebergs Arch. Pharmacol. 2016 389 5 521 528 10.1007/s00210‑016‑1218‑6 26905519
    [Google Scholar]
  15. Borges R. The rebirth of isolated organ contraction studies for drug discovery and repositioning. Drug Discov. Today 2022 27 4 1128 1131 10.1016/j.drudis.2021.11.016 34823003
    [Google Scholar]
  16. Alamgeer A.C. Auger C. Chabert P. Lugnier C. Mushtaq M.N. Schini-Kerth V.B. Mechanisms underlying vasorelaxation induced in the porcine coronary arteries by Thymus linearis, Benth. J. Ethnopharmacol. 2018 225 211 219 10.1016/j.jep.2018.07.010 30009977
    [Google Scholar]
  17. Geleta B. Eyasu M. Kebamo S. Debella A. Makonnen E. Abebe A. In vitro vasodilatory effect of aqueous leaf extract of Thymus serrulatus on thoracic aorta of Guinea pigs. Asian Pac. J. Trop. Biomed. 2015 5 1 15 18 10.1016/S2221‑1691(15)30164‑7
    [Google Scholar]
  18. Gorzalczany S. Moscatelli V. Ferraro G. Artemisia copa aqueous extract as vasorelaxant and hypotensive agent. J. Ethnopharmacol. 2013 148 1 56 61 10.1016/j.jep.2013.03.061 23588093
    [Google Scholar]
  19. El-Akhal J. Oliveira A.P. Bencheikh R. Valentão P. Andrade P.B. Morato M. Vasorelaxant mechanism of herbal extracts from Mentha suaveolens, Conyza canadensis, Teucrium polium and Salvia verbenaca in the aorta of wistar rats. Molecules 2022 27 24 8752 10.3390/molecules27248752 36557886
    [Google Scholar]
  20. Eddouks M. Amssayef A. Bouadid I. EL-Haidani A. Antihypertensive and vasorelaxant effects of Rumex vesicarius (L.) through receptor-operated calcium channels in hypertensive rats. Cardiovasc. Hematol. Disord. Drug Targets 2022 22 1 67 82 10.2174/1871529X22666220531110308 35642122
    [Google Scholar]
  21. Amssayef A. Ajebli M. Eddouks M. Study of the antihypertensive effect of Scorzonera undulata ssp. deliciosa in albino wistar rats. Cardiovasc. Hematol. Agents Med. Chem. 2024 22 2 159 167 10.2174/0118715257243190231024164358 38083883
    [Google Scholar]
  22. Amssayef A. Eddouks M. Aqueous extract of Matricaria pubescens exhibits antihypertensive activity in L-NAME-induced hypertensive rats through its vasorelaxant effect. Cardiovasc. Hematol. Agents Med. Chem. 2019 17 2 135 143 10.2174/1871525717666191007151413 31589128
    [Google Scholar]
  23. Amssayef A. Ajebli M. Eddouks M. Aqueous extract of oakmoss produces antihypertensive activity in L-NAME-induced hypertensive rats through sGC-cGMP pathway. Clin. Exp. Hypertens. 2021 43 1 49 55 10.1080/10641963.2020.1797087 32706597
    [Google Scholar]
  24. Khouya T. Ramchoun M. Hmidani A. Phytochemical analysis and bioactivity evaluation of Moroccan Thymus atlanticus (Ball) fractions. Sci Afr 2021 11 1 15
    [Google Scholar]
  25. Parasuraman S. Anand David A.V. Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016 10 20 84 89 10.4103/0973‑7847.194044 28082789
    [Google Scholar]
  26. Khoo N.K.H. White C.R. Pozzo-Miller L. Zhou F. Constance C. Inoue T. Patel R.P. Parks D.A. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels. Free Radic. Biol. Med. 2010 49 3 339 347 10.1016/j.freeradbiomed.2010.04.022 20423726
    [Google Scholar]
  27. Perez-Vizcaino F. Duarte J. Jimenez R. Santos-Buelga C. Osuna A. Antihypertensive effects of the flavonoid quercetin. Pharmacol. Rep. 2009 61 1 67 75 10.1016/S1734‑1140(09)70008‑8 19307694
    [Google Scholar]
  28. Shen Y. Croft K.D. Hodgson J.M. Kyle R. Lee I.L.E. Wang Y. Stocker R. Ward N.C. Quercetin and its metabolites improve vessel function by inducing eNOS activity via phosphorylation of AMPK. Biochem. Pharmacol. 2012 84 8 1036 1044 10.1016/j.bcp.2012.07.016 22846602
    [Google Scholar]
  29. Sánchez M. Galisteo M. Vera R. Villar I.C. Zarzuelo A. Tamargo J. Pérez-Vizcaíno F. Duarte J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens. 2006 24 1 75 84 10.1097/01.hjh.0000198029.22472.d9 16331104
    [Google Scholar]
  30. Ferreira L.G. Evora P.R.B. Capellini V.K. Albuquerque A.A. Carvalho M.T.M. Gomes R.A.S. Parolini M.T. Celotto A.C. Effect of rosmarinic acid on the arterial blood pressure in normotensive and hypertensive rats: Role of ACE. Phytomedicine 2018 38 158 165 10.1016/j.phymed.2017.02.006 29425648
    [Google Scholar]
  31. Zhou H. Fu B. Xu B. Mi X. Li G. Ma C. Xie J. Li J. Wang Z. Rosmarinic acid alleviates the endothelial dysfunction induced by hydrogen peroxide in rat aortic rings via activation of AMPK. Oxid. Med. Cell. Longev. 2017 2017 1 9 10.1155/2017/7091904 28883905
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638309612240726060844
Loading
/content/journals/cddt/10.2174/0115701638309612240726060844
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test