Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

The significant public health effect of breast cancer is demonstrated by its high global prevalence and the potential for severe health consequences. The suppression of the proliferative effects facilitated by the estrogen receptor alpha (ERα) in the MCF-7 cell line is significant for breast cancer therapy.

Objective

The current work involves techniques for identifying potential inhibitors of ERα.

Methods

The method combines QSAR models based on machine learning with molecular docking to identify potential binders for the ERα. Further, molecular dynamics simulation studied the stability of the complexes, and ADMET analysis validated the compound’s properties.

Results

Two compounds ( and ) showed significant binding affinities with ERα, with binding energies comparable to the established binder RL4. The ADMET qualities showed advantageous characteristics resembling pharmaceutical drugs. The stable binding of these ligands in the active region of ERα during dynamic conditions was confirmed by molecular dynamics simulations. RMSD plots and conformational stability supported the ligands' persistent occupancy in the protein's binding site. After simulation, two hydrogen bonds were found within the protein-ligand complexes of and , with binding free energy values of -27.32 kcal/mol and -25.00 kcal/mol.

Conclusion

The study suggests that compounds and could be useful for developing innovative anti-ERα medicines. However, more research is needed to prove the compounds' breast cancer treatment efficacy. This will help develop new treatments for ERα-associated breast cancer.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638295736240315105737
2025-01-01
2024-11-01
Loading full text...

Full text loading...

References

  1. TirelliU. ChirumboloS. COVID -19 and cancer: A deadly pairing.Int. J. Cancer202114951199120010.1002/ijc.3360033861864
    [Google Scholar]
  2. MalviyaV.J. Introduction to cancer.Medicinal Plants and Cancer Chemoprevention.CRC Press202310.1201/9781003251712
    [Google Scholar]
  3. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  4. PengS.M. YangK.C. ChanW.P. WangY.W. LinL.J. YenA.M.F. SmithR.A. ChenT.H.H. Impact of the COVID-19 pandemic on a population-based breast cancer screening program.Cancer2020126245202520510.1002/cncr.3318032914864
    [Google Scholar]
  5. YagerJ.D. DavidsonN.E. Estrogen carcinogenesis in breast cancer.N. Engl. J. Med.2006354327028210.1056/NEJMra05077616421368
    [Google Scholar]
  6. BriskenC. O’MalleyB. Hormone action in the mammary gland.Cold Spring Harb. Perspect. Biol.2010212a00317810.1101/cshperspect.a00317820739412
    [Google Scholar]
  7. BaiZ. GustR. Breast cancer, estrogen receptor and ligands.Arch. Pharm.2009342313314910.1002/ardp.20080017419274700
    [Google Scholar]
  8. LewoniewskaS. OscilowskaI. ForlinoA. PalkaJ. Understanding the role of estrogen receptor status in PRODH/POX-dependent apoptosis/survival in breast cancer cells.Biology20211012131410.3390/biology1012131434943229
    [Google Scholar]
  9. ClarkeR.B. Steroid receptors and proliferation in the human breast.Steroids20036810-1378979410.1016/S0039‑128X(03)00122‑314667969
    [Google Scholar]
  10. Human breast cell proliferation and its relationship to steroid receptor expression.Available from:https://pubmed.ncbi.nlm.nih.gov/15497901/ (Accessed Oct 4, 2023).
  11. WangL.H. YangX.Y. ZhangX. MihalicK. FanY.X. XiaoW. HowardO.M.Z. AppellaE. MaynardA.T. FarrarW.L. Suppression of breast cancer by chemical modulation of vulnerable zinc fingers in estrogen receptor.Nat. Med.2004101404710.1038/nm96914702633
    [Google Scholar]
  12. WangL.H. YangX.Y. ZhangX. AnP. KimH.J. HuangJ. ClarkeR. OsborneC.K. InmanJ.K. AppellaE. FarrarW.L. Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer.Cancer Cell200610648749910.1016/j.ccr.2006.09.01517157789
    [Google Scholar]
  13. LeungE. KannanN. KrissansenG.W. FindlayM.P. BaguleyB.C. MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity.Cancer Biol. Ther.20109971772410.4161/cbt.9.9.1143220234184
    [Google Scholar]
  14. PetriB.J. PiellK.M. South WhittG.C. WiltA.E. PoultonC.C. LehmanN.L. ClemB.F. NystoriakM.A. WysoczynskiM. KlingeC.M. HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells.Cancer Lett.202151815216810.1016/j.canlet.2021.07.01534273466
    [Google Scholar]
  15. VoG.V. NguyenT.H.T. NguyenT.P. DoT.H.T. TranN.M.A. NguyenH.T. NguyenT.T. In silico and in vitro studies on the anti-cancer activity of artemetin, vitexicarpin and penduletin compounds from Vitex negundo. Saudi Pharm. J.20223091301131410.1016/j.jsps.2022.06.01836249935
    [Google Scholar]
  16. CaoH. SunY. WangL. PanY. LiZ. LiangY. In silico identification of novel inhibitors targeting the DNA-binding domain of the human estrogen receptor alpha.J. Steroid Biochem. Mol. Biol.202121310596610.1016/j.jsbmb.2021.10596634416373
    [Google Scholar]
  17. SinghK. MunugantiR.S.N. LeblancE. LinY.L. LeungE. LallousN. ButlerM. CherkasovA. RennieP.S. In silico discovery and validation of potent small-molecule inhibitors targeting the activation function 2 site of human oestrogen receptor α.Breast Cancer Res.20151712710.1186/s13058‑015‑0529‑825848700
    [Google Scholar]
  18. PangX. FuW. WangJ. KangD. XuL. ZhaoY. LiuA.L. DuG.H. Identification of estrogen receptor α antagonists from natural products via in vitro and in silico approaches.Oxid. Med. Cell. Longev.2018201811110.1155/2018/604014929861831
    [Google Scholar]
  19. TangJ. LuoY. LongG. ZhouL. MINDY1 promotes breast cancer cell proliferation by stabilizing estrogen receptor α.Cell Death Dis.2021121093710.1038/s41419‑021‑04244‑z34645792
    [Google Scholar]
  20. LiZ. WeiH. LiS. WuP. MaoX. The role of progesterone receptors in breast cancer.Drug Des. Devel. Ther.20221630531410.2147/DDDT.S33664335115765
    [Google Scholar]
  21. BourichaE.M. HakmiM. AkacharJ. ZouaidiaF. IbrahimiA. In-silico identification of potential inhibitors targeting the DNA binding domain of estrogen receptor α for the treatment of hormone therapy-resistant breast cancer.J. Biomol. Struct. Dyn.202240115203521010.1080/07391102.2020.186909433402049
    [Google Scholar]
  22. LiuY. MaH. YaoJ. ERα, A key target for cancer therapy: A review.OncoTargets Ther.2020132183219110.2147/OTT.S23653232210584
    [Google Scholar]
  23. JiangX. OrrB.A. KranzD.M. ShapiroD.J. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells.Endocrinology200614731419142610.1210/en.2005‑099616306080
    [Google Scholar]
  24. Garcia-OliveiraP. OteroP. PereiraA.G. ChamorroF. CarpenaM. EchaveJ. Fraga-CorralM. Simal-GandaraJ. PrietoM.A. Status and challenges of plant-anticancer compounds in cancer treatment.Pharmaceuticals202114215710.3390/ph1402015733673021
    [Google Scholar]
  25. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.0161432116665
    [Google Scholar]
  26. LeitzmannC. Characteristics and health benefits of phytochemicals.Res. Compl. Med.2016232697410.1159/000444063
    [Google Scholar]
  27. LiuR.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals.Am. J. Clin. Nutr.2003783517S520S10.1093/ajcn/78.3.517S12936943
    [Google Scholar]
  28. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  29. HosfieldD.J. WeberS. LiN.S. SauvageM. JoinerC.F. HancockG.R. SullivanE.A. NdukweE. HanR. CushS. LainéM. MaderS.C. GreeneG.L. FanningS.W. Stereospecific lasofoxifene derivatives reveal the interplay between estrogen receptor alpha stability and antagonistic activity in ESR1 mutant breast cancer cells.eLife202211e7251210.7554/eLife.7251235575456
    [Google Scholar]
  30. SchrodingerL. The PyMOL molecular graphics system.Version 1.3r1.2010
    [Google Scholar]
  31. Bento da SilvaA. GiacomoniF. PavotB. FillatreY. RothwellJ. Bartolomé SualdeaB. VeyratC. Garcia-VillalbaR. GladineC. KopecR. PhytoHub V1.4: A new release for the online database dedicated to food phytochemicals and their human metabolites.Food Bioactives and Health Conference2016
    [Google Scholar]
  32. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  33. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  34. HalgrenT.A. MMFF VI. MMFF94s option for energy minimization studies.J. Comput. Chem.199920772072910.1002/(SICI)1096‑987X(199905)20:7<720::AID‑JCC7>3.0.CO;2‑X34376030
    [Google Scholar]
  35. NevesB.J. BragaR.C. Melo-FilhoC.C. Moreira-FilhoJ.T. MuratovE.N. AndradeC.H. QSAR-based virtual screening: Advances and applications in drug discovery.Front. Pharmacol.20189127510.3389/fphar.2018.0127530524275
    [Google Scholar]
  36. MuhammadU. UzairuA. Ebuka ArthurD. Review on: Quantitative structure activity relationship (QSAR) modeling.J. Anal. Pharm. Res.20187210.15406/japlr.2018.07.00232
    [Google Scholar]
  37. DaviesM. NowotkaM. PapadatosG. DedmanN. GaultonA. AtkinsonF. BellisL. OveringtonJ.P. ChEMBL web services: Streamlining access to drug discovery data and utilities.Nucleic Acids Res.201543W1W612W62010.1093/nar/gkv35225883136
    [Google Scholar]
  38. GaultonA. BellisL.J. BentoA.P. ChambersJ. DaviesM. HerseyA. LightY. McGlincheyS. MichalovichD. Al-LazikaniB. OveringtonJ.P. ChEMBL: A large-scale bioactivity database for drug discovery.Nucleic Acids Res.201240D1D1100D110710.1093/nar/gkr77721948594
    [Google Scholar]
  39. LandrumG. Rdkit: Open-source cheminformatics. Release 2014.03.1Available from : https://zenodo.org/records/10398 201410.5281/ZENODO.10398
  40. BentoA.P. HerseyA. FélixE. LandrumG. GaultonA. AtkinsonF. BellisL.J. De VeijM. LeachA.R. An open source chemical structure curation pipeline using RDKit.J. Cheminform.20201215110.1186/s13321‑020‑00456‑133431044
    [Google Scholar]
  41. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and autodockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  42. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  43. ShuklaR. TripathiT. Molecular dynamics simulation of protein and protein–ligand complexes.Computer-Aided Drug Design. SinghD.B. SingaporeSpringer Singapore202013316110.1007/978‑981‑15‑6815‑2_7
    [Google Scholar]
  44. IzadiS. AnandakrishnanR. OnufrievA.V. Building water models: A different approach.J. Phys. Chem. Lett.20145213863387110.1021/jz501780a25400877
    [Google Scholar]
  45. HessB. KutznerC. van der SpoelD. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q26620784
    [Google Scholar]
  46. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  47. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  48. Van Der Spoel. GROMACS 2021.2 Manual.2021Available from : https://www.google.com/search?client=firefox-b-d&q=10.5281%2FZENODO.4723561 10.5281/ZENODO.4723561
  49. VanommeslaegheK. HatcherE. AcharyaC. KunduS. ZhongS. ShimJ. DarianE. GuvenchO. LopesP. VorobyovI. MackerellA.D.Jr CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields.J. Comput. Chem.201031467169010.1002/jcc.2136719575467
    [Google Scholar]
  50. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.2335423832629
    [Google Scholar]
  51. ZoeteV. CuendetM.A. GrosdidierA. MichielinO. SwissParam: A fast force field generation tool for small organic molecules.J. Comput. Chem.201132112359236810.1002/jcc.2181621541964
    [Google Scholar]
  52. DardenT. YorkD. PedersenL. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems.J. Chem. Phys.19939812100891009210.1063/1.464397
    [Google Scholar]
  53. HessB. BekkerH. BerendsenH.J.C. FraaijeJ.G.E.M. LINCS: A linear constraint solver for molecular simulations.J. Comput. Chem.199718121463147210.1002/(SICI)1096‑987X(199709)18:12<1463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  54. ParrinelloM. RahmanA. Polymorphic transitions in single crystals: A new molecular dynamics method.J. Appl. Phys.198152127182719010.1063/1.328693
    [Google Scholar]
  55. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.240842017212484
    [Google Scholar]
  56. BraunE. MoosaviS.M. SmitB. Anomalous effects of velocity rescaling algorithms: The flying ice cube effect revisited.J. Chem. Theory Comput.201814105262527210.1021/acs.jctc.8b0044630075070
    [Google Scholar]
  57. TavernelliI. CotestaS. Di IorioE.E. Protein dynamics, thermal stability, and free-energy landscapes: A molecular dynamics investigation.Biophys. J.20038542641264910.1016/S0006‑3495(03)74687‑614507727
    [Google Scholar]
  58. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS.J. Chem. Theory Comput.202117106281629110.1021/acs.jctc.1c0064534586825
    [Google Scholar]
  59. MillerB.R.III McGeeT.D.Jr SwailsJ.M. HomeyerN. GohlkeH. RoitbergA.E. MMPBSA.py : An efficient program for end-state free energy calculations.J. Chem. Theory Comput.2012893314332110.1021/ct300418h26605738
    [Google Scholar]
  60. JawarkarR.D. BakalR.L. ZakiM.E.A. Al-HussainS. GhoshA. GandhiA. MukerjeeN. SamadA. MasandV.H. LewaaI. QSAR based virtual screening derived identification of a novel hit as a SARS-CoV-229E 3CLpro Inhibitor: GA-MLR QSAR modeling supported by molecular Docking, molecular dynamics simulation and MMGBSA calculation approaches.Arab. J. Chem.202215110349910.1016/j.arabjc.2021.10349934909066
    [Google Scholar]
  61. CotuáJ. LLinásH. CotesS. Virtual screening based on QSAR and molecular docking of possible inhibitors targeting chagas CYP51.J. Chem.2021202111510.1155/2021/6640624
    [Google Scholar]
  62. GuerraC.J. LópezJ.M. FigueredoS.F. MuñozA.E. RoblesJ.R. 2D-qsar analysis of derivatives of quinoxaline 1,4-DI- N -oxides with activity against chagas’ disease.Quim. Nova201639610.5935/0100‑4042.20160078
    [Google Scholar]
  63. RajuB. VadivelanR. In silico studies of isoflavones as estrogen receptor α (ERα) activators targeting cardiovascular diseases.pnr202213410.47750/pnr.2022.13.S04.118
    [Google Scholar]
  64. KimS. WuJ.Y. BirzinE.T. FrischK. ChanW. PaiL.Y. YangY.T. MosleyR.T. FitzgeraldP.M.D. SharmaN. DahllundJ. ThorsellA.G. DiNinnoF. RohrerS.P. SchaefferJ.M. HammondM.L. Estrogen receptor ligands. II. Discovery of benzoxathiins as potent, selective estrogen receptor α modulators.J. Med. Chem.20044792171217510.1021/jm034243o15084115
    [Google Scholar]
  65. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  66. BanerjeeP. EckertA. O. SchreyA. K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res,20184625726310.1093/nar/gky318
    [Google Scholar]
  67. BaidyaA.T.K. KumarA. KumarR. Darreh-ShoriT. Allosteric binding sites of Aβ peptides on the acetylcholine synthesizing enzyme chat as deduced by in silico molecular modeling.Int. J. Mol. Sci.20222311607310.3390/ijms2311607335682752
    [Google Scholar]
  68. KannanS. KolandaivelP. The inhibitory performance of flavonoid cyanidin-3-sambubiocide against H274Y mutation in H1N1 influenza virus.J. Biomol. Struct. Dyn.201836164255426910.1080/07391102.2017.141342229199545
    [Google Scholar]
  69. ShahU. PatelA. PatelS. PatelM. PatelA. PatelS. PatelS. MaheshwariR. MtewaA.G. GandhiK. Role of natural and synthetic flavonoids as potential aromatase inhibitors in breast cancer: Structure-activity relationship perspective.Anticancer. Agents Med. Chem.202222112063207910.2174/187152062166621102610125234702156
    [Google Scholar]
  70. AwasthiM. SinghS. PandeyV.P. DwivediU.N. Molecular docking and 3D-QSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer.J. Biomol. Struct. Dyn.201533480481910.1080/07391102.2014.91215224702656
    [Google Scholar]
  71. BanjareL. VermaS.K. JainA.K. TharejaS. Design and pharmacophoric identification of flavonoid scaffold-based aromatase inhibitors.J. Heterocycl. Chem.20205793483349210.1002/jhet.4068
    [Google Scholar]
  72. ShahU. PatelS. PatelM. JainN. PandeyN. ChauhanA. PatelA. PatelS. In vitro cytotoxicity and aromatase inhibitory activity of flavonoids: synthesis, molecular docking and in silico adme prediction.Anticancer. Agents Med. Chem.20222271370138510.2174/187152062166621082710440634455966
    [Google Scholar]
  73. Tecalco-CruzA.C. Ramírez-JarquínJ.O. Macías-SilvaM. Sosa-GarrochoM. López-CamarilloC. Novel breast cancer treatment by targeting estrogen receptor-alpha stability using proteolysis-targeting chimeras (PROTACs) technology.In Breast Cancer MayrovitzH.N. Exon Publications: Brisbane2022
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638295736240315105737
Loading
/content/journals/cddt/10.2174/0115701638295736240315105737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test