Skip to content
2000
image of Improvement in Compatibility and Drug Release Performance of Hot-Melt Pressure-Sensitive Adhesives by Physical Blending Technique

Abstract

Background

Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressure-sensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.

Methods

Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials. The physical compatibility between HMPSA and the modifying materials was investigated through release performance, viscosity, softening point, cohesion, and fluidity, so as to determine the most effective modifying material. The impact of the modified HMPSA on the release properties of different TCM ingredients was elucidated by the performance of water absorption and contact angle behavior.

Results

With the addition of the modifying materials, both the viscosity and the softening point of HMPSA were improved, with the flowability reduced and the cohesion maintained. The morphological and structural changes reflected the physical compatibility between HMPSA and the three modifying materials. According to the results of release experiments, PVP effectively improved the release performance of paeoniflorin, ephedrine hydrochloride, and cinnamaldehyde in HMPSA, with no significant impact on the release performance of eugenol. The changes in the drug release performance of HMPSA may be attributed to the improved hydrophilicity of HMPSA after physical modification.

Conclusion

The compatibility and the drug release performance of HMPSA were effectively enhanced after the addition of the modifying materials by the physical blending technique. Among the three modifying materials, PVP has been found to be an ideal modifying material for HMPSA in the field of TCM plasters due to its effects on drug release performance.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018339596241120191113
2025-01-14
2025-05-09
Loading full text...

Full text loading...

References

  1. Maw M.R. Tanas A.K. Dashtimoghadam E. Nikitina E.A. Ivanov D.A. Dobrynin A.V. Vatankhah-Varnosfaderani M. Sheiko S.S. Bottlebrush Thermoplastic Elastomers as Hot-Melt Pressure-Sensitive Adhesives. ACS Appl. Mater. Interfaces 2023 15 35 41870 41879 10.1021/acsami.3c07821 37625250
    [Google Scholar]
  2. Czakaj J. Sztorch B. Romanczuk-Ruszuk E. Brząkalski D. Przekop R.E. Organosilicon Compounds in Hot-Melt Adhesive Technologies. Polymers 2023 15 18 3708 10.3390/polym15183708 37765562
    [Google Scholar]
  3. Musazzi U.M. Ortenzi M.A. Gennari C.G.M. Casiraghi A. Minghetti P. Cilurzo F. Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing. Int. J. Pharm. 2020 586 10.1016/j.ijpharm.2020.119607 32652181
    [Google Scholar]
  4. Herbert K.M. Dolinski N.D. Boynton N.R. Murphy J.G. Lindberg C.A. Sibener S.J. Rowan S.J. Controlling the Morphology of Dynamic Thia-Michael Networks to Target Pressure-Sensitive and Hot Melt Adhesives. ACS Appl. Mater. Interfaces 2021 13 23 27471 27480 10.1021/acsami.1c05813 34086431
    [Google Scholar]
  5. Liu H. Geng H. Zhang X. Wang X. Hao J. Cui J. Hot Melt Super Glue: Multi‐Recyclable Polyphenol‐Based Supramolecular Adhesives. Macromol. Rapid Commun. 2022 43 7 10.1002/marc.202100830 35106862
    [Google Scholar]
  6. Yin S. Wu T. Lu J.Y. Liu Z.D. Guo T. Feng N.P. Improvement in compatibility of hot melt pressure-sensitive adhesive with cinnamon volatile oil and in vitro transdermal property by physical blending. Chin J Chin Mater Med. 2021 46 21 5650 5657 10.19540/j.cnki.cjcmm.20210319.305 34951218
    [Google Scholar]
  7. Peng X. Wang Y. Chen H. Ying J. Wang J. Preparation and properties of polyisobutene/organic montmorillonite hot melt pressure-sensitive adhesive (HMPSA). J. Adhes. 2019 95 13-14 1134 1145 10.1080/00218464.2018.1476145
    [Google Scholar]
  8. Novák I. Preto J. Vanko V. Rychlý J. Pavlinec J. Chodák I. Modification of Hot-Melt Adhesives Based on Metallocene Poly(ethylene-propylene) Copolymer for High Adhesion to Polar Surfaces. Polymers 2022 14 6 1253 10.3390/polym14061253 35335582
    [Google Scholar]
  9. Zhao Z. Liu P. Zhang C. Zhu X. Liu W. Li S. Zhang Y. Meng F. Hot-melt pressure-sensitive adhesives based on SIS-g-PB copolymer for transdermal delivery of hydrophilic drugs. Int. J. Adhes. Adhes. 2019 91 72 76 10.1016/j.ijadhadh.2019.03.003
    [Google Scholar]
  10. Zhao Y. Tian W.X. Li W.J. Shen L. Hong Y.L. Molding matrix formulation of hot-melt pressure-sensitive adhesive plaster of personalized traditional Chinese medicine preparations. Chin J Chin Mater Med. 2024 49 3 644 652 10.19540/j.cnki.cjcmm.20231121.302 38621868
    [Google Scholar]
  11. Arslan M. Ceylan O. Arslan R. Tasdelen M.A. Facile UV-induced covalent modification and crosslinking of styrene–isoprene–styrene copolymer via Paterno–Büchi [2 + 2] photocycloaddition. RSC Advances 2021 11 15 8585 8593 10.1039/D1RA00033K 35423409
    [Google Scholar]
  12. Xiangjun W. Li X. Lin Q. Xia J. Xue H. A thermoreversible crosslinking hot-melt adhesive: reversibility and performance. RSC Advances 2021 11 52 32565 32572 10.1039/D1RA05319A 35493556
    [Google Scholar]
  13. Velloso I. Bastos J.B.V. Luz R. Candido L.F. Mello B. Cazumbá A. Synthesis and Characterization of Polyester Derived from Renewable Source and its Application as Tackifiers Resins in Hot Melt Pressure Sensitive Adhesives (HMPSA). Macromol. Symp. 2020 394 1 10.1002/masy.202000114
    [Google Scholar]
  14. Ilyin S.O. Melekhina V.Y. Kostyuk A.V. Smirnova N.M. Hot-Melt and Pressure-Sensitive Adhesives Based on Styrene-Isoprene-Styrene Triblock Copolymer, Asphaltene/Resin Blend and Naphthenic Oil. Polymers 2022 14 20 4296 10.3390/polym14204296 36297874
    [Google Scholar]
  15. Mangang K.N. Thakran P. Halder J. Yadav K.S. Ghosh G. Pradhan D. Rath G. Rai V.K. PVP-microneedle array for drug delivery: mechanical insight, biodegradation, and recent advances. J. Biomater. Sci. Polym. Ed. 2023 34 7 986 1017 10.1080/09205063.2022.2155778 36541167
    [Google Scholar]
  16. Kirmic Cosgun S.N. Ceylan Tuncaboylu D. Cyclodextrin-linked PVP/PEG supramolecular hydrogels. Carbohydr. Polym. 2021 269 10.1016/j.carbpol.2021.118278 34294310
    [Google Scholar]
  17. Machado-Santos L. Baroudi K. Silikas N. Tribst J.P.M. Coelho Sinhoreti M.A. Brandt W.C. Liporoni P.C.S. Physical analysis of an acrylic resin modified by metal and ceramic nanoparticlesles. Dent. Med. Probl. 2023 60 4 657 664 10.17219/dmp/171844 37966919
    [Google Scholar]
  18. Raszewski Z. Chojnacka K. Mikulewicz M. Preparation and characterization of acrylic resins with bioactive glasses. Sci. Rep. 2022 12 1 16624 10.1038/s41598‑022‑20840‑1 36198737
    [Google Scholar]
  19. Hua L. Li Y. Wang Q. Hu Y. Zhao Z. Fabrication of Amphiphilic Hot-Melt Pressure Sensitive Adhesives for Transdermal Drug Delivery. J. Adhes. Sci. Technol. 2012 26 8-9 1109 1122 10.1163/016942411X576590
    [Google Scholar]
  20. Desroches G. Wang Y. Kubiak J. Macfarlane R. Crosslinking of Pressure-Sensitive Adhesives with Polymer-Grafted Nanoparticles. ACS Appl. Mater. Interfaces 2022 14 7 9579 9586 10.1021/acsami.1c22997 35147026
    [Google Scholar]
  21. Verker R. Wallach E.R. Vidavsky Y. Bolker A. Gouzman I. Novel axial dynamic mechanical analysis setup for thermo-analytical study and curing kinetics optimization of thermoset adhesives. Rev. Sci. Instrum. 2022 93 3 10.1063/5.0079002 35364994
    [Google Scholar]
  22. Hong H. Zou Q. Liu Y. Wang S. Shen G. Yan X. Supramolecular Nanodrugs Based on Covalent Assembly of Therapeutic Peptides toward In Vitro Synergistic Anticancer Therapy. ChemMedChem 2021 16 15 2381 2385 10.1002/cmdc.202100236 33908190
    [Google Scholar]
  23. Lee J.H. Shim G.S. Kim H.J. Kim Y. Adhesion Performance and Recovery of Acrylic PSA with Acrylic Elastomer (AE) Blends via Thermal Crosslinking for Application in Flexible Displays. Polymers 2019 11 12 1959 10.3390/polym11121959 31795256
    [Google Scholar]
  24. Natori N. Shibano Y. Hiroki A. Taguchi M. Miyajima A. Yoshizawa K. Kawano Y. Hanawa T. Preparation and Evaluation of Hydrogel Film Containing Tramadol for Reduction of Peripheral Neuropathic Pain. J. Pharm. Sci. 2023 112 1 132 137 10.1016/j.xphs.2022.05.013 35605686
    [Google Scholar]
  25. Kajita T. Noro A. Oda R. Hashimoto S. Highly Impact-Resistant Block Polymer-Based Thermoplastic Elastomers with an Ionically Functionalized Rubber Phase. ACS Omega 2022 7 3 2821 2830 10.1021/acsomega.1c05609 35097278
    [Google Scholar]
  26. Chen Y. Wang S. Hu Q. Zhou L. Self-emulsifying System Co-loaded with Paclitaxel and Coix Seed Oil Deeply Penetrated to Enhance Efficacy in Cervical Cancer. Curr Drug Deliv. 2023 20 7 919 926 10.2174/1567201819666220628094239 35762559
    [Google Scholar]
  27. Contardi M. Ayyoub A.M.M. Summa M. Kossyvaki D. Fadda M. Liessi N. Armirotti A. Fragouli D. Bertorelli R. Athanassiou A. Self-Adhesive and Antioxidant Poly(vinylpyrrolidone)/Alginate-Based Bilayer Films Loaded with Malva sylvestris Extracts as Potential Skin Dressings. ACS Appl. Bio Mater. 2022 5 6 2880 2893 10.1021/acsabm.2c00254 35583459
    [Google Scholar]
  28. Ossowicz-Rupniewska P. Bednarczyk P. Nowak M. Nowak A. Duchnik W. Kucharski Ł. Rokicka J. Klimowicz A. Czech Z. Sustainable UV-Crosslinkable Acrylic Pressure-Sensitive Adhesives for Medical Application. Int. J. Mol. Sci. 2021 22 21 11840 10.3390/ijms222111840 34769271
    [Google Scholar]
  29. Dzeikala O. Prochon M. Marzec A. Szczepanik S. Preparation and Characterization of Gelatin-Agarose and Gelatin-Starch Blends Using Alkaline Solvent. Int. J. Mol. Sci. 2023 24 2 1473 10.3390/ijms24021473 36674988
    [Google Scholar]
  30. Paul R. John B. Sahoo S.K. UV-Curable Bio-Based Pressure-Sensitive Adhesives: Tuning the Properties by Incorporating Liquid-Phase Alkali Lignin-Acrylates. Biomacromolecules 2022 23 3 816 828 10.1021/acs.biomac.1c01249 35061364
    [Google Scholar]
  31. Medlej M.K. Le Floch S. Nasser G. Li S. Hijazi A. Pochat-Bohatier C. Correlations between rheological and mechanical properties of fructo-polysaccharides extracted from Ornithogalum billardieri as biobased adhesive for biomedical applications. 2022 10.1016/j.ijbiomac.2022.04.106
    [Google Scholar]
  32. Chen X. Liu W. Zhao Y. Jiang L. Xu H. Yang X. Preparation and characterization of PEG-modified polyurethane pressure-sensitive adhesives for transdermal drug delivery. Drug Dev. Ind. Pharm. 2009 35 6 704 711 10.1080/03639040802512235 19514985
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018339596241120191113
Loading
/content/journals/cdd/10.2174/0115672018339596241120191113
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: HMPSA ; compatibility ; drug release ; physical modification ; PVP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test