Skip to content
2000
Volume 18, Issue 4
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background: Solid Dispersions (SDs) have been extensively used to increase the dissolution of poorly water-soluble drugs. However, there are few studies exploring SDs properties that must be considered during tablet development, like tabletability. Poorly water-soluble drugs with poor compression properties and high therapeutic doses, like gemfibrozil, are an additional challenge in the production of SDs-based tablets. Objective: This study evaluates the applicability of SDs to improve both tabletability and dissolution rate of gemfibrozil. A SD-based tablet formulation was also proposed. Methods: SDs were prepared by ball milling, using hydroxypropyl methylcellulose (HPMC) as a carrier, according to a 23 factorial design. The formulation variables were gemfibrozil:HPMC ratio, milling speed, and milling time. The response in the factorial analysis was the tensile strength of the compacted SDs. Dissolution rate and solid-state characterization of SDs were also performed. Results: SDs showed simultaneous drug dissolution enhancement and improved tabletability when compared to corresponding physical mixtures and gemfibrozil. The main variable influencing drug dissolution and tabletability was the gemfibrozil:HPMC ratio. Tablets containing gemfibrozil- HPMC-SD (1:0.250 w/w) and croscarmellose sodium showed fast and complete drug release, while those containing the same SD and sodium starch glycolate exhibited poor drug release due to their prolonged disintegration time. Conclusion: SDs proved to be effective for simultaneously improving tabletability and dissolution profile of gemfibrozil. Tablets containing gemfibrozil-HPMC-SD and croscarmellose sodium as disintegrating agent showed improved drug release and good mechanical strength, demonstrating the potential of HPMC-based SDs to simultaneously overcome the poor dissolution and tabletability properties of this drug.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/1567201817666201023121948
2021-05-01
2025-05-22
Loading full text...

Full text loading...

/content/journals/cdd/10.2174/1567201817666201023121948
Loading

  • Article Type:
    Research Article
Keyword(s): drug dissolution; Gemfibrozil; solid dispersion; solubility; tablet; tabletability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test