Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

is the most adapted tree species in different medicinal eco-systems and has resilience against climate changes. This multiple-use tree provides healthy foods, snacks, honey, and fuel. Besides this, it has immense promising applications by offering antimicrobial and antibacterial activities for targeted uses. This validates the court of Hippocrates that let food be the medicine and medicine be the food for which moringa qualifies.

Objective

The objective of this study is to assess the antioxidant of , antibacterial activity of hydro-ethanolic extract, and further investigate healing potential of for corneal ulcers and analysis.

Methods

To evaluate the antioxidant and antibacterial potency of the hydro-ethanolic extract of on clinically isolated multidrug-resistant strains of using agar well diffusion assay. Furthermore, , healing response of extract was analysed on corneal ulcers induced in rabbit eyes infected with methicillin-resistant .

Results

The extract exhibited exponential antioxidant activity. antibacterial activity was evaluated by agar well diffusion assay showing zone of inhibition ranging from 11.05 ± 0.36 to 20 ± 0.40 mm at concentrations of 20, 40, 80, and 160 mg/ml, whereas, in our finding, no zone of inhibition was observed below 20 mg/ml concentration, which indicated that there is threshold limit below which the antibacterial activity of extract is not observed. Furthermore, continuous application of 3% and 5% extract (eye drop) four times a day for 14 consecutive days showed a significant healing response of the eyes of rabbits with corneal ulcers.

Conclusion

These results suggest that extract could be a viable alternative or in combination could be used in existing antibacterial therapies for corneal ulcers. Additionally, there is a possibility of commercial formulation of extract in the form of deliverable pharmaceutical products; therefore, it should be explored further.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018275561240228065755
2024-04-17
2024-12-26
Loading full text...

Full text loading...

References

  1. ByrdL.B. MartinN. Corneal Ulcer.StatPearls Publishing2022
    [Google Scholar]
  2. UngL. AcharyaN.R. AgarwalT. AlfonsoE.C. BaggaB. BispoP.J.M. BurtonM.J. DartJ.K.G. DoanT. FleiszigS.M.J. GargP. GilmoreM.S. GritzD.C. HazlettL.D. IovienoA. JhanjiV. KempenJ.H. LeeC.S. LietmanT.M. MargolisT.P. McLeodS.D. MehtaJ.S. MillerD. PearlmanE. PrajnaL. PrajnaN.V. SeitzmanG.D. ShanbhagS.S. SharmaN. SharmaS. SrinivasanM. StapletonF. TanD.T.H. TandonR. TaylorH.R. TuE.Y. TuliS.S. VajpayeeR.B. Van GelderR.N. WatsonS.L. ZegansM.E. ChodoshJ. Infectious corneal ulceration: A proposal for neglected tropical disease status.Bull. World Health Organ.2019971285485610.2471/BLT.19.23266031819296
    [Google Scholar]
  3. TingD.S.J. HoC.S. DeshmukhR. SaidD.G. DuaH.S. Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance.Eye20213541084110110.1038/s41433‑020‑01339‑333414529
    [Google Scholar]
  4. AbouzeidA.I. EissaS.A.E. AboelnourA.E. AwadA.M.R. Bacterial and fungal causes of infectious keratitis among patients attending Research Institute of Ophthalmology.Bull. Natl. Res. Cent.20204417210.1186/s42269‑020‑00330‑y
    [Google Scholar]
  5. LeeJ.W. SomervilleT. KayeS.B. RomanoV. Staphylococcus aureus keratitis: Incidence, pathophysiology, risk factors and novel strategies for treatment.J. Clin. Med.202110475810.3390/jcm1004075833668633
    [Google Scholar]
  6. EgrilmezS. Yildirim-ThevenyŞ. Treatment-resistant bacterial keratitis: Challenges and solutions.Clin. Ophthalmol.20201428729710.2147/OPTH.S18199732099313
    [Google Scholar]
  7. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  8. ShriwastavS. KaurN. BalaR. DevJ. HassanM. Harshita KhatanaC. MittalD. AmanS. ChauhanJ. In vitro antibacterial potency of leaf extract of moringa oleifera against NFGNB isolated from UTI patients and their plasmid profiling.J. Pure Appl. Microbiol.202317122223010.22207/JPAM.17.1.11
    [Google Scholar]
  9. DhongadeH.J. PaikraB.K. GidwaniB. Phytochemistry and pharmacology of moringa oleifera lam. J. Pharmacopunct.201720319420010.3831/KPI.2017.20.02230087795
    [Google Scholar]
  10. KumarS. BhattacharyaA. TiwariP. SahuP.K. A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J. Pharm. Bioallied Sci.201810418119110.4103/JPBS.JPBS_126_1830568375
    [Google Scholar]
  11. PadayacheeB. BaijnathH. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera.S. Afr. J. Bot.202012930431610.1016/j.sajb.2019.08.021
    [Google Scholar]
  12. BatihaG.E.S. BeshbishyA.M. IkramM. MullaZ.S. El-HackM.E.A. TahaA.E. AlgammalA.M. ElewaY.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin.Foods20209337410.3390/foods903037432210182
    [Google Scholar]
  13. ZhaoL. WangH. DuX. The therapeutic use of quercetin in ophthalmology: Recent applications.Biomed. Pharmacother.202113711137110.1016/j.biopha.2021.11137133561647
    [Google Scholar]
  14. CaoS. WanC. YuY. ZhouS. LiuW. TianS. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures.Pharmacogn. Mag.2011725404510.4103/0973‑1296.7590021472078
    [Google Scholar]
  15. RahmanM.M. IslamM.B. BiswasM. Khurshid AlamA.H.M. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh.BMC Res. Notes20158162110.1186/s13104‑015‑1618‑626518275
    [Google Scholar]
  16. BaldisserottoA. BarbariR. TupiniC. BuzziR. DuriniE. LamprontiI. ManfrediniS. BaldiniE. VertuaniS. Multifunctional profiling of moringa oleifera leaf extracts for topical application: A comparative study of different collection time.Antioxidants202312241110.3390/antiox1202041136829968
    [Google Scholar]
  17. AmanS. MittalD. ShriwastavS. TuliH.S. ChauhanS. SinghP. SharmaS. SainiR.V. KaurN. SainiA.K. Prevalence of multidrug-resistant strains in device associated nosocomial infection and their in vitro killing by nanocomposites.Ann. Med. Surg.20227810368710.1016/j.amsu.2022.10368735734711
    [Google Scholar]
  18. ChalotraR. DhanawatM. ChauhanS. MujwarS. and GuptaS. Evaluation of Iris Kashmiriana Baker plant extracts against nociception and rheumatoid arthritis in experimental rats: A concept proof by In-silico model.J. Ethnopharmacol.202432111749810.1016/j.jep.2023.117498
    [Google Scholar]
  19. AmanS. KaurN. MittalD. SharmaD. ShuklaK. SinghB. SharmaA. SiwalS.S. ThakurV.K. JoshiH. GuptaR. SainiR.V. SainiA.K. Novel biocompatible green silver nanoparticles efficiently eliminates multidrug resistant nosocomial pathogens and mycobacterium species.Indian J. Microbiol.2023631738310.1007/s12088‑023‑01061‑037188239
    [Google Scholar]
  20. ChauhanS. KaurN. SainiA.K. AmanS. ChauhanJ. KumarH. Colistin resistant gram-negative bacteria isolated from various clinical samples in north indian tertiary care center.Int. J. Pharmaceut. Quality Assura.2022133152310.25258/ijpqa.13.3.18
    [Google Scholar]
  21. KaurN. ShriwastavS. DevJ. AmanS. HassanM. KumarA. BalaR. SinghM. Mechanistic insights of Euphorbia milii des moul mediated biocompatible and non-cytotoxic, antimicrobial nanoparticles: An answer to multidrug resistant bacteria.World J. Microbiol. Biotechnol.202339821010.1007/s11274‑023‑03653‑w37246185
    [Google Scholar]
  22. HuangY. MeekK.M. HoM.W. PatersonC.A. Anaylsis of birefringence during wound healing and remodeling following alkali burns in rabbit cornea.Exp. Eye Res.200173452153210.1006/exer.2001.105711825023
    [Google Scholar]
  23. MujwarS. Computational bioprospecting of andrographolide derivatives as potent cyclooxygenase-2 inhibitors.Biomed. Biotechnol. Res. J.20215444610.4103/bbrj.bbrj_56_21
    [Google Scholar]
  24. ShahK. MujwarS. Delineation of a novel non-steroidal anti-inflammatory drugs derivative using molecular docking and pharmacological assessment.Indian J. Pharm. Sci.202284310.36468/pharmaceutical‑sciences.959
    [Google Scholar]
  25. KaurA. MujwarS. AdlakhaN. In-silico analysis of riboswitch of Nocardia farcinica for design of its inhibitors and pharmacophores.Int. J. Comput. Biol. Drug Des.20169326110.1504/IJCBDD.2016.078278
    [Google Scholar]
  26. MujwarS. ShahK. GuptaJ.K. GourA. Docking based screening of curcumin derivatives: A novel approach in the inhibition of tubercular DHFR.Int. J. Comput. Biol. Drug Des.202114429710.1504/IJCBDD.2021.118830
    [Google Scholar]
  27. ShahK. MujwarS. KrishnaG. GuptaJ.K. Computational design and biological depiction of novel naproxen derivative.Assay Drug Dev. Technol.202018730831710.1089/adt.2020.97732749851
    [Google Scholar]
  28. MujwarS. TripathiA. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans.J. Mol. Model.202228719310.1007/s00894‑022‑05185‑w35716240
    [Google Scholar]
  29. MujwarS. HarwanshR.K. In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19.Struct. Chem.20223351517152810.1007/s11224‑022‑01943‑x35502321
    [Google Scholar]
  30. AgrawalN. MujwarS. GoyalA. GuptaJ.K. Phytoestrogens as potential antiandrogenic agents against prostate cancer: An in silico analysis.Lett. Drug Des. Discov.2022191697810.2174/1570180818666210813121431
    [Google Scholar]
  31. PradhanP. SoniN. ChaudharyL. MujwarS. PardasaniK.R. “In-silico prediction of riboswitches and design of their potent inhibitors for H1N1, H2N2 and H3N2 strains of influenza virus”.Biosci. Biotechnol. Res. Asia20151232173218610.13005/bbra/1889
    [Google Scholar]
  32. KciukM. MujwarS. RaniI. MunjalK. GielecińskaA. KontekR. ShahK. Computational bioprospecting guggulsterone against ADP ribose phosphatase of SARS-CoV-2.Molecules20222723828710.3390/molecules2723828736500379
    [Google Scholar]
  33. RaniI. Anju goyal role of GSK3 (Glycogen Synthase Kinase 3) as tumor promoter and tumor suppressor-A review.Plant Arch.20191913601365
    [Google Scholar]
  34. RaniI. GoyalA. SharmaM. Computational design of phosphatidylinositol 3-kinase inhibitors.Assay Drug Dev. Technol.202220731733710.1089/adt.2022.05736269231
    [Google Scholar]
  35. ShinuP. SharmaM. GuptaG.L. MujwarS. KandeelM. KumarM. NairA.B. GoyalM. SinghP. AttimaradM. VenugopalaK.N. NagarajaS. TelsangM. AldhubiabB.E. MorsyM.A. Computational design, synthesis, and pharmacological evaluation of naproxen-guaiacol chimera for gastro-sparing anti-inflammatory response by selective COX2 inhibition.Molecules20222720690510.3390/molecules2720690536296501
    [Google Scholar]
  36. GuptaS.M. BeheraA. JainN.K. KumarD. TripathiA. TripathiS.M. MujwarS. PatraJ. NegiA. Indene-derived hydrazides targeting acetylcholinesterase enzyme in alzheimer’s: Design, synthesis, and biological evaluation.Pharmaceutics20221519410.3390/pharmaceutics1501009436678724
    [Google Scholar]
  37. Er-rajyM. FadiliM.E. MujwarS. LendaF.Z. ZarouguiS. ElhallaouiM. QSAR, molecular docking, and molecular dynamics simulation-based design of novel anti-cancer drugs targeting thioredoxin reductase enzyme.Struct. Chem.20233441527154310.1007/s11224‑022‑02111‑x
    [Google Scholar]
  38. KciukM. MujwarS. SzymanowskaA. MarciniakB. BukowskiK. MojzychM. KontekR. Preparation of novel pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides and their experimental and computational biological studies.Int. J. Mol. Sci.20222311589210.3390/ijms2311589235682571
    [Google Scholar]
  39. Er-rajyM. El fadiliM. MujwarS. ZarouguiS. ElhallaouiM. Design of novel anti-cancer drugs targeting TRKs inhibitors based 3D QSAR, molecular docking and molecular dynamics simulation.J. Biomol. Struct. Dyn.20234121116571167010.1080/07391102.2023.217047136695085
    [Google Scholar]
  40. GuptaN. QayumA. SinghS. MujwarS. SangwanP.L. Isolation, cytotoxicity evaluation, docking, ADMET and drug likeness studies of secondary metabolites from the stem bark of anthocephalus cadamba (Roxb.).ChemistrySelect2022743e20220295010.1002/slct.202202950
    [Google Scholar]
  41. GuptaN. QayumA. SinghS. MujwarS. SangwanP.L. Isolation, anticancer evaluation, molecular docking, drug likeness and ADMET studies of secondary metabolites from psoralea corylifolia seeds.ChemistrySelect2022741e20220211510.1002/slct.202202115
    [Google Scholar]
  42. BermanH.M. BattistuzT. BhatT.N. BluhmW.F. BourneP.E. BurkhardtK. FengZ. GillilandG.L. IypeL. JainS. FaganP. MarvinJ. PadillaD. RavichandranV. SchneiderB. ThankiN. WeissigH. WestbrookJ.D. ZardeckiC. The protein data bank.Acta Crystallogr. D Biol. Crystallogr.200258689990710.1107/S090744490200345112037327
    [Google Scholar]
  43. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  44. PareekA. PantM. GuptaM.M. KashaniaP. RatanY. JainV. PareekA. ChuturgoonA.A. Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects.Int. J. Mol. Sci.2023243209810.3390/ijms2403209836768420
    [Google Scholar]
  45. IslamZ. IslamS.M.R. HossenF. Mahtab-ul-IslamK. HasanM.R. KarimR. Moringa oleifera is a prominent source of nutrients with potential health benefits.Int. J. Food Sci.2021202111110.1155/2021/662726534423026
    [Google Scholar]
  46. EnanG. Al-MohammadiA.R. MahgoubS. Abdel-ShafiS. AskarE. GhalyM.F. TahaM.A. El-GazzarN. Inhibition of staphylococcus aureus LC 554891 by Moringa oleifera seed extract either singly or in combination with antibiotics.Molecules20202519458310.3390/molecules2519458333036497
    [Google Scholar]
  47. FouadE.A. Abu ElnagaA.S.M. KandilM.M. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess.Vet. World201912680280810.14202/vetworld.2019.802‑80831439997
    [Google Scholar]
  48. AramăV. Topical antibiotic therapy in eye infections - myths and certainties in the era of bacterial resistance to antibiotics.Rom. J. Ophthalmol.202064324526010.22336/rjo.2020.4233367158
    [Google Scholar]
  49. Josephine OziomaE-O. Antoinette Nwamaka ChinweO. Herbal medicines in african traditional medicine.Herbal Medicine.IntechOpen201910.5772/intechopen.80348
    [Google Scholar]
  50. WasfyT. AtibaA. GhoniemA. AbdoW. ZayedT. ShokreM. Aloe vera gel facilitates re-epithelialization of corneal alkali burn in normal and diabetic rats.Clin. Ophthalmol.20152015201910.2147/OPTH.S90778
    [Google Scholar]
  51. KomariahC. SalsabilaR. Hilda HapsariA. Rizky Kurnia PutriS. FebiantiZ. The anti-inflammatory effect of onion extract in rabbit with corneal ulcer.Res. J. Pharma. Technol.20211854–18581854185810.52711/0974‑360X.2021.00328
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018275561240228065755
Loading
/content/journals/cdd/10.2174/0115672018275561240228065755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test