Skip to content
2000
Volume 11, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Treatment of infected bone defects presents a considerable challenge due to the complications that occur from significant bone damage concomitant with contaminated tissue. These wounds are most often treated in a two-step sequence, where the infection is first eliminated before any attempt to repair the bone is undertaken. In order to combine these two treatment steps into one procedure, a moldable bone grafting material was developed to deliver drugs in a temporally separated manner. This was accomplished by a two-layered calcium sulfate composite consisting of a moldable outer shell containing antibiotic-loaded poly(lactic-co-glycolic acid) microspheres wrapped around a preformed core containing an osteogenic drug. The release of vancomycin from the shell portion began immediately and continued over the course of 6 weeks, while the release of simvastatin from the core was delayed for 12 days before being released over the next 4 weeks. Bioactivity of vancomycin was shown in modified Kirby-Bauer experiments in which whole samples inhibited Staphylococcus aureus (S. aureus) growth for 2 weeks. This two-layered system is capable of delivering antibiotics locally for clinically relevant periods of time and delaying the release of osteogenic drugs to mimic a two-step procedure that has potential for treating infected bone defects.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/1567201811666140616160948
2014-10-01
2024-10-20
Loading full text...

Full text loading...

/content/journals/cdd/10.2174/1567201811666140616160948
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test