Skip to content
2000
image of Facile Synthesis of Monodisperse Gold Nanorods, Gold Nanobipyramids and Gold Nanocups with Different Coatings and Evaluation of Their Cellular Cytotoxicity

Abstract

Introduction

Assessing the cytotoxicity of gold nanoparticles (GNPs) has gained importance due to their development in the biomedical field.

Method

In this study, we systematically synthesized gold nanorods (GNRs), gold nanobipyramids (GNBPs), and gold nanocups (GNCs) using a seed-mediated method, with an average length of 32.53 ± 4.67 nm, 72.90 ± 7.54 nm and 118.01 ± 11.02 nm, respectively.

Results

Furthermore, using the cell counting kit-8 (CCK-8) assay, we assessed the cellular cytotoxicity of three different types of GNPs with various different surface coatings, such as organic cetyltrimethylammonium bromide (CTAB) and polyethylene glycol (PEG). The results showed that the cytotoxic behavior of GNPs was shape-dependent in the concentration range of 3.125 -100 μg/mL. The types of GNPs and their surface coating had a significant impact on how the GNPs behaved in cells. Compared to PEG-coated GNPs, which do not induce cell injury, CTAB-coated GNPs show more noticeable cytotoxicity.

Conclusion

Furthermore, compared to GNCs, the toxicity of GNRs and GNBPs against GES-1 cells, RAW 264.7 cells and LX-2 cells was greater. Our research provides an important new understanding of the effects of surface modification on the biocompatibility and the shape of GNPs in the biomedical field.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018337291241118045126
2025-01-09
2025-05-04
Loading full text...

Full text loading...

References

  1. Zheng J. Cheng X. Zhang H. Bai X. Ai R. Shao L. Wang J. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021 121 21 13342 13453 10.1021/acs.chemrev.1c00422 34569789
    [Google Scholar]
  2. Li M. Wei J. Song Y. Chen F. Gold nanocrystals: Optical properties, fine-tuning of the shape, and biomedical applications. RSC Advances 2022 12 36 23057 23073 10.1039/D2RA04242H 36090439
    [Google Scholar]
  3. Song H. Peng T. Wang X. Li B. Wang Y. Song D. Xu T. Liu X. Glutathione-sensitive mesoporous organosilica-coated gold nanorods as drug delivery system for photothermal therapy-enhanced precise chemotherapy. Front Chem. 2022 10 842682 10.3389/fchem.2022.842682 35281558
    [Google Scholar]
  4. Mousavi S.M. Hashemi S.A. Mazraedoost S. Yousefi K. Gholami A. Behbudi G. Ramakrishna S. Omidifar N. Alizadeh A. Chiang W.H. Multifunctional gold nanorod for therapeutic applications and pharmaceutical delivery considering cellular metabolic responses, oxidative stress and cellular longevity. Nanomaterials (Basel) 2021 11 7 1868 10.3390/nano11071868 34361251
    [Google Scholar]
  5. Wang C. Chen Y. Wang T. Ma Z. Su Z. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing. Adv. Funct. Mater. 2008 18 2 355 361 [J]. 10.1002/adfm.200700503
    [Google Scholar]
  6. Mahmoud M.A. O’Neil D. El-Sayed M.A. Shape- and symmetry-dependent mechanical properties of metallic gold and silver on the nanoscale. Nano Lett. 2014 14 2 743 748 10.1021/nl4040362 24328338
    [Google Scholar]
  7. He M.Q. Yu Y.L. Wang J.H. Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today 2020 35 101005 [J]. 10.1016/j.nantod.2020.101005
    [Google Scholar]
  8. Li N. Zhao P. Astruc D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 2014 53 7 1756 1789 10.1002/anie.201300441 24421264
    [Google Scholar]
  9. He Z. Wang G. Liang X. Takarada T. Maeda M. DNA base pair stacking assembly of anisotropic nanoparticles for biosensing and ordered assembly. Anal. Sci. 2021 37 3 415 419 10.2116/analsci.20SCR02 33071270
    [Google Scholar]
  10. Xiao T. Huang J. Wang D. Meng T. Yang X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020 206 120210 10.1016/j.talanta.2019.120210 31514855
    [Google Scholar]
  11. Daruich De Souza C. Ribeiro Nogueira B. Rostelato M.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd. 2019 798 714 740 [J]. 10.1016/j.jallcom.2019.05.153
    [Google Scholar]
  12. González-Rubio G. Guerrero-Martínez A. Liz-Marzán L.M. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res. 2016 49 4 678 686 10.1021/acs.accounts.6b00041 27035211
    [Google Scholar]
  13. Bali R. Harris A.T. Biogenic synthesis of Au nanoparticles using vascular plants. Ind. Eng. Chem. Res. 2010 49 24 12762 12772 [J]. 10.1021/ie101600m
    [Google Scholar]
  14. Zuhrotun A. Oktaviani D.J. Hasanah A.N. Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules 2023 28 7 3240 10.3390/molecules28073240 37050004
    [Google Scholar]
  15. Soto K.M. Mendoza S. López-Romero J.M. Gasca-Tirado J.R. Manzano-Ramírez A. Gold nanoparticles: Synthesis, application in colon cancer therapy and new approaches - review. Green Chem. Lett. Rev. 2021 14 4 665 678 [J]. 10.1080/17518253.2021.1998648
    [Google Scholar]
  16. Chou D.W. Huang C.J. Liu N.H. Synthesis of the small and uniform gold nanoparticles by electrochemical technique. J. Electrochem. Soc. 2016 163 10 D603 D607 [J]. 10.1149/2.0491610jes
    [Google Scholar]
  17. Saldan I. Dobrovetska O. Sus L. Makota O. Pereviznyk O. Kuntyi O. Reshetnyak O. Electrochemical synthesis and properties of gold nanomaterials. J. Solid State Electrochem. 2018 22 3 637 656 [J]. 10.1007/s10008‑017‑3835‑5
    [Google Scholar]
  18. Kuttner C. Mayer M. Dulle M. Moscoso A. López-Romero J.M. Förster S. Fery A. Pérez-Juste J. Contreras-Cáceres R. Seeded growth synthesis of gold nanotriangles: Size control, SAXS analysis, and SERS performance. ACS Appl. Mater. Interfaces 2018 10 13 11152 11163 10.1021/acsami.7b19081 29498508
    [Google Scholar]
  19. Hidayah A.N. Triyono D. Herbani Y. Saleh R. Tuning size and shape of gold nanoparticles using seed-mediated growth by unfocused femtosecond laser-induced plasma. Opt. Lett. 2023 48 8 2126 2129 10.1364/OL.486196 37058658
    [Google Scholar]
  20. Kumar K. Moitra P. Bashir M. Kondaiah P. Bhattacharya S. Natural tripeptide capped pH-sensitive gold nanoparticles for efficacious doxorubicin delivery both in vitro and in vivo. Nanoscale 2020 12 2 1067 1074 10.1039/C9NR08475D 31845927
    [Google Scholar]
  21. El-Sayed N. Schneider M. Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. J. Mater. Chem. B Mater. Biol. Med. 2020 8 39 8952 8971 10.1039/D0TB01610A 32901648
    [Google Scholar]
  22. Wang Y. Rao Z. Zhou J. Zheng L. Fu L. A chiral assembly of gold nanoparticle trimer-based biosensors for ultrasensitive detection of the major allergen tropomyosin in shellfish. Biosens. Bioelectron. 2019 132 84 89 10.1016/j.bios.2019.02.038 30856431
    [Google Scholar]
  23. Zhu X.M. Fang C. Jia H. Huang Y. Cheng C.H.K. Ko C.H. Chen Z. Wang J. Wang Y.X.J. Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings. Nanoscale 2014 6 19 11462 11472 10.1039/C4NR03865G 25155843
    [Google Scholar]
  24. Ribeiro C A S. Albuquerque L.J.C. De Castro C.E. One-pot synthesis of sugar-decorated gold nanoparticles with reduced cytotoxicity and enhanced cellular uptake. Colloids Surf. A Physicochem. Eng. Asp. 2019 580 123690
    [Google Scholar]
  25. He B. Yang D. Qin M. Zhang Y. He B. Dai W. Wang X. Zhang Q. Zhang H. Yin C. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles. Biochem. Biophys. Res. Commun. 2017 494 1-2 339 345 10.1016/j.bbrc.2017.10.026 28993197
    [Google Scholar]
  26. Mahmoud N.N. Al-Kharabsheh L.M. Khalil E.A. Abu-Dahab R. Interaction of gold nanorods with human dermal fibroblasts: Cytotoxicity, cellular uptake, and wound healing. Nanomaterials (Basel) 2019 9 8 1131 10.3390/nano9081131 31390794
    [Google Scholar]
  27. DeBrosse M.C. Comfort K.K. Untener E.A. Comfort D.A. Hussain S.M. High aspect ratio gold nanorods displayed augmented cellular internalization and surface chemistry mediated cytotoxicity. Mater. Sci. Eng. C 2013 33 7 4094 4100 10.1016/j.msec.2013.05.056 23910319
    [Google Scholar]
  28. Wan J. Wang J.H. Liu T. Xie Z. Yu X.F. Li W. Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. Sci. Rep. 2015 5 1 11398 10.1038/srep11398 26096816
    [Google Scholar]
  29. Mahmoud N.N. Interaction of gold nanorods with cell culture media: Colloidal stability, cytotoxicity and cellular death modality. J Drug Deliv Sci Tec 2020 60 101965
    [Google Scholar]
  30. Almada M. Leal-Martínez B.H. Hassan N. Kogan M.J. Burboa M.G. Topete A. Valdez M.A. Juárez J. Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol). Mater. Sci. Eng. C 2017 77 583 593 10.1016/j.msec.2017.03.218 28532069
    [Google Scholar]
  31. Alkilany A.M. Shatanawi A. Kurtz T. Caldwell R.B. Caldwell R.W. Toxicity and cellular uptake of gold nanorods in vascular endothelium and smooth muscles of isolated rat blood vessel: Importance of surface modification. Small 2012 8 8 1270 1278 10.1002/smll.201101948 22334586
    [Google Scholar]
  32. Zhao T. Yu K. Li L. Zhang T. Guan Z. Gao N. Yuan P. Li S. Yao S.Q. Xu Q.H. Xu G.Q. Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2014 6 4 2700 2708 10.1021/am405214w 24483257
    [Google Scholar]
  33. Chen M. He Y. Liu X. Zhu J. Liu R. Synthesis and optical properties of size-controlled gold nanoparticles. Powder Technol. 2017 311 25 33 [J]. 10.1016/j.powtec.2017.01.087
    [Google Scholar]
  34. Li Q. Zhuo X. Li S. Ruan Q. Xu Q-H. Wang J. Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv. Opt. Mater. 2015 3 6 801 812 [J]. 10.1002/adom.201400505
    [Google Scholar]
  35. Lin Y. Xu S. Yang J. Huang Y. Chen Z. Qiu B. Lin Z. Chen G. Guo L. Interesting optical variations of the etching of Au Nanobipyramid@Ag Nanorods and its application as a colorful chromogenic substrate for immunoassays. Sens. Actuators B Chem. 2018 267 502 509 [J]. 10.1016/j.snb.2018.04.060
    [Google Scholar]
  36. Gao F. Sun M. Xu L. Liu L. Kuang H. Xu C. Biocompatible cup‐shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent. Adv. Funct. Mater. 2017 27 24 1700605 10.1002/adfm.201700605
    [Google Scholar]
  37. Niidome T. Yamagata M. Okamoto Y. Akiyama Y. Takahashi H. Kawano T. Katayama Y. Niidome Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 2006 114 3 343 347 10.1016/j.jconrel.2006.06.017 16876898
    [Google Scholar]
  38. Chow T.H. Li N. Bai X. Zhuo X. Shao L. Wang J. Gold nanobipyramids: An emerging and versatile type of plasmonic nanoparticles. Acc. Chem. Res. 2019 52 8 2136 2146 10.1021/acs.accounts.9b00230 31368690
    [Google Scholar]
  39. Weng G. Shen X. Li J. Zhu J. Yang J. Zhao J. Multipole plasmon resonance in gold nanobipyramid: Effects of tip shape and size. Phys. Lett. A 2021 412 127577 [J]. 10.1016/j.physleta.2021.127577
    [Google Scholar]
  40. Jiang R. Qin F. Liu Y. Ling X.Y. Guo J. Tang M. Cheng S. Wang J. Colloidal gold nanocups with orientation‐dependent plasmonic properties. Adv. Mater. 2016 28 30 6322 6331 10.1002/adma.201601442 27167721
    [Google Scholar]
  41. Roy R. Kumar S. Tripathi A. Das M. Dwivedi P.D. Interactive threats of nanoparticles to the biological system. Immunol. Lett. 2014 158 1-2 79 87 10.1016/j.imlet.2013.11.019 24316409
    [Google Scholar]
  42. Yen H.J. Hsu S. Tsai C.L. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009 5 13 1553 1561 10.1002/smll.200900126 19326357
    [Google Scholar]
  43. Pan Y. Neuss S. Leifert A. Fischler M. Wen F. Simon U. Schmid G. Brandau W. Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007 3 11 1941 1949 10.1002/smll.200700378 17963284
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018337291241118045126
Loading
/content/journals/cdd/10.2174/0115672018337291241118045126
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: gold nanocups ; gold nanobipyramids ; Gold nanorods ; cellular cytotoxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test