Skip to content
2000
image of Development, Optimization, and Evaluation of Rutin-Loaded Liposomes in the Management of Rheumatoid Arthritis

Abstract

Background

Rheumatoid arthritis is a chronic autoimmune disease, progressively distinctive cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents one of the utmost promising scientific technologies of the 21st century. Nanocarriers could be the key to unlocking its potential by encapsulating Rutin in targeted drug delivery systems, potentially for targeted Rheumatoid arthritis therapy.

Objective

The rationale of current research is to prepare liposomes loaded with a bioflavonoid drug rutin for effective management of rheumatoid arthritis.

Materials and Methods

This study investigated the formulation of rutin liposomes using the thin-film hydration technique, also known as the Bangham method. A Box-Behnken design was employed to optimize the formulation parameters. The LP2 batch was then characterized for its mean particle size, zeta potential, shape, diffraction pattern, and thermal properties. Finally, the anti-oxidant and anti-inflammatory potential of the rutin liposomes were evaluated using appropriate assays.

Results

Out of thirteen batches, LP2 was found to be an optimized batch with a mean particle size of 167.1 nm, zeta potential -13.50 mV, and entrapment efficiency of 61.22%. The above results showed higher stability of rutin liposomes. Further characterization of LP2 for morphological assessment, XRD analysis, and DSC revealed its spherical shape less than 1 µm, polycrystalline nature, and thermographic peak at 139°C, respectively. Evaluation of the antioxidant properties and anti-inflammatory potential of LP2 revealed its maximum therapeutic potential in the reduction of inflammation and protein denaturation when evaluated assays.

Conclusion

Rutin liposomal formulation has tremendous potential for the management of Rheumatoid arthritis due to its enhanced bioavailability, anti-oxidant, and anti-inflammatory properties when compared to free rutin.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018321817241120075724
2025-01-10
2025-05-12
Loading full text...

Full text loading...

References

  1. Venetsanopoulou A.I. Alamanos Y. Voulgari P.V. Drosos A.A. Epidemiology and risk factors for RA development. Mediterr. J. Rheumatol. 2023 34 4 404 413 10.31138/mjr.301223.eaf 38282942
    [Google Scholar]
  2. Xu J. Copenhaver S.A. Crispin R.T. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Pharmacol. Rev. 2021 73 4 1198 1268 10.1038/s41413‑018‑0016‑9
    [Google Scholar]
  3. Senthelal S. Li J. Ardeshirzadeh S. Thomas M.A. Arthritis. StatPearls. Treasure Island, FL StatPearls Publishing 2022 10.1007/978‑3‑031‑47307‑4_29
    [Google Scholar]
  4. Nicholson L.B. The immune system. Essays Biochem. 2016 60 3 275 301 10.1042/EBC20160017 27784777
    [Google Scholar]
  5. Firestein G.S. McInnes I.B. Immunopathogenesis of rheumatoid arthritis. Immunity 2017 46 2 183 196 10.1016/j.immuni.2017.02.006 28228278
    [Google Scholar]
  6. Radu A.F. Bungau S.G. Management of rheumatoid arthritis: An overview. Cells 2021 10 11 2857 10.3390/cells10112857 34831081
    [Google Scholar]
  7. Rahman M. Beg S. Verma A. Al Abbasi F.A. Anwar F. Saini S. Akhter S. Kumar V. Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: Challenges and scope of nano/submicromedicine in its effective delivery. J. Pharm. Pharmacol. 2016 69 1 1 14 10.1111/jphp.12661 27774648
    [Google Scholar]
  8. Wu C.Y. Yang H.Y. Luo S.F. Lai J.H. From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis. Int. J. Mol. Sci. 2021 22 2 686 10.3390/ijms22020686 33445768
    [Google Scholar]
  9. Muvhulawa N. Dludla P.V. Ziqubu K. Mthembu S.X.H. Mthiyane F. Nkambule B.B. Mazibuko-Mbeje S.E. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacol. Res. 2022 178 106163 10.1016/j.phrs.2022.106163 35257898
    [Google Scholar]
  10. Kalita B. Das M.K. Rutin–phospholipid complex in polymer matrix for long-term delivery of rutin via skin for the treatment of inflammatory diseases. Artif. Cells Nanomed. Biotechnol. 2018 46 sup1 41 56 10.1080/21691401.2017.1411931 29226739
    [Google Scholar]
  11. Sun C. Wei J. Bi L. Rutin attenuates oxidative stress and proinflammatory cytokine levels in adjuvant-induced rheumatoid arthritis via inhibition of NF-κB. Pharmacology 2017 100 1-2 40 49 10.1159/000451027 28467992
    [Google Scholar]
  12. Malik S. Muhammad K. Waheed Y. Nanotechnology: A revolution in modern industry. Molecules 2023 28 2 661 10.3390/molecules28020661 36677717
    [Google Scholar]
  13. Janakiraman K. Krishnaswami V. Rajendran V. Natesan S. Kandasamy R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater. Today Commun. 2018 17 200 213 10.1016/j.mtcomm.2018.09.011 32289062
    [Google Scholar]
  14. Purohit D. Manchanda D. Makhija M. Rathi J. Verma R. Kaushik D. Pandey P. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Pat. Nanotechnol. 2021 15 1 15 34 10.2174/1872210514666200909154409 32912128
    [Google Scholar]
  15. Rao D.S. Rheumatoid Arthritis (RA) disease treatment with rutin stabilized nanoparticles. Austin J. Biotechnol. Bioeng. 2015 2 2 1043
    [Google Scholar]
  16. Hassan A.S. Soliman G.M. Rutin nanocrystals with enhanced anti-inflammatory activity: Preparation and ex vivo/in vivo evaluation in an inflammatory rat model. Pharmaceutics 2022 14 12 2727 10.3390/pharmaceutics14122727 36559220
    [Google Scholar]
  17. Coimbra A.T. Ferreira S. Duarte A.P. Genus Ruta: A natural source of high value products with biological and pharmacological properties. J. Ethnopharmacol. 2020 260 113076 10.1016/j.jep.2020.113076 32534112
    [Google Scholar]
  18. Gravandi M.M. Pourmanouchehri Z. Behbood L. Fakhri S. Mohammadi-Noori E. Zhaleh M. Shirvani S. Kiani A. Farzaei M.H. Rutin-loaded chitosan nanoparticles alleviated Freund’s adjuvant-induced rheumatoid arthritis via modulating oxidative stress and inflammatory parameters in Wistar rats. Naunyn Schmiedebergs Arch. Pharmacol. 2023 27 1 20 10.1007/s00210‑023‑02902‑x 38150015
    [Google Scholar]
  19. Bangham A.D. A new membrane model for biological studies. J. Mol. Biol. 1965 13 1 238 252 10.1016/S0022‑2836(65)80093‑6 5859039
    [Google Scholar]
  20. Allen T.M. Cullis P.R. Drug delivery systems: Nanoparticles for enhanced therapeutics. Drug Dev. Res. 2013 84 4 412 445 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  21. Bozzuto G. Molinari A. Liposomes as an efficient drug delivery system for poorly soluble drugs. Int. J. Mol. Sci. 2015 16 6 16015 16030 10.1002/9781118444726.ch2
    [Google Scholar]
  22. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394
    [Google Scholar]
  23. Umbarkar M. Thakare S. Surushe T. Giri A. Chopade V. Formulation and evaluation of liposome by thin film hydration method. J. Drug Deliv. Ther. 2021 11 1 72 76 10.22270/jddt.v11i1.4677
    [Google Scholar]
  24. Guo R. Zhang X. Yan D. Yu Y. Wang Y. Geng H. Wu Y. Liu Y. Kong L. Li X. Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy. Biomater. Sci. 2022 10 2 499 513 10.1039/D1BM01520F 34904598
    [Google Scholar]
  25. Mohanty S. Sahoo A.K. Konkimalla V.B. Pal A. Si S.C. Naringin in combination with isothiocyanates as liposomal formulations potentiates the anti-inflammatory activity in different acute and chronic animal models of rheumatoid arthritis. ACS Omega 2020 5 43 28319 28332 10.1021/acsomega.0c04300 33163815
    [Google Scholar]
  26. Jhun J. Moon J. Ryu J. Shin Y. Lee S. Cho K.H. Kang T. Cho M.L. Park S.H. Liposome/gold hybrid nanoparticle encoded with CoQ10 (LGNP-CoQ10) suppressed rheumatoid arthritis via STAT3/Th17 targeting. PLoS One 2020 15 11 e0241080 10.1371/journal.pone.0241080 33156836
    [Google Scholar]
  27. Sujitha S. Dinesh P. Rasool M. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. Eur. J. Pharm. Biopharm. 2020 149 170 191 10.1016/j.ejpb.2020.02.007 32068029
    [Google Scholar]
  28. Sun Z. Wei T. Zhou X. Liposomes encapsulated dimethyl curcumin regulates dipeptidyl peptidase I activity, gelatinase release and cell cycle of spleen lymphocytes in-vivo to attenuate collagen induced arthritis in rats. Int. Immunopharmacol. 2018 65 511 521 10.1016/j.intimp.2018.10.039 30408628
    [Google Scholar]
  29. Gouveia V.M. Lopes-de-Araújo J. Costa Lima S.A. Nunes C. Reis S. Hyaluronic acid-conjugated pH-sensitive liposomes for targeted delivery of prednisolone on rheumatoid arthritis therapy. Nanomedicine (Lond.) 2018 13 9 1037 1049 10.2217/nnm‑2017‑0377 29790395
    [Google Scholar]
  30. Sultana F. Neog M.K. Rasool M. Targeted delivery of morin, a dietary bioflavanol encapsulated mannosylated liposomes to the macrophages of adjuvant-induced arthritis rats inhibits inflammatory immune response and osteoclastogenesis. Eur. J. Pharm. Biopharm. 2017 115 229 242 10.1016/j.ejpb.2017.03.009 28315446
    [Google Scholar]
  31. Sultana F. Neog M.K. Rasool M. Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. Colloids Surf. B Biointerfaces 2017 155 349 365 10.1016/j.colsurfb.2017.04.046 28454064
    [Google Scholar]
  32. Park S.N. Lee M.H. Kim S.J. Yu E.R. Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system. Biochem. Biophys. Res. Commun. 2013 435 3 361 366 10.1016/j.bbrc.2013.04.093 23669037
    [Google Scholar]
  33. Varshneya A.P. Ravikumar P. Formulation and characterization of rutin trihydrate liposomes for topical delivery. Int J Pharm Res 2015 7 3 29 37 10.22376/ijlpr.2023.13.1.SP1.P75‑P82
    [Google Scholar]
  34. Xie Y. Guo Y. Cao S. Xue M. Fan Z. Gao C. Jin B. Hydroxysafflor yellow A attenuates hydrogen peroxide-induced oxidative damage on human umbilical vein endothelial cells. Evid. Based Complement. Alternat. Med. 2020 2020 1 8214128 10.1155/2020/8214128 33204292
    [Google Scholar]
  35. Priya V. Samridhi; Singh, N.; Dash, D.; Muthu, M.S. Nattokinase encapsulated nanomedicine for targeted thrombolysis: Development, improved in vivo thrombolytic effects, and ultrasound/photoacoustic imaging. Mol. Pharm. 2024 21 1 283 302 10.1021/acs.molpharmaceut.3c00830 38126777
    [Google Scholar]
  36. Guo Y. Shen L. Lu Y. Li H. Min K. Li L. Yu C. Zheng X. Preparation of rutin-liposome drug delivery systems and evaluation on their in-vitro antioxidant activity. Chin. Herb. Med. 2016 8 4 371 375 10.1016/S1674‑6384(16)60065‑5
    [Google Scholar]
  37. Roy A.S. Das S. Samanta A. Design, formulation and evaluation of liposome containing isoniazid. Int. J. Appl. Pharm. 2018 10 2 52 56 10.22159/ijap.2018v10i2.24174
    [Google Scholar]
  38. Rane S. Prabhakar B. Optimization of paclitaxel containing pH-sensitive liposomes by 3 factor, 3 level box-behnken design. Indian J. Pharm. Sci. 2013 75 4 420 426 10.4103/0250‑474X.119820 24302796
    [Google Scholar]
  39. Violina D. Kalita B. Simultaneous U.V. Simultaneous UV spectrophotometric estimation and validation of rutin and resveratrol in combined dosage form by Iso absorptive point method. Asian J. Pharm. Anal. 2018 8 3 147 152 10.5958/2231‑5675.2018.00027.3
    [Google Scholar]
  40. Halevas E.G. Avgoulas D.I. Katsipis G. Pantazaki A.A. Flavonoid-liposomes formulations: Physico-chemical characteristics, biological activities and therapeutic applications. Eur. J. Med. Chem. Rep. 2022 5 100059 10.1016/j.ejmcr.2022.100059
    [Google Scholar]
  41. Dhiman A. Singh D. Fatima K. Zia G. Development of rutin ethosomes for enhanced skin permeation. Int. J. Trad. Med. Appl. 2019 1 1 4 10 10.18689/ijtma‑1000102
    [Google Scholar]
  42. Kumar N. Rai A. Reddy N.D. Raj P.V. Jain P. Deshpande P. Mathew G. Kutty N.G. Udupa N. Rao C.M. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol. Rep. 2014 66 5 788 798 10.1016/j.pharep.2014.04.007 25149982
    [Google Scholar]
  43. Kubavat K. Trivedi P. Ansari H. Kongor A. Panchal M. Jain V. Sindhav G. Green synthesis of silver nanoparticles using dietary antioxidant rutin and its biological contour. Beni. Suef Univ. J. Basic Appl. Sci. 2022 11 1 115 10.1186/s43088‑022‑00297‑x
    [Google Scholar]
  44. Karpuz M. Atlihan-Gundogdu E. Demir E.S. Senyigit Z. Radiolabeled tedizolid phosphate liposomes for topical application: Design, characterization, and evaluation of cellular binding capacity. AAPS PharmSciTech 2021 22 2 62 10.1208/s12249‑020‑01917‑4 33528714
    [Google Scholar]
  45. Duan W. Li H. Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis. J. Nanobiotechnology 2018 16 1 58 10.1186/s12951‑018‑0382‑x 30060740
    [Google Scholar]
  46. Zhang S. Han Y. Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles. PLoS One 2018 13 3 e0194951 10.1371/journal.pone.0194951 29579133
    [Google Scholar]
  47. Bharathi D. Bhuvaneshwari V. Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: Antibacterial, antioxidant and cytotoxic activities. Res. Chem. Intermed. 2019 45 4 2065 2078 10.1007/s11164‑018‑03717‑9
    [Google Scholar]
  48. Kumarasinghe N. Dharmadeva S. Galgamuwa L.S. Prasadinie C. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu 2018 39 4 239 242 10.4103/ayu.AYU_27_18 31367147
    [Google Scholar]
  49. Madhuranga H.D. Samarakoon D.N. In-vitro anti-inflammatory egg albumin denaturation assay. Methodol 2023 1 5 10.23880/jonam‑16000411
    [Google Scholar]
  50. Hasan U.H. Uttra A.M. Rasool S. Evaluation of in vitro and in vivo anti-arthritic potential of Berberis calliobotrys. Bangladesh J. Pharmacol. 2015 10 4 807 819 10.3329/bjp.v10i4.23779
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018321817241120075724
Loading
/content/journals/cdd/10.2174/0115672018321817241120075724
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Box-Behnken Design ; Anti-Inflammatory ; RA ; Antioxidant ; Rutin ; Liposomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test