Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

The misuse of antibiotics leads to a global increase in antibiotic resistance. Therefore, it is imperative to search for alternative compounds to conventional antibiotics. ZnO nanoparticles (Zn NP) are one of these alternatives because they are an effective option to overcome biofilm bacterial cells and a novel way to overcome multidrug resistance in bacteria. The current research study aims to characterize the efficacy of ZnO nanoparticles alone and in combination with other antibacterial drugs against bacterial biofilms.

Methods

ZnO NPs were prepared by co-precipitation method, and their anti-biofilm and antibacterial activities alone or combined with four types of broad-spectrum antibacterial (Norfloxacin, Colistin, Doxycycline, and Ampicillin) were evaluated against and bacterial strains. Finally, the cytotoxicity and the hemolytic activity were evaluated.

Results

ZnO NPs were prepared, and results showed that their size was around 10 nm with a spherical shape and a zeta potential of -21.9. In addition, ZnO NPs were found to have a strong antibacterial effect against Gram-positive and Gram-negative microorganisms, with a minimum inhibitory concentration (MIC) of 62.5 and 125 µg/mL, respectively. Additionally, they could eradicate biofilm-forming microorganisms at a concentration of 125 µg/m. ZnO NPs were found to be non-toxic to erythrocyte cells. Still, some toxicity was observed for Vero cells at effective concentration ranges needed to inhibit bacterial growth and eradicate biofilm-forming organisms. When combined with different antibacterial, ZnO NP demonstrated synergistic and additive effects with colistin, and the MIC and MBEC of the combination decreased significantly to 0.976 μg/mL against planktonic and biofilm strains of MDR Gram-positive bacteria, resulting in significantly reduced toxicity.

Conclusion

The findings of this study encourage the development of alternative therapies with high efficacy and low toxicity. ZnO nanoparticles have demonstrated promising results in overcoming multi-drug resistant bacteria and biofilms, and their combination with colistin has shown a significant reduction in toxicity. Further studies are needed to investigate the potential of ZnO nanoparticles as a viable alternative to conventional antibiotics.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018279213240110045557
2024-01-12
2024-12-26
Loading full text...

Full text loading...

References

  1. AllahverdiyevA.M. KonK.V. AbamorE.S. BagirovaM. RafailovichM. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents.Expert Rev. Anti Infect. Ther.20119111035105210.1586/eri.11.12122029522
    [Google Scholar]
  2. MichaelC.A. Dominey-HowesD. LabbateM. The antimicrobial resistance crisis: Causes, consequences, and management.Front. Public Health2014214510.3389/fpubh.2014.0014525279369
    [Google Scholar]
  3. AyukekbongJ.A. NtemgwaM. AtabeA.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies.Antimicrob. Resist. Infect. Control2017614710.1186/s13756‑017‑0208‑x28515903
    [Google Scholar]
  4. KoraAJ RastogiL Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria.Bioinorg. Chem. Appl.2013201387109710.1155/2013/871097
    [Google Scholar]
  5. SharmaN. JandaikS. KumarS. Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms.An. Acad. Bras. Cienc.2016883 suppl1689169810.1590/0001‑376520162015071327737336
    [Google Scholar]
  6. SackR.B. RahmanM. YunusM. KhanE.H. Antimicrobial resistance in organisms causing diarrheal disease.Clin. Infect. Dis.199724Suppl. 1S102S10510.1093/clinids/24.Supplement_1.S1028994788
    [Google Scholar]
  7. BaptistaP.V. McCuskerM.P. CarvalhoA. FerreiraD.A. MohanN.M. MartinsM. FernandesA.R. Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”.Front. Microbiol.20189144110.3389/fmicb.2018.0144130013539
    [Google Scholar]
  8. HwangI. HwangJ.H. ChoiH. KimK.J. LeeD.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved.J. Med. Microbiol.201261121719172610.1099/jmm.0.047100‑022956753
    [Google Scholar]
  9. MasadehM.M. KarasnehG.A. Al-AkhrasM.A. AlbissB.A. AljarahK.M. Al-azzamS.I. AlzoubiK.H. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria.Cytotechnology201567342743510.1007/s10616‑014‑9701‑824643389
    [Google Scholar]
  10. StewartP.S. William CostertonJ. Antibiotic resistance of bacteria in biofilms.Lancet2001358927613513810.1016/S0140‑6736(01)05321‑111463434
    [Google Scholar]
  11. HøibyN. BjarnsholtT. GivskovM. MolinS. CiofuO. Antibiotic resistance of bacterial biofilms.Int. J. Antimicrob. Agents201035432233210.1016/j.ijantimicag.2009.12.01120149602
    [Google Scholar]
  12. BlackledgeM.S. WorthingtonR.J. MelanderC. Biologically inspired strategies for combating bacterial biofilms.Curr. Opin. Pharmacol.201313569970610.1016/j.coph.2013.07.00423871261
    [Google Scholar]
  13. BeloinC. RenardS. GhigoJ.M. LebeauxD. Novel approaches to combat bacterial biofilms.Curr. Opin. Pharmacol.201418616810.1016/j.coph.2014.09.00525254624
    [Google Scholar]
  14. SharmaA. Kumar AryaD. DuaM. ChhatwalG.S. JohriA.K. Nano-technology for targeted drug delivery to combat antibiotic resistance.Taylor & Francis201213251332
    [Google Scholar]
  15. ZonaroE. LampisS. TurnerR.J. QaziS.J.S. ValliniG. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms.Front. Microbiol.2015658410.3389/fmicb.2015.0058426136728
    [Google Scholar]
  16. FernandoS GunasekaraT HoltonJ. Antimicrobial Nanoparticles: Applications and mechanisms of action.Sri Lankan J. Infect. Dis.201881210.4038/sljid.v8i1.8167
    [Google Scholar]
  17. AshajyothiC. HarishK.H. DubeyN. ChandrakanthR.K. Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: A nanoscale approach.J. Nanostruct. Chem.20166432934110.1007/s40097‑016‑0205‑2
    [Google Scholar]
  18. KathiresanK. ManivannanS. NabeelM.A. DhivyaB. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment.Colloids Surf. B Biointerfaces200971113313710.1016/j.colsurfb.2009.01.01619269142
    [Google Scholar]
  19. YounisA.B. HaddadY. KosaristanovaL. SmerkovaK. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023153e186010.1002/wnan.186036205103
    [Google Scholar]
  20. ShiL.E. LiZ.H. ZhengW. ZhaoY.F. JinY.F. TangZ.X. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201431217318610.1080/19440049.2013.86514724219062
    [Google Scholar]
  21. ShanJ. LiX. HuangZ. KongB. WangH. RenL. In situ sprayed difunctional gel avoiding microenvironments limitations to treat pressure ulcers.Macromol. Biosci.2023235230000610.1002/mabi.20230000636951403
    [Google Scholar]
  22. ShanJ. ZhangX. WangL. ZhaoY. Spatiotemporal catalytic nanozymes microneedle patches with opposite properties for wound management.Small20231936230234710.1002/smll.20230234737127862
    [Google Scholar]
  23. DongH. YangK. ZhangY. LiQ. XiuW. DingM. ShanJ. MouY. Photocatalytic Cu2WS4 nanocrystals for efficient bacterial killing and biofilm disruption.Int. J. Nanomedicine2022172735275010.2147/IJN.S36024635769516
    [Google Scholar]
  24. ShanJ. CheJ. SongC. ZhaoY. Emerging antibacterial nanozymes for wound healing.Smart Med.202323e2022002510.1002/SMMD.20220025
    [Google Scholar]
  25. BhandeR.M. KhobragadeC.N. ManeR.S. BhandeS. Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections.J. Nanopart. Res.2013151141310.1007/s11051‑012‑1413‑4
    [Google Scholar]
  26. VincentM.G. JohnN.P. NarayananP. VaniC. MuruganS. In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa.J. Appl. Pharm. Sci.20144741
    [Google Scholar]
  27. AbdulkareemE.H. MemarzadehK. AllakerR.P. HuangJ. PrattenJ. SprattD. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials.J. Dent.201543121462146910.1016/j.jdent.2015.10.01026497232
    [Google Scholar]
  28. BhattacharyyaP. AgarwalB. GoswamiM. MaitiD. BaruahS. TribediP. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae.Antonie van Leeuwenhoek20181111899910.1007/s10482‑017‑0930‑728889242
    [Google Scholar]
  29. JeslineA. JohnN.P. NarayananP.M. VaniC. MuruganS. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus.Appl. Nanosci.20155215716210.1007/s13204‑014‑0301‑x
    [Google Scholar]
  30. MohanA.C. RenjanadeviB. Preparation of Zinc Oxide nanoparticles and itscharacterization using scanning electron microscopy (SEM) and X-Raydiffraction(XRD).Procedia Technol.20162476176610.1016/j.protcy.2016.05.078
    [Google Scholar]
  31. DM. PK. KolliV.R. Characterization and antibacterial activity of ZnO nanoparticles synthesized by co precipitation method.Int. J. Appl. Pharmaceut.201810622422810.22159/ijap.2018v10i6.29376
    [Google Scholar]
  32. BaoY. HeJ. SongK. GuoJ. ZhouX. LiuS. Plant-extract-mediated synthesis of metal nanoparticles.J. Chem.2021202111410.1155/2021/6562687
    [Google Scholar]
  33. AliasS.S. IsmailA.B. MohamadA.A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation.J. Alloys Compd.2010499223123710.1016/j.jallcom.2010.03.174
    [Google Scholar]
  34. GetieS. BelayA. Chandra ReddyA. BelayZ. Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications.J. Nanomed. Nanotechno. S.20178004
    [Google Scholar]
  35. JavedR. UsmanM. TabassumS. ZiaM. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles.Appl. Surf. Sci.201638631932610.1016/j.apsusc.2016.06.042
    [Google Scholar]
  36. García-GómezC. GarcíaS. ObradorA. AlmendrosP. GonzálezD. FernándezM.D. Effect of ageing of bare and coated nanoparticles of zinc oxide applied to soil on the Zn behaviour and toxicity to fish cells due to transfer from soil to water bodies.Sci. Total Environ.202070613571310.1016/j.scitotenv.2019.13571331791765
    [Google Scholar]
  37. YanY. WangG. HuangJ. ZhangY. ChengX. ChuaiM. Brand-SaberiB. ChenG. JiangX. YangX. Zinc oxide nanoparticles exposure-induced oxidative stress restricts cranial neural crest development during chicken embryogenesis.Ecotoxicol. Environ. Saf.202019411041510.1016/j.ecoenv.2020.11041532151871
    [Google Scholar]
  38. CLSI CJM-SJPerformance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement.Available from:file:///C:/Users/Bisma/Downloads/CLSIM100-24-2014.pdf 2014
  39. MasadehM. AyyadA. HaddadR. AlsaggarM. AlzoubiK. AlrabadiN. Functional and toxicological evaluation of MAA-41: A novel rationally designed antimicrobial peptide using hybridization and modification methods from LL-37 and BMAP-28.Curr. Pharm. Des.202228262177218810.2174/138161282866622070515081735792128
    [Google Scholar]
  40. DengX. LuanQ. ChenW. WangY. WuM. ZhangH. JiaoZ. Nanosized zinc oxide particles induce neural stem cell apoptosis.Nanotechnology2009201111510110.1088/0957‑4484/20/11/11510119420431
    [Google Scholar]
  41. O’LearyW.M. Practical handbook of microbiology.CRC press1989
    [Google Scholar]
  42. ChristopherDD When does 2 plus 2 equal 5? A review of antimicrobial synergy testing.J. Clin. Microbiol.2014521241244128
    [Google Scholar]
  43. LucaV StringaroA ColoneM PiniA MangoniMLJC Esculentin (1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa.Cell Mol. Life Sci.2013701527732786
    [Google Scholar]
  44. da SilvaJ.B.Jr EspinalM. Ramón-PardoP. Antimicrobial resistance: Time for action.Rev. Panam. Salud Publica202044110.26633/RPSP.2020.13133005187
    [Google Scholar]
  45. ZerfasB.L. JooY. GaoJ. GramicidinA. Gramicidin a mutants with antibiotic activity against both gram‐positive and gram‐negative bacteria.ChemMedChem201611662963610.1002/cmdc.20150060226918268
    [Google Scholar]
  46. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S12195628243086
    [Google Scholar]
  47. SinghA. GautamP.K. VermaA. SinghV. ShivapriyaP.M. ShivalkarS. SahooA.K. SamantaS.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review.Biotechnol. Rep.202025e0042710.1016/j.btre.2020.e0042732055457
    [Google Scholar]
  48. TyagiP.K. GolaD. TyagiS. MishraA.K. KumarA. ChauhanN. AhujaA. SirohiS. Synthesis of zinc oxide nanoparticles and its conjugation with antibiotic: Antibacterial and morphological characterization.Environ. Nanotechnol. Monit. Manag.20201410039110.1016/j.enmm.2020.100391
    [Google Scholar]
  49. PereraW.P.T.D. DissanayakeR.K. RanatungaU.I. HettiarachchiN.M. PereraK.D.C. UnagollaJ.M. De SilvaR.T. PahalagedaraL.R. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications.RSC Advances20201051307853079510.1039/D0RA05755J35516060
    [Google Scholar]
  50. AhamedA.J. KumarP.V. Synthesis and characterization of ZnO nanoparticles by co-precipitation method at room temperature.J. Chem. Pharm. Res.201685624628
    [Google Scholar]
  51. KayaniZ.N. SaleemiF. BatoolI. Effect of calcination temperature on the properties of ZnO nanoparticles.Appl. Phys., A Mater. Sci. Process.2015119271372010.1007/s00339‑015‑9019‑1
    [Google Scholar]
  52. PadaliaH. MoteriyaP. ChandaS. Synergistic antimicrobial and cytotoxic potential of zinc oxide nanoparticles synthesized using Cassia auriculata leaf extract.Bionanoscience20188119620610.1007/s12668‑017‑0463‑6
    [Google Scholar]
  53. DurmusN.G. TaylorE.N. KummerK.M. WebsterT.J. Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites.Adv. Mater.201325405706571310.1002/adma.20130262723963848
    [Google Scholar]
  54. WangL. MuhammedM. Synthesis of zinc oxide nanoparticles with controlled morphology.J. Mater. Chem.19999112871287810.1039/a907098b
    [Google Scholar]
  55. SwaroopK SomashekarappaH. Effect of pH values on surface morphology and particle size variation in ZnO nanoparticles synthesised by co-precipitation method.Res. J. Recent Sci.201522772502
    [Google Scholar]
  56. ChaudharyA. KumarN. KumarR. SalarR.K. Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract.SN Appl. Sci.20191113610.1007/s42452‑018‑0144‑2
    [Google Scholar]
  57. XiongG PalU SerranoJ UcerK WilliamsR. Photoluminesence and FTIR study of ZnO nanoparticles: The impurity and defect perspective.Phys. Status Solidi C200631035773581
    [Google Scholar]
  58. BabayevskaN. PrzysieckaŁ. IatsunskyiI. NowaczykG. JarekM. JaniszewskaE. JurgaS. ZnO size and shape effect on antibacterial activity and cytotoxicity profile.Sci. Rep.2022121814810.1038/s41598‑022‑12134‑335581357
    [Google Scholar]
  59. PeulenT.O. WilkinsonK.J. Diffusion of nanoparticles in a biofilm.Environ. Sci. Technol.20114583367337310.1021/es103450g21434601
    [Google Scholar]
  60. KoutuV. ShastriL. MalikM.M. Effect of NaOH concentration on optical properties of zinc oxide nanoparticles.Mater. Sci. Pol.201634481982710.1515/msp‑2016‑0119
    [Google Scholar]
  61. MahamuniP.P. PatilP.M. DhanavadeM.J. BadigerM.V. ShadijaP.G. LokhandeA.C. BoharaR.A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity.Biochem. Biophys. Rep.201917718010.1016/j.bbrep.2018.11.00730582010
    [Google Scholar]
  62. FatehahM.O. AzizH.A. StollS. Stability of ZnO nanoparticles in solution. Influence of pH, dissolution, aggregation and disaggregation effects.J. Coll. Sci. Biotechnol.201431758410.1166/jcsb.2014.1072
    [Google Scholar]
  63. TejamayaM. Synthesis, characterization, and stability test of silver nanoparticles in ecotoxicology media.University of Birmingham2014
    [Google Scholar]
  64. BadawyA.M.E. LuxtonT.P. SilvaR.G. ScheckelK.G. SuidanM.T. TolaymatT.M. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.Environ. Sci. Technol.20104441260126610.1021/es902240k20099802
    [Google Scholar]
  65. JosephE SinghviG Chapter 4 - Multifunctional nanocrystals for cancer therapy: A potential nanocarrier.Nanomaterials for Drug Delivery and Therapy.William Andrew201910.1016/B978‑0‑12‑816505‑8.00007‑2
    [Google Scholar]
  66. BaekY.W. AnY.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.Sci. Total Environ.201140981603160810.1016/j.scitotenv.2011.01.01421310463
    [Google Scholar]
  67. ReddyK.M. FerisK. BellJ. WingettD.G. HanleyC. PunnooseA. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems.Appl. Phys. Lett.2007902121390210.1063/1.274232418160973
    [Google Scholar]
  68. ShakalM. In vitro evaluation of antibacterial properties of Zinc Oxide nanoparticles alone and in combination with antibiotics against avian pathogenic E. coli.J. World Poult. Res.2020102S278284
    [Google Scholar]
  69. BreijyehZ. JubehB. KaramanR. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it.Molecules2020256134010.3390/molecules2506134032187986
    [Google Scholar]
  70. NeuH.C. LabthavikulP. In vitro activity of norfloxacin, a quinolinecarboxylic acid, compared with that of beta-lactams, aminoglycosides, and trimethoprim.Antimicrob. Agents Chemother.1982221232710.1128/AAC.22.1.236214995
    [Google Scholar]
  71. ChukwudiC.U. GoodL. Doxycycline inhibits pre-rRNA processing and mature rRNA formation in E. coli.J. Antibiot.201972422523610.1038/s41429‑019‑0149‑030737453
    [Google Scholar]
  72. FalagasM.E. KasiakouS.K. SaravolatzL.D. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections.Clin. Infect. Dis.20054091333134110.1086/42932315825037
    [Google Scholar]
  73. RaynorB.D. Penicillin and ampicillin.Prim. Care Update Ob Gyns19974414715210.1016/S1068‑607X(97)00012‑7
    [Google Scholar]
  74. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. HasanH. MohamadD. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x30464967
    [Google Scholar]
  75. SouzaR.C. HaberbeckL.U. RiellaH.G. RibeiroD.H.B. CarciofiB.A.M. Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process.Braz. J. Chem. Eng.201936288589310.1590/0104‑6632.20190362s20180027
    [Google Scholar]
  76. ChandrikaK.R. MayiP.K. Role of nanoparticles in enhancing the antibacterial activity of antibiotics.Asian J. Pharm. Clin. Res.201259799
    [Google Scholar]
  77. GhasemiF. JalalR. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii.J. Glob. Antimicrob. Resist.2016611812210.1016/j.jgar.2016.04.00727530853
    [Google Scholar]
  78. Venubabu ThatiA. RoyS. PrasadM. ShivannavarC. GaddadS. Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus.Biosci Technol J.2010126469
    [Google Scholar]
  79. ApplerotG. LelloucheJ. PerkasN. NitzanY. GedankenA. BaninE. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility.RSC Advances2012262314232110.1039/c2ra00602b
    [Google Scholar]
  80. BanoeeM SeifS NazariZE JafariF ShahverdiHR ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli.J. Biomed. Mater. Res. B Appl. Biomater.2010932557561
    [Google Scholar]
  81. EhsanS. SajjadM. Bioinspired synthesis of zinc oxide nanoparticle and its combined efficacy with different antibiotics against multidrug resistant bacteria.J. Biomater. Nanobiotechnol.20178215917510.4236/jbnb.2017.82011
    [Google Scholar]
  82. YahavD. FarbmanL. LeiboviciL. PaulM. Colistin: New lessons on an old antibiotic.Clin. Microbiol. Infect.2012181182910.1111/j.1469‑0691.2011.03734.x22168320
    [Google Scholar]
  83. FadwaA.O. AlbaragA.M. AlkoblanD.K. MateenA. Determination of synergistic effects of antibiotics and Zno NPs against isolated E. Coli and A. Baumannii bacterial strains from clinical samples.Saudi J. Biol. Sci.20212895332533710.1016/j.sjbs.2021.05.05734466112
    [Google Scholar]
  84. FadwaA.O. AlkoblanD.K. MateenA. AlbaragA.M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains.Saudi J. Biol. Sci.202128192893510.1016/j.sjbs.2020.09.06433424384
    [Google Scholar]
  85. BowersD.R. CaoH. ZhouJ. LedesmaK.R. SunD. LomovskayaO. TamV.H. Assessment of minocycline and polymyxin B combination against Acinetobacter baumannii.Antimicrob. Agents Chemother.20155952720272510.1128/AAC.04110‑1425712362
    [Google Scholar]
  86. ZhaoL.H. ZhangJ. SunS.Q. Stable aqueous ZnO nanoparticles with green photoluminescence and biocompatibility.J. Lumin.2012132102595259810.1016/j.jlumin.2012.04.028
    [Google Scholar]
  87. DasD. NathB.C. PhukonP. kalitaA. DoluiS.K. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity.Colloids Surf. B Biointerfaces201311155656010.1016/j.colsurfb.2013.06.04123891844
    [Google Scholar]
  88. LiangC. JiaZ. ChenR. An automated particle size analysis method for SEM images of powder coating particles.Coatings2023139154710.3390/coatings13091547
    [Google Scholar]
  89. ZhangS. WangC. Precise analysis of nanoparticle size distribution in TEM Image.Methods Protoc.2023646310.3390/mps604006337489430
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018279213240110045557
Loading
/content/journals/cdd/10.2174/0115672018279213240110045557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test