Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Contact lenses (CLs) have become an essential tool in ocular drug delivery, providing effective treatment options for specific eye conditions. In recent advancements, Therapeutic CLs (TCLs) have emerged as a promising approach for maintaining therapeutic drug concentrations on 
the eye surface. TCLs offer unique attributes, including prolonged wear and a remarkable ability to enhance the bioavailability of loaded medications by more than 50%, thus gaining widespread usage. They have proven beneficial in pain management, medication administration, corneal healing, and protection. To achieve sustained drug delivery from TCLs, researchers are exploring diverse systems, such as polymeric nanoparticulate systems, lipidic systems, and the incorporation of agents like vitamin E or rate-limiting polymers. However, despite breakthrough successes, certain challenges persist, including ensuring drug stability during processing and manufacturing, controlling release kinetics, and biomaterial interaction, reducing protein adhesion, and addressing drug release during packaging and storage . While TCLs have shown overall success in treating corneal and ocular surface disorders, careful consideration of potential issues and contraindications is vital. This review offers an insightful perspective on the critical aspects that need to be addressed regarding TCLs, with a specific emphasis on their advantages and limitations.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018270396231213074746
2024-01-11
2025-01-16
Loading full text...

Full text loading...

References

  1. SharmaU NandaUN Current trends towards an ocular drug delivery system.A review.2020
    [Google Scholar]
  2. LanierO.L. ManfreM.G. BaileyC. LiuZ. SparksZ. KulkarniS. ChauhanA. Review of approaches for increasing ophthalmic bioavailability for eye drop formulations.AAPS PharmSciTech202122310710.1208/s12249‑021‑01977‑0 33719019
    [Google Scholar]
  3. PatelK.D. SilvaL.B. ParkY. Recent advances in drug delivery systems for glaucoma treatment.Materials Today Nano2022100178
    [Google Scholar]
  4. GuilhermeV.A. RibeiroL.N.M. TofoliG.R. Franz-MontanM. de PaulaE. de JesusM.B. Current challenges and future of lipid nanoparticles formulations for topical drug application to oral mucosa, skin, and eye.Curr. Pharm. Des.201823436659667510.2174/1381612823666171122103849 29173149
    [Google Scholar]
  5. JacobsD.S. CarrasquilloK.G. CottrellP.D. Fernández-VelázquezF.J. Gil-CazorlaR. JalbertI. PuckerA.D. RiccobonoK. RobertsonD.M. Szczotka-FlynnL. SpeedwellL. StapletonF. BCLA CLEAR – Medical use of contact lenses.Cont. Lens Anterior Eye202144228932910.1016/j.clae.2021.02.002 33775381
    [Google Scholar]
  6. HsuK.H. GauseS. ChauhanA. Review of ophthalmic drug delivery by contact lenses.J. Drug Deliv. Sci. Technol.201424212313510.1016/S1773‑2247(14)50021‑4
    [Google Scholar]
  7. ZhuY. LiS. LiJ. FalconeN. CuiQ. ShahS. HartelM.C. YuN. YoungP. de BarrosN.R. WuZ. HaghniazR. ErmisM. WangC. KangH. LeeJ. KaramikamkarS. AhadianS. JucaudV. DokmeciM.R. KimH.J. KhademhosseiniA. Lab‐on‐a‐Contact lens: Recent advances and future opportunities in diagnostics and therapeutics.Adv. Mater.20223424210838910.1002/adma.202108389 35130584
    [Google Scholar]
  8. JahangirM.A. ImamS.S. GilaniS.J. Polymeric hydrogels for contact lens-based ophthalmic drug delivery systems.Organic materials as smart nanocarriers for drug delivery.Elsevier2018177208
    [Google Scholar]
  9. LeeD. LeeN. KwonI. Efficient loading of ophthalmic drugs with poor loadability into contact lenses using functional comonomers.Biomater. Sci.20186102639264610.1039/C8BM00586A 30117510
    [Google Scholar]
  10. NovackG.D. US regulatory approval of a drug-eluting contact lens.Eye Contact Lens202349413613810.1097/ICL.0000000000000980 36867501
    [Google Scholar]
  11. da SilvaA.R.F. Ionic permeability of soft contact lenses.University of Minho2013
    [Google Scholar]
  12. DaviesN.M. Biopharmaceutical considerations in topical ocular drug delivery.Clin. Exp. Pharmacol. Physiol.200027755856210.1046/j.1440‑1681.2000.03288.x 10874518
    [Google Scholar]
  13. BhatiaS. KumarT. BatraS. Pharmaceutical applications of xanthan gum in ophthalmic delivery systems. journal of pharmaceutical technology.Res. Manage.2020811522
    [Google Scholar]
  14. AdministrationFaD. List of Contact Lenses.Available from: https://www.fda.gov/medical-devices/contact-lenses/list-contact-lenses
    [Google Scholar]
  15. VincentS.J. FadelD. Optical considerations for scleral contact lenses: A review.Cont. Lens Anterior Eye201942659861310.1016/j.clae.2019.04.012 31054807
    [Google Scholar]
  16. ChoP. PoonH.Y. ChenC.C. YuonL.T. To rub or not to rub? – Effective rigid contact lens cleaning.Ophthalmic Physiol. Opt.2020401172310.1111/opo.12655 31755140
    [Google Scholar]
  17. Rico-Del-ViejoL García-MonteroM Hernández-VerdejoJL Nonsurgical procedures for keratoconus management.J. Ophthalmol.2017201710.1155/2017/9707650
    [Google Scholar]
  18. FanX. Torres-LunaC. AzadiM. DomszyR. HuN. YangA. DavidA.E. Evaluation of commercial soft contact lenses for ocular drug delivery: A review.Acta Biomater.2020115607410.1016/j.actbio.2020.08.025 32853799
    [Google Scholar]
  19. BhamraT.S. TigheB.J. Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development.Cont. Lens Anterior Eye2017402708110.1016/j.clae.2016.11.005 27884616
    [Google Scholar]
  20. LiZ. ChengH. KeL. LiuM. WangC-G. Jun LohX. LiZ. WuY-L. Recent advances in new copolymer hydrogel‐formed contact lenses for ophthalmic drug delivery.ChemNanoMat20217656457910.1002/cnma.202100008
    [Google Scholar]
  21. TigheB. MannA. The development of biomaterials for contact lens applications: Effects of wear modality on materials design.Biomaterials and Regenerative Medicine in Ophthalmology.Elsevier201636939910.1016/B978‑0‑08‑100147‑9.00015‑8
    [Google Scholar]
  22. MutluZ. Shams Es-haghi, S.; Cakmak, M. Recent trends in advanced contact lenses.Adv. Healthc. Mater.2019810180139010.1002/adhm.201801390 30938941
    [Google Scholar]
  23. NicolsonP.C. VogtJ. Soft contact lens polymers: An evolution.Biomaterials200122243273328310.1016/S0142‑9612(01)00165‑X 11700799
    [Google Scholar]
  24. TranN.P.D. YangM.C. Synthesis and characterization of silicone contact lenses based on TRIS-DMA-NVP-HEMA hydrogels.Polymers201911694410.3390/polym11060944 31159172
    [Google Scholar]
  25. ChienH.W. KuoC.J. Preparation, material properties and antimicrobial efficacy of silicone hydrogel by modulating silicone and hydrophilic monomer.J. Biomater. Sci. Polym. Ed.201930121050106710.1080/09205063.2019.1620593 31106708
    [Google Scholar]
  26. TanakaK. TakahashiK. KanadaM. Methyldi (trimethylsiloxy) sylylpropylglycerol methacrylate.Google Patents1979
    [Google Scholar]
  27. ChatterjeeS. UpadhyayP. MishraM. M, S.; Akshara, M.R.; N, K.; Zaidi, Z.S.; Iqbal, S.F.; Misra, S.K. Advances in chemistry and composition of soft materials for drug releasing contact lenses.RSC Advances20201060367513677710.1039/D0RA06681H 35517957
    [Google Scholar]
  28. WangH. YongX. HuangH. YuH. WuY. DengJ. Chiral, thermal-responsive hydrogels containing helical hydrophilic polyacetylene: Preparation and enantio-differentiating release ability.Polym. Chem.201910141780178610.1039/C8PY01759J
    [Google Scholar]
  29. PrimoG.A. Alvarez IgarzabalC.I. PinoG.A. FerreroJ.C. RossaM. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation.Appl. Surf. Sci.201636942242910.1016/j.apsusc.2016.02.047
    [Google Scholar]
  30. Ramkissoon-GanorkarL.C.D. N-isopropylacrylamide copolymers for modulated gastrointestinal drug delivery.The University of Utah1999
    [Google Scholar]
  31. AfrozS. AfroseF. AlamA.K.M.M. KhanR.A. AlamM.A. Synthesis and characterization of polyethylene oxide (PEO)—N,N-dimethylacrylamide (DMA) hydrogel by gamma radiation.Adv. Compos. Hybrid Mater.20192113314110.1007/s42114‑018‑0058‑x
    [Google Scholar]
  32. AkcaO. YetiskinB. OkayO. Hydrophobically modified nanocomposite hydrogels with self‐healing ability.J. Appl. Polym. Sci.2020137284885310.1002/app.48853
    [Google Scholar]
  33. WangF. YongX. DengJ. WuY. Poly(N, N -dimethylacrylamide-octadecyl acrylate)-clay hydrogels with high mechanical properties and shape memory ability.RSC Advances2018830167731678010.1039/C8RA01167B 35540536
    [Google Scholar]
  34. PatrickiosC.S. Amphiphilic Polymer Co-Networks: Synthesis, Properties, Modelling and Applications.Royal Society of Chemistry202010.1039/9781788015769
    [Google Scholar]
  35. DiamantiS. Silicone hydrogel soft contact lenses: An industrial application of amphiphilic polymer co-networks.Amphiphilic Polymer Co-networks2020263276
    [Google Scholar]
  36. RamazaniA. DabbaghiA. GouranlouF. Synthesis of amphiphilic co-network through click chemistry reactions: A review.Curr. Org. Chem.201822436236910.2174/1385272821666171005145540
    [Google Scholar]
  37. WilhelmS.A. MaricanovM. BrandtV. KatzenbergF. TillerJ.C. Amphiphilic polymer conetworks with ideal and non-ideal swelling behavior demonstrated by small angle X-ray scattering.Polymer202224212458210.1016/j.polymer.2022.124582
    [Google Scholar]
  38. GuzmanG. NugayT. CakmakM. Bimodal Amphiphilic Polymer Co-networks: Interfacial Phenomena and Applications.Amphiphilic Polymer Co-networks202015619810.1039/9781788015769‑00156
    [Google Scholar]
  39. RafanelliS. The Few Who Persist: Supporting the Development of Science Interest in Adolescent Girls.Stanford University2019
    [Google Scholar]
  40. TamuraS. WadaK. Non-corrective plastic spectacle lens.Google Patents2023
    [Google Scholar]
  41. LimC.H.L. StapletonF. MehtaJ.S. A review of cosmetic contact lens infections.Eye2019331788610.1038/s41433‑018‑0257‑2 30385879
    [Google Scholar]
  42. MaL. RheeM.K. Contact lenses and infectious keratitis.Curr. Ophthalmol. Rep.20186211512510.1007/s40135‑018‑0172‑5
    [Google Scholar]
  43. Pereira-da-MotaA.F. PhanC.M. ConcheiroA. JonesL. Alvarez-LorenzoC. Testing drug release from medicated contact lenses: The missing link to predict in vivo performance.J. Control. Release202234367270210.1016/j.jconrel.2022.02.014 35176393
    [Google Scholar]
  44. ChopraH. AroraS. Priyanka ChoudharyO.P. Recent advances of microneedles for ophthalmic drug delivery-correspondence.Int. J. Surg.2023 Publish Ahead of Print 10.1097/JS9.0000000000000122 36928788
    [Google Scholar]
  45. SinghP. RathoreK.S. A brief review on medicated contact lenses.Int. J. All Res. Writ.2020222231
    [Google Scholar]
  46. ZhangX. CaoX. QiP. Therapeutic contact lenses for ophthalmic drug delivery: major challenges.J. Biomater. Sci. Polym. Ed.202031454956010.1080/09205063.2020.1712175 31902299
    [Google Scholar]
  47. MaulviF.A. DesaiD.T. ShettyK.H. ShahD.O. WillcoxM.D.P. Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery.Int. J. Pharm.202160812109010.1016/j.ijpharm.2021.121090 34530102
    [Google Scholar]
  48. TopeteA. SerroA.P. SaramagoB. Dual drug delivery from intraocular lens material for prophylaxis of endophthalmitis in cataract surgery.Int. J. Pharm.2019558435210.1016/j.ijpharm.2018.12.028 30630077
    [Google Scholar]
  49. MaulviF.A. SoniT.G. ShahD.O. A review on therapeutic contact lenses for ocular drug delivery.Drug Deliv.20162383017302610.3109/10717544.2016.1138342 26821766
    [Google Scholar]
  50. MaulviF.A. SoniT.G. ShahD.O. Effect of timolol maleate concentration on uptake and release from hydrogel contact lenses using soaking method.J Pharm Appl Sci.2014111723
    [Google Scholar]
  51. González-ChomónC. ConcheiroA. Alvarez-LorenzoC. Drug-eluting intraocular lenses.Materials20114111927194010.3390/ma4111927 28824115
    [Google Scholar]
  52. TopeteA. OliveiraA.S. FernandesA. NunesT.G. SerroA.P. SaramagoB. Improving sustained drug delivery from ophthalmic lens materials through the control of temperature and time of loading.Eur. J. Pharm. Sci.201811710711710.1016/j.ejps.2018.02.017 29454097
    [Google Scholar]
  53. LiuY.C. WongT.T. MehtaJ.S. Intraocular lens as a drug delivery reservoir.Curr. Opin. Ophthalmol.2013241535910.1097/ICU.0b013e32835a93fc 23080012
    [Google Scholar]
  54. XuB. LiuT. Travoprost loaded microemulsion soaked contact lenses: Improved drug uptake, release kinetics and physical properties.J. Drug Deliv. Sci. Technol.20205710179210.1016/j.jddst.2020.101792
    [Google Scholar]
  55. MadniA. RahemM.A. TahirN. SarfrazM. JabarA. RehmanM. KashifP.M. BadshahS.F. KhanK.U. SantosH.A. Non-invasive strategies for targeting the posterior segment of eye.Int. J. Pharm.20175301-232634510.1016/j.ijpharm.2017.07.065 28755994
    [Google Scholar]
  56. DesaiD.T. MaulviF.A. DesaiA.R. ShuklaM.R. DesaiB.V. KhadelaA.D. ShettyK.H. ShahD.O. WillcoxM.D.P. In vitro and in vivo evaluation of cyclosporine-graphene oxide laden hydrogel contact lenses.Int. J. Pharm.202261312141410.1016/j.ijpharm.2021.121414 34952149
    [Google Scholar]
  57. DixonP. ChauhanA. Effect of the surface layer on drug release from delefilcon-A (Dailies Total1®) contact lenses.Int. J. Pharm.20175291-28910110.1016/j.ijpharm.2017.06.036 28627456
    [Google Scholar]
  58. MinamiT. IshidaW. KishimotoT. NakajimaI. HinoS. AraiR. MatsunagaT. FukushimaA. YamagamiS. In vitro and in vivo performance of epinastine hydrochloride-releasing contact lenses.PLoS One2019141e021036210.1371/journal.pone.0210362 30699147
    [Google Scholar]
  59. LiuZ. JiaoZ. LuoR. FuJ. RETRACTED: Travoprost-loaded PEGylated solid lipid nanoparticle-laden silicone contact lens for managing glaucoma.J. Drug Deliv. Sci. Technol.20216610273110.1016/j.jddst.2021.102731
    [Google Scholar]
  60. WeiN. DangH. HuangC. ShengY. Timolol loaded microemulsion laden silicone contact lens to manage glaucoma: in vitro and in vivo studies.J. Dispers. Sci. Technol.202142574275010.1080/01932691.2019.1710183
    [Google Scholar]
  61. LiC.C. ChauhanA. Ocular transport model for ophthalmic delivery of timolol through p-HEMA contact lenses.J. Drug Deliv. Sci. Technol.2007171697910.1016/S1773‑2247(07)50010‑9
    [Google Scholar]
  62. RubenM. WatkinsR. Pilocarpine dispensation for the soft hydrophilic contact lens.Br. J. Ophthalmol.197559845545810.1136/bjo.59.8.455 1203231
    [Google Scholar]
  63. KimJ. ConwayA. ChauhanA. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses.Biomaterials200829142259226910.1016/j.biomaterials.2008.01.030 18289662
    [Google Scholar]
  64. WangY.X. ZhangJ.S. YouQ.S. XuL. JonasJ.B. Ocular diseases and 10‐year mortality: The B eijing E ye S tudy 2001/2011.Acta Ophthalmol.2014926e424e42810.1111/aos.12370 24612916
    [Google Scholar]
  65. González-ChomónC. ConcheiroA. Alvarez-LorenzoC. Soft contact lenses for controlled ocular delivery: 50 years in the making.Ther. Deliv.2013491141116110.4155/tde.13.81 24024513
    [Google Scholar]
  66. HullD.S. EdelhauserH.F. HyndiukR.A. Ocular penetration of prednisolone and the hydrophilic contact lens.Arch. Ophthalmol.197492541341610.1001/archopht.1974.01010010425011 4429471
    [Google Scholar]
  67. LesherG.A. GundersonG.G. Continuous drug delivery through the use of disposable contact lenses.Optom. Vis. Sci.199370121012101810.1097/00006324‑199312000‑00004 8115123
    [Google Scholar]
  68. KarlgardC.C.S. WongN.S. JonesL.W. MoresoliC. In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogel contact lens materials.Int. J. Pharm.20032571-214115110.1016/S0378‑5173(03)00124‑8 12711169
    [Google Scholar]
  69. LiX. ZhaoY. WangK. WangL. YangX. ZhuS. Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release.PLoS One20171212e018977810.1371/journal.pone.0189778 29244868
    [Google Scholar]
  70. XuJ. LiX. SunF. Cyclodextrin-containing hydrogels for contact lenses as a platform for drug incorporation and release.Acta Biomater.20106248649310.1016/j.actbio.2009.07.021 19619677
    [Google Scholar]
  71. García-FernándezM.J. TabaryN. MartelB. CazauxF. OlivaA. TaboadaP. ConcheiroA. Alvarez-LorenzoC. Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses.Carbohydr. Polym.20139821343135210.1016/j.carbpol.2013.08.003 24053812
    [Google Scholar]
  72. HsuK.H. CarbiaB.E. PlummerC. ChauhanA. Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy.Eur. J. Pharm. Biopharm.20159431232110.1016/j.ejpb.2015.06.001 26071799
    [Google Scholar]
  73. SekarP. ChauhanA. Effect of vitamin-E integration on delivery of prostaglandin analogs from therapeutic lenses.J. Colloid Interface Sci.201953945746710.1016/j.jcis.2018.12.036 30611041
    [Google Scholar]
  74. LeeD. ChoS. ParkH.S. KwonI. Ocular drug delivery through pHEMA-Hydrogel contact lenses Co-loaded with lipophilic vitamins.Sci. Rep.2016613419410.1038/srep34194 27678247
    [Google Scholar]
  75. KimJ. PengC.C. ChauhanA. Extended release of dexamethasone from silicone-hydrogel contact lenses containing vitamin E.J. Control. Release2010148111011610.1016/j.jconrel.2010.07.119 20691228
    [Google Scholar]
  76. WillcoxM. KeirN. MaseedupallyV. MasoudiS. McDermottA. MobeenR. PurslowC. Santodomingo-RubidoJ. TavazziS. ZeriF. JonesL. BCLA CLEAR - Contact lens wettability, cleaning, disinfection and interactions with tears.Cont. Lens Anterior Eye202144215719110.1016/j.clae.2021.02.004 33775376
    [Google Scholar]
  77. PengC.C. BenganiL.C. JungH.J. LeclercJ. GuptaC. ChauhanA. Emulsions and microemulsions for ocular drug delivery.J. Drug Deliv. Sci. Technol.201121111112110.1016/S1773‑2247(11)50010‑3
    [Google Scholar]
  78. HsuK.H. FentzkeR.C. ChauhanA. Feasibility of corneal drug delivery of cysteamine using vitamin E modified silicone hydrogel contact lenses.Eur. J. Pharm. Biopharm.201385353154010.1016/j.ejpb.2013.04.017 23665502
    [Google Scholar]
  79. GaoL.Q. LiuW. LiangY.B. ZhangF. WangJ.J. PengY. WongT.Y. WangN.L. MitchellP. FriedmanD.S. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: The handan eye study.Arch. Ophthalmol.201112991199120410.1001/archophthalmol.2011.230 21911668
    [Google Scholar]
  80. Torres-LunaC. KoolivandA. FanX. AgrawalN.R. HuN. ZhuY. DomszyR. BriberR.M. WangN.S. YangA. Formation of drug-participating catanionic aggregates for extended delivery of non-steroidal anti-inflammatory drugs from contact lenses.Biomolecules201991059310.3390/biom9100593 31658626
    [Google Scholar]
  81. Andrade-ViveroP. Fernandez-GabrielE. Alvarez-LorenzoC. ConcheiroA. Improving the loading and release of NSAIDs from pHEMA hydrogels by copolymerization with functionalized monomers.J. Pharm. Sci.200796480281310.1002/jps.20761 17080411
    [Google Scholar]
  82. González-ChomónC. BragaM.E.M. de SousaH.C. ConcheiroA. Alvarez-LorenzoC. Antifouling foldable acrylic IOLs loaded with norfloxacin by aqueous soaking and by supercritical carbon dioxide technology.Eur. J. Pharm. Biopharm.201282238339110.1016/j.ejpb.2012.07.007 22846620
    [Google Scholar]
  83. KakisuK. MatsunagaT. KobayakawaS. SatoT. TochikuboT. Development and efficacy of a drug-releasing soft contact lens.Invest. Ophthalmol. Vis. Sci.20135442551256110.1167/iovs.12‑10614 23462746
    [Google Scholar]
  84. SoluriA. HuiA. JonesL. Delivery of ketotifen fumarate by commercial contact lens materials.Optom. Vis. Sci.20128981140114910.1097/OPX.0b013e3182639dc8 22773177
    [Google Scholar]
  85. VieiraA.P. PimentaA.F.R. SilvaD. GilM.H. AlvesP. CoimbraP. MataJ.L.G.C. BozukovaD. CorreiaT.R. CorreiaI.J. SerroA.P. GuiomarA.J. Surface modification of an intraocular lens material by plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA), for controlled release of moxifloxacin.Eur. J. Pharm. Biopharm.2017120526210.1016/j.ejpb.2017.08.006 28822873
    [Google Scholar]
  86. MehtaP. Al-KinaniA.A. ArshadM.S. SinghN. van der MerweS.M. ChangM.W. AlanyR.G. AhmadZ. Engineering and development of chitosan-based nanocoatings for ocular contact lenses.J. Pharm. Sci.201910841540155110.1016/j.xphs.2018.11.036 30513319
    [Google Scholar]
  87. MehtaP. Al-KinaniA.A. Haj-AhmadR. ArshadM.S. ChangM.W. AlanyR.G. AhmadZ. Electrically atomised formulations of timolol maleate for direct and on-demand ocular lens coatings.Eur. J. Pharm. Biopharm.201711917018410.1016/j.ejpb.2017.06.016 28625688
    [Google Scholar]
  88. PimentaA.F.R. VieiraA.P. ColaçoR. SaramagoB. GilM.H. CoimbraP. AlvesP. BozukovaD. CorreiaT.R. CorreiaI.J. GuiomarA.J. SerroA.P. Controlled release of moxifloxacin from intraocular lenses modified by Ar plasma-assisted grafting with AMPS or SBMA: An in vitro study.Colloids Surf. B Biointerfaces20171569510310.1016/j.colsurfb.2017.04.060 28531880
    [Google Scholar]
  89. ManjuS. KunnatheeriS. Layer-by-Layer modification of Poly (methyl methacrylate) intra ocular lens: Drug delivery applications.Pharm. Dev. Technol.201015437938510.3109/10837450903262025 19772379
    [Google Scholar]
  90. KassumehS.A. WertheimerC.M. von StudnitzA. HillenmayerA. PriglingerC. WolfA. MayerW.J. TeupserD. HoldtL.M. PriglingerS.G. Eibl-LindnerK.H. Poly (lactic-co-glycolic) acid as a slow-release drug-carrying matrix for methotrexate coated onto intraocular lenses to conquer posterior capsule opacification.Curr. Eye Res.201843670270810.1080/02713683.2018.1437455 29451997
    [Google Scholar]
  91. PillaiS.K.R. ReghuS. VikheY. ZhengH. KohC.H. Chan-ParkM.B. Novel antimicrobial coating on silicone contact lens using glycidyl methacrylate and polyethyleneimine based polymers.Macromol. Rapid Commun.20204121200017510.1002/marc.202000175 32803821
    [Google Scholar]
  92. ZhangZ. HuangW. LeiM. HeY. YanM. ZhangX. ZhaoC. Laser-triggered intraocular implant to induce photodynamic therapy for posterior capsule opacification prevention.Int. J. Pharm.20164981-211110.1016/j.ijpharm.2015.10.006 26456263
    [Google Scholar]
  93. SilvaD. SousaH.C. GilM.H. SantosL.F. MoutinhoG.M. SerroA.P. SaramagoB. Antibacterial layer-by-layer coatings to control drug release from soft contact lenses material.Int. J. Pharm.20185531-218620010.1016/j.ijpharm.2018.10.041 30342082
    [Google Scholar]
  94. ParadisoP. ColaçoR. MataJ.L.G. KrastevR. SaramagoB. SerroA.P. Drug release from liposome coated hydrogels for soft contact lenses: The blinking and temperature effect.J. Biomed. Mater. Res. B Appl. Biomater.201710571799180710.1002/jbm.b.33715 27192551
    [Google Scholar]
  95. TubyR. GutfreundS. PerelshteinI. MircusG. EhrenbergM. MimouniM. GedankenA. BaharI. Fabrication of a stable and efficient antibacterial nanocoating of Zn‐CuO on contact lenses.ChemNanoMat20162654755110.1002/cnma.201600066
    [Google Scholar]
  96. SilvaD. de SousaH.C. GilM.H. SantosL.F. AmaralR.A. SaraivaJ.A. Salema-OomM. Alvarez-LorenzoC. SerroA.P. SaramagoB. Imprinted hydrogels with LbL coating for dual drug release from soft contact lenses materials.Mater. Sci. Eng. C202112011168710.1016/j.msec.2020.111687 33545849
    [Google Scholar]
  97. SilvaD. de SousaH.C. GilM.H. SantosL.F. MoutinhoG.M. Salema-OomM. Alvarez-LorenzoC. SerroA.P. SaramagoB. Diclofenac sustained release from sterilised soft contact lens materials using an optimised layer-by-layer coating.Int. J. Pharm.202058511950610.1016/j.ijpharm.2020.119506 32512224
    [Google Scholar]
  98. Alvarez-LorenzoC. ConcheiroA. Molecularly imprinted polymers for drug delivery.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2004804123124510.1016/j.jchromb.2003.12.032 15093177
    [Google Scholar]
  99. Alvarez-LorenzoC. YañezF. Barreiro-IglesiasR. ConcheiroA. Imprinted soft contact lenses as norfloxacin delivery systems.J. Control. Release2006113323624410.1016/j.jconrel.2006.05.003 16777254
    [Google Scholar]
  100. TieppoA. PateK.M. ByrneM.E. In vitro controlled release of an anti-inflammatory from daily disposable therapeutic contact lenses under physiological ocular tear flow.Eur. J. Pharm. Biopharm.201281117017710.1016/j.ejpb.2012.01.015 22333489
    [Google Scholar]
  101. GharaiS. VenkateshP. GargS. SharmaS.K. VohraR. Ophthalmic manifestations of HIV infections in India in the era of HAART: Analysis of 100 consecutive patients evaluated at a tertiary eye care center in India.Ophthalmic Epidemiol.200815426427110.1080/09286580802077716 18780260
    [Google Scholar]
  102. WhiteC.J. McBrideM.K. PateK.M. TieppoA. ByrneM.E. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses.Biomaterials201132245698570510.1016/j.biomaterials.2011.04.044 21601274
    [Google Scholar]
  103. AliM. ByrneM.E. Controlled release of high molecular weight hyaluronic Acid from molecularly imprinted hydrogel contact lenses.Pharm. Res.200926371472610.1007/s11095‑008‑9818‑6 19156504
    [Google Scholar]
  104. Pereira-da-MotaA.F. Vivero-LopezM. TopeteA. SerroA.P. ConcheiroA. Alvarez-LorenzoC. Atorvastatin-eluting contact lenses: Effects of molecular imprinting and sterilization on drug loading and release.Pharmaceutics202113560610.3390/pharmaceutics13050606 33922123
    [Google Scholar]
  105. ZaidiS.A. Molecular imprinting: A useful approach for drug delivery.Mater. Sci. Energy Technol.20203727710.1016/j.mset.2019.10.012
    [Google Scholar]
  106. OngkasinK. MasmoudiY. TassaingT. Le-BourdonG. BadensE. Supercritical loading of gatifloxacin into hydrophobic foldable intraocular lenses – Process control and optimization by following in situ CO2 sorption and polymer swelling.Int. J. Pharm.202058111924710.1016/j.ijpharm.2020.119247 32209368
    [Google Scholar]
  107. OngkasinK. MasmoudiY. WertheimerC.M. HillenmayerA. Eibl-LindnerK.H. BadensE. Supercritical fluid technology for the development of innovative ophthalmic medical devices: Drug loaded intraocular lenses to mitigate posterior capsule opacification.Eur. J. Pharm. Biopharm.202014924825610.1016/j.ejpb.2020.02.011 32112896
    [Google Scholar]
  108. CoutinhoI.T. Maia-ObiL.P. ChampeauM. Aspirin-loaded polymeric films for drug delivery systems: Comparison between soaking and supercritical CO2 impregnation.Pharmaceutics202113682410.3390/pharmaceutics13060824 34199551
    [Google Scholar]
  109. ZhanS. WangJ. WangW. CuiL. ZhaoQ. Preparation and in vitro release kinetics of nitrendipine-loaded PLLA–PEG–PLLA microparticles by supercritical solution impregnation process.RSC Advances2019928161671617510.1039/C9RA01068H 35521402
    [Google Scholar]
  110. YañezF. MartikainenL. BragaM.E.M. Alvarez-LorenzoC. ConcheiroA. DuarteC.M.M. GilM.H. de SousaH.C. Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery.Acta Biomater.2011731019103010.1016/j.actbio.2010.10.003 20934541
    [Google Scholar]
  111. Montés-MicóR. CerviñoA. Ferrer-BlascoT. García-LázaroS. Madrid-CostaD. The tear film and the optical quality of the eye.Ocul. Surf.20108418519210.1016/S1542‑0124(12)70233‑1 20964981
    [Google Scholar]
  112. Rintaro SuzukiE.Jr Meirelles FranklinL. Basilio da SilvaL.J. FigueiredoC.R.L. Agostini NettoJ. Duarte BatistaW. Comparison of the efficacy and safety of travoprost with a fixed-combination of dorzolamide and timolol in patients with open-angle glaucoma or ocular hypertension.Curr. Med. Res. Opin.20062291799180510.1185/030079906X121020 16968583
    [Google Scholar]
  113. DuarteA.R.C. SimplicioA.L. Vega-GonzálezA. Subra-PaternaultP. CoimbraP. GilM.H. de SousaH.C. DuarteC.M.M. Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery.J. Supercrit. Fluids200742337337710.1016/j.supflu.2007.01.007
    [Google Scholar]
  114. YokozakiY. SakabeJ. ShimoyamaY. Enhanced impregnation of hydrogel contact lenses with salicylic acid by addition of water in supercritical carbon dioxide.Chem. Eng. Res. Des.201510420320710.1016/j.cherd.2015.08.007
    [Google Scholar]
  115. GhannamR. Contact lenses for human machine interaction2021
    [Google Scholar]
  116. MaulviF.A. ShettyK.H. DesaiD.T. ShahD.O. WillcoxM.D.P. Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration.Int. J. Pharm.202160812110510.1016/j.ijpharm.2021.121105 34537269
    [Google Scholar]
  117. KhievD. MohamedZ.A. VichareR. PaulsonR. BhatiaS. MohapatraS. LoboG.P. ValapalaM. KerurN. PassagliaC.L. MohapatraS.S. BiswalM.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery.Nanomaterials202111117310.3390/nano11010173 33445545
    [Google Scholar]
  118. JungH.J. Abou-JaoudeM. CarbiaB.E. PlummerC. ChauhanA. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses.J. Control. Release20131651828910.1016/j.jconrel.2012.10.010 23123188
    [Google Scholar]
  119. IslamS. BhuiyanM.A.R. IslamM.N. Chitin and chitosan: Structure, properties and applications in biomedical engineering.J. Polym. Environ.201725385486610.1007/s10924‑016‑0865‑5
    [Google Scholar]
  120. MohanN. NairP.D. Polyvinyl alcohol‐poly(caprolactone) Semi IPN scaffold with implication for cartilage tissue engineering.J. Biomed. Mater. Res. B Appl. Biomater.200884B258459410.1002/jbm.b.30906 17618513
    [Google Scholar]
  121. GrattardN. PerninM. MartyB. RoudautG. ChampionD. Le MesteM. Study of release kinetics of small and high molecular weight substances dispersed into spray-dried ethylcellulose microspheres.J. Control. Release200284312513510.1016/S0168‑3659(02)00260‑2 12468216
    [Google Scholar]
  122. El-HabashyS.E. AllamA.N. El-KamelA.H. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation.Int. J. Nanomedicine20161123692380 27307735
    [Google Scholar]
  123. ChowD. NunaleeM.L. LimD.W. SimnickA.J. ChilkotiA. Peptide-based biopolymers in biomedicine and biotechnology.Mater. Sci. Eng. Rep.200862412515510.1016/j.mser.2008.04.004 19122836
    [Google Scholar]
  124. LiY MengH LiuY Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering.Sci. World J.2015201510.1155/2015/685690
    [Google Scholar]
  125. YooJ.W. GiriN. LeeC.H. pH-sensitive Eudragit nanoparticles for mucosal drug delivery.Int. J. Pharm.20114031-226226710.1016/j.ijpharm.2010.10.032 20971177
    [Google Scholar]
  126. MaulviF.A. ChoksiH.H. DesaiA.R. PatelA.S. RanchK.M. VyasB.A. ShahD.O. pH triggered controlled drug delivery from contact lenses: Addressing the challenges of drug leaching during sterilization and storage.Colloids Surf. B Biointerfaces2017157728210.1016/j.colsurfb.2017.05.064 28577503
    [Google Scholar]
  127. SharmaS. ParmarA. KoriS. SandhirR. PLGA-based nanoparticles: A new paradigm in biomedical applications.Trends Analyt. Chem.201680304010.1016/j.trac.2015.06.014
    [Google Scholar]
  128. PandeyS.S. PatelM.A. DesaiD.T. PatelH.P. GuptaA.R. JoshiS.V. ShahD.O. MaulviF.A. Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: Optimization, in vitro and in vivo studies.J. Drug Deliv. Sci. Technol.20205710173110.1016/j.jddst.2020.101731
    [Google Scholar]
  129. JumelleC. GholizadehS. AnnabiN. DanaR. Advances and limitations of drug delivery systems formulated as eye drops.J. Control. Release202032112210.1016/j.jconrel.2020.01.057 32027938
    [Google Scholar]
  130. PuértolasJ.A. Martínez-MorlanesM.J. MariscalM.D. MedelF.J. Thermal and dynamic mechanical properties of vitamin E infused and blended ultra‐high molecular weight polyethylenes.J. Appl. Polym. Sci.201112042282229110.1002/app.33454
    [Google Scholar]
  131. ZhuY. ShengY. RETRACTED: Sustained delivery of epalrestat to the retina using PEGylated solid lipid nanoparticles laden contact lens.Elsevier2020
    [Google Scholar]
  132. García-MillánE. Quintáns-CarballoM. Otero-EspinarF.J. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions.Int. J. Pharm.2017525122623610.1016/j.ijpharm.2017.03.082 28412447
    [Google Scholar]
  133. GuoQ. JiaL. Qinggeletu; Zhang, R.; Yang, X. In vitro and in vivo evaluation of ketotifen-gold nanoparticles laden contact lens for controlled drug delivery to manage conjunctivitis.J. Drug Deliv. Sci. Technol.20216410253810.1016/j.jddst.2021.102538
    [Google Scholar]
  134. Shayani RadM. SabetiZ. MohajeriS.A. Fazly BazzazB.S. Preparation, characterization, and evaluation of zinc oxide nanoparticles suspension as an antimicrobial media for daily use soft contact lenses.Curr. Eye Res.202045893193910.1080/02713683.2019.1705492 31847595
    [Google Scholar]
  135. MaulviF.A. PatilR.J. DesaiA.R. ShuklaM.R. VaidyaR.J. RanchK.M. VyasB.A. ShahS.A. ShahD.O. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation.Acta Biomater.20198635036210.1016/j.actbio.2019.01.004 30625414
    [Google Scholar]
  136. ÅhlénM. TummalaG.K. MihranyanA. Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications.Int. J. Pharm.20185361738110.1016/j.ijpharm.2017.11.053 29180255
    [Google Scholar]
  137. RossA.E. BenganiL.C. TulsanR. MaidanaD.E. Salvador-CullaB. KobashiH. KolovouP.E. ZhaiH. TaghizadehK. KuangL. MehtaM. VavvasD.G. KohaneD.S. CiolinoJ.B. Topical sustained drug delivery to the retina with a drug-eluting contact lens.Biomaterials201921711928510.1016/j.biomaterials.2019.119285 31299627
    [Google Scholar]
  138. MaulviF.A. SoniT.G. ShahD.O. Extended release of timolol from ethyl cellulose microparticles laden hydrogel contact lenses.Open Pharm. Sci. J.20152111210.2174/1874844901502010001
    [Google Scholar]
  139. CiolinoJ.B. RossA.E. TulsanR. WattsA.C. WangR.F. ZurakowskiD. SerleJ.B. KohaneD.S. Latanoprost-eluting contact lenses in glaucomatous monkeys.Ophthalmology2016123102085209210.1016/j.ophtha.2016.06.038 27586444
    [Google Scholar]
  140. MaulviF.A. LakdawalaD.H. ShaikhA.A. DesaiA.R. ChoksiH.H. VaidyaR.J. RanchK.M. KoliA.R. VyasB.A. ShahD.O. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery.J. Control. Release2016226475610.1016/j.jconrel.2016.02.012 26860285
    [Google Scholar]
  141. MaulviF.A. ShaikhA.A. LakdawalaD.H. DesaiA.R. PandyaM.M. SinghaniaS.S. VaidyaR.J. RanchK.M. VyasB.A. ShahD.O. Design and optimization of a novel implantation technology in contact lenses for the treatment of dry eye syndrome: In vitro and in vivo evaluation.Acta Biomater.20175321122110.1016/j.actbio.2017.01.063 28131945
    [Google Scholar]
  142. BenganiL.C. KobashiH. RossA.E. ZhaiH. Salvador-CullaB. TulsanR. KolovouP.E. MittalS.K. ChauhanS.K. KohaneD.S. CiolinoJ.B. Steroid-eluting contact lenses for corneal and intraocular inflammation.Acta Biomater.202011614916110.1016/j.actbio.2020.08.013 32814140
    [Google Scholar]
  143. ZhuQ. LiuC. SunZ. ZhangX. LiangN. MaoS. Inner layer-embedded contact lenses for pH-triggered controlled ocular drug delivery.Eur. J. Pharm. Biopharm.201812822022910.1016/j.ejpb.2018.04.017 29730260
    [Google Scholar]
  144. Bin SahadanM.Y. TongW.Y. TanW.N. LeongC.R. Bin MisriM.N. ChanM. ChengS.Y. ShaharuddinS. Phomopsidione nanoparticles coated contact lenses reduce microbial keratitis causing pathogens.Exp. Eye Res.2019178101410.1016/j.exer.2018.09.011 30243569
    [Google Scholar]
  145. MaulviF.A. PatelP.J. SoniP.D. DesaiA.R. DesaiD.T. ShuklaM.R. RanchK.M. ShahS.A. ShahD.O. Novel poly (vinylpyrrolidone)-coated silicone contact lenses to improve tear volume during lens wear: in vitro and in vivo studies.ACS Omega2020529181481815410.1021/acsomega.0c01764 32743189
    [Google Scholar]
  146. DazaJ.H.U. RighettoG.M. ChaudM.V. da Conceição Amaro MartinsV. Lopes Baratella da Cunha CamargoI. Maria de Guzzi PlepisA. PVA/anionic collagen membranes as drug carriers of ciprofloxacin hydrochloride with sustained antibacterial activity and potential use in the treatment of ulcerative keratitis.J. Biomater. Appl.202035330131210.1177/0885328220931733 32571170
    [Google Scholar]
  147. CiolinoJ.B. HoareT.R. IwataN.G. BehlauI. DohlmanC.H. LangerR. KohaneD.S. A drug-eluting contact lens.Invest. Ophthalmol. Vis. Sci.20095073346335210.1167/iovs.08‑2826 19136709
    [Google Scholar]
  148. LiR. GuanX. LinX. GuanP. ZhangX. RaoZ. DuL. ZhaoJ. RongJ. ZhaoJ. Poly(2-hydroxyethyl methacrylate)/β-cyclodextrin-hyaluronan contact lens with tear protein adsorption resistance and sustained drug delivery for ophthalmic diseases.Acta Biomater.202011010511810.1016/j.actbio.2020.04.002 32339710
    [Google Scholar]
  149. PengC.C. KimJ. ChauhanA. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing Vitamin E diffusion barriers.Biomaterials201031144032404710.1016/j.biomaterials.2010.01.113 20153894
    [Google Scholar]
  150. ZhangW. ZuD. ChenJ. PengJ. LiuY. ZhangH. LiS. PanW. Bovine serum albumin–meloxicam nanoaggregates laden contact lenses for ophthalmic drug delivery in treatment of postcataract endophthalmitis.Int. J. Pharm.20144751-2253410.1016/j.ijpharm.2014.08.043 25158220
    [Google Scholar]
  151. LuC. YoganathanR.B. KociolekM. AllenC. Hydrogel containing silica shell cross-linked micelles for ocular drug delivery.J. Pharm. Sci.2013102262763710.1002/jps.23390 23203974
    [Google Scholar]
  152. GulsenD. ChauhanA. Ophthalmic drug delivery through contact lenses.Invest. Ophthalmol. Vis. Sci.20044572342234710.1167/iovs.03‑0959 15223815
    [Google Scholar]
  153. Varela-GarciaA. Gomez-AmozaJ.L. ConcheiroA. Alvarez-LorenzoC. Imprinted contact lenses for ocular administration of antiviral drugs.Polymers2020129202610.3390/polym12092026 32899893
    [Google Scholar]
  154. CiolinoJ.B. HudsonS.P. MobbsA.N. HoareT.R. IwataN.G. FinkG.R. KohaneD.S. A prototype antifungal contact lens.Invest. Ophthalmol. Vis. Sci.20115296286629110.1167/iovs.10‑6935 21527380
    [Google Scholar]
  155. XuW. JiaoW. LiS. TaoX. MuG. Bimatoprost loaded microemulsion laden contact lens to treat glaucoma.J. Drug Deliv. Sci. Technol.20195410133010.1016/j.jddst.2019.101330
    [Google Scholar]
  156. MaulviF.A. MangukiyaM.A. PatelP.A. VaidyaR.J. KoliA.R. RanchK.M. ShahD.O. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: In vitro and in vivo evaluation.J. Mater. Sci. Mater. Med.201627611310.1007/s10856‑016‑5724‑3 27178036
    [Google Scholar]
  157. KimH.J. ZhangK. MooreL. HoD. Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release.ACS Nano2014832998300510.1021/nn5002968 24506583
    [Google Scholar]
  158. LequeuxI. DucasseE. JouenneT. ThebaultP. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide.Eur. Polym. J.20145118219010.1016/j.eurpolymj.2013.11.012
    [Google Scholar]
  159. CarreiraA.S. FerreiraP. RibeiroM.P. CorreiaT.R. CoutinhoP. CorreiaI.J. GilM.H. New drug-eluting lenses to be applied as bandages after keratoprosthesis implantation.Int. J. Pharm.20144771-221822610.1016/j.ijpharm.2014.10.037 25455772
    [Google Scholar]
  160. KatzerT. ChavesP.S. PohlmannA.R. GuterresS.S. BeckR.C.R. Loading a drug on contact lenses using polymeric nanocapsules: Effects on drug release, transparency, and ion permeability.J. Nanosci. Nanotechnol.201717129286929410.1166/jnn.2017.13879
    [Google Scholar]
  161. MuC. ShiM. LiuP. ChenL. MarriottG. Daylight-mediated, passive, and sustained release of the glaucoma drug timolol from a contact lens.ACS Cent. Sci.20184121677168710.1021/acscentsci.8b00641 30648151
    [Google Scholar]
  162. KimY.J. MatsunagaY.T. Thermo-responsive polymers and their application as smart biomaterials.J. Mater. Chem. B Mater. Biol. Med.20175234307432110.1039/C7TB00157F 32263961
    [Google Scholar]
  163. MatsumotoK. SakikawaN. MiyataT. Thermo-responsive gels that absorb moisture and ooze water.Nat. Commun.201891231510.1038/s41467‑018‑04810‑8 29899417
    [Google Scholar]
  164. KopečekJ. Hydrogels: From soft contact lenses and implants to self‐assembled nanomaterials.J. Polym. Sci. A Polym. Chem.200947225929594610.1002/pola.23607 19918374
    [Google Scholar]
  165. ZhangK. Lysozyme-triggered nanodiamond contact lens for glaucoma treatment & phenotypically-based combinatorial drug optimization for multiple myeloma treatment.UCLA2015
    [Google Scholar]
  166. UpadrastaL. GarlapatiV.K. LakdawalaN. Enzyme-triggered hydrogels for pharmaceutical and food applications.Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals.IGI Global202212031221
    [Google Scholar]
  167. MoredduR. VigoloD. YetisenA.K. Contact lens technology: From fundamentals to applications.Adv. Healthc. Mater.2019815190036810.1002/adhm.201900368 31183972
    [Google Scholar]
  168. BalaureP.C. GudovanD. GudovanI.A. Smart triggered release in controlled drug delivery.Curr. Drug Targets201819431832710.2174/1389450117666160401125034 27033189
    [Google Scholar]
  169. BusinM. SpitznasM. Sustained gentamicin release by presoaked medicated bandage contact lenses.Ophthalmology198895679679810.1016/S0161‑6420(88)33106‑4 3211483
    [Google Scholar]
  170. AquavellaJ.V. The soft contact lens. I. Therapeutic experience with the Softcon lens.Int. Ophthalmol. Clin.197313416717710.1097/00004397‑197301340‑00014 4783998
    [Google Scholar]
  171. MackieI.A. Contact lenses in dry eyes.Trans. Ophthalmol. Soc. U. K.1985104Pt 4477483 3898480
    [Google Scholar]
  172. KaufmanH. Therapeutic use of soft contact lenses. Contact Lenses The CLAO Guide to Basic Science and Clinical Practice Orlando.Grune & Stratton19842
    [Google Scholar]
  173. LeibowitzH.M. Hydrophilic contact lenses in corneal disease. IV. Penetrating corneal wounds.Arch. Ophthalmol.197288660260610.1001/archopht.1972.01000030604005 5085201
    [Google Scholar]
  174. AquavellaJ. New aspects of contact lenses in ophthalmology.Adv. Ophthalmol. Optom.19763224
    [Google Scholar]
  175. LevinsonA. WeissmanB.A. SachsU. Use of the Bausch & Lomb Soflens Plano T contact lens as a bandage.Optom. Vis. Sci.19775379710310.1097/00006324‑197702000‑00005 326058
    [Google Scholar]
  176. MoshirfarM. PetersonT. UngrichtE. McCabeS. RonquilloY.C. BrooksB. TowneF. HoopesP. Thygeson superficial punctate keratitis: A clinical and immunologic review.Eye Contact Lens202248623223810.1097/ICL.0000000000000891 35301272
    [Google Scholar]
  177. ZakiM. PardoJ. CarracedoG. A review of international medical device regulations: Contact lenses and lens care solutions.Cont. Lens Anterior Eye201942213614610.1016/j.clae.2018.11.001 30446241
    [Google Scholar]
  178. AbdiB. MofidfarM. HassanpourF. Kirbas CilingirE. KalajahiS.K. MilaniP.H. GhanbarzadehM. FadelD. BarnettM. TaC.N. LeblancR.M. ChauhanA. AbbasiF. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: Advances in extended and targeted drug delivery.Int. J. Pharm.202363812274010.1016/j.ijpharm.2023.122740 36804524
    [Google Scholar]
  179. Available from: https://clinicaltrials.gov/study/NCT04500574?term=Drug%20Eluting%20Contact%20lens&rank=1
  180. BacaJ.T. FinegoldD.N. AsherS.A. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus.Ocul. Surf.20075428029310.1016/S1542‑0124(12)70094‑0 17938838
    [Google Scholar]
  181. AiharaM. KubotaN. MinamiT. ShirakawaR. SakuraiY. HayashiT. IwamotoM. TakamotoI. KubotaT. SuzukiR. UsamiS. JinnouchiH. AiharaM. YamauchiT. SakataT. KadowakiT. Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood.J. Diabetes Investig.202112226627610.1111/jdi.13344 32621777
    [Google Scholar]
  182. WeinrebR.N. AungT. MedeirosF.A. The pathophysiology and treatment of glaucoma: A review.JAMA2014311181901191110.1001/jama.2014.3192 24825645
    [Google Scholar]
  183. CollinsC.C. Miniature passive pressure transensor for implanting in the eye.IEEE Trans. Biomed. Eng.1967BME-142748310.1109/TBME.1967.4502474 6078978
    [Google Scholar]
  184. ZhangY. ChenY. ManT. HuangD. LiX. ZhuH. LiZ. High resolution non-invasive intraocular pressure monitoring by use of graphene woven fabrics on contact lens.Microsyst. Nanoeng.2019513910.1038/s41378‑019‑0078‑x 31636929
    [Google Scholar]
  185. AgaogluS. DiepP. MartiniM. KtS. BadayM. AraciI.E. Ultra-sensitive microfluidic wearable strain sensor for intraocular pressure monitoring.Lab Chip201818223471348310.1039/C8LC00758F 30276409
    [Google Scholar]
  186. GuoS. WuK. LiC. WangH. SunZ. XiD. ZhangS. DingW. ZaghloulM.E. WangC. CastroF.A. YangD. ZhaoY. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors.Matter20214396998510.1016/j.matt.2020.12.002 33398259
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018270396231213074746
Loading
/content/journals/cdd/10.2174/0115672018270396231213074746
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test