Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Polyphenols are naturally occurring compounds having more than one hydroxy functional group. They are ubiquitous secondary plant metabolites possessing a wide range of pharmacological activity. Brightly colored fruits and vegetables are the natural source of polyphenols. Majorly, they possess antioxidant, anti-inflammatory and antimicrobial properties which make them suitable candidates to target skin related disorders.

Objective

This study is focused to explore the potential of polyphenols loaded nanovesicles for skin related disorders. The aim of the study is to review the applicability and efficacy of different vesicular systems encapsulated with various classes of polyphenols for skin related disorders, thus opening the opportunity for future studies based on these drug delivery systems.

Methods

Web of Science, PubMed, Scopus database, and the search engine Google Scholar were accessed for the literature search. The results were then filtered based on the titles, abstracts, and accessibility of the complete texts.

Results

The expository evaluation of the literature revealed that various nanovesicles like liposomes, niosomes, ethosomes and transferosomes incorporating polyphenol have been formulated to address issues pertaining to delivery across the skin. These developed nano vesicular systems have shown improvement in the physicochemical properties and pharmacological action.

Conclusion

Polyphenol based nano-vesicular formulations have proved to be an effective system for topical delivery and henceforth, they might curtail the use of other skin therapies having limited applicability.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018265118231213094410
2024-01-24
2025-01-16
Loading full text...

Full text loading...

References

  1. IssaouiM. DelgadoA.M. CarusoG. MicaliM. BarberaM. AtrousH. OuslatiA. ChammemN. Phenols, flavors, and the mediterranean diet.J. AOAC Int.2020103491592410.1093/jaocint/qsz018 33241345
    [Google Scholar]
  2. Di LorenzoC. ColomboF. BiellaS. StockleyC. RestaniP. Polyphenols and human health: The role of bioavailability. Vol. 13.Nutrients202113127310.3390/nu13010273
    [Google Scholar]
  3. PăvăloiuR.D. Sha’atF. NeaguG. DeaconuM. BubueanuC. AlbulescuA. Sha’atM. HlevcaC. Encapsulation of polyphenols from lycium barbarum leaves into liposomes as a strategy to improve their delivery.Nanomaterials2021118193810.3390/nano11081938 34443768
    [Google Scholar]
  4. EnaruB. SocaciS. FarcasA. SocaciuC. DanciuC. StanilaA. DiaconeasaZ. Novel delivery systems of polyphenols and their potential health benefits. Vol. 14.Pharmaceuticals2021141094610.3390/ph14100946 34681170
    [Google Scholar]
  5. IndiartoR. IndrianaL.P.A. AndoyoR. SubrotoE. NurhadiB. Bottom–up nanoparticle synthesis: A review of techniques, polyphenol-based core materials, and their properties.Eur. Food Res. Technol.2022248112410.1007/s00217‑021‑03867‑y
    [Google Scholar]
  6. SoletiR. AndriantsitohainaR. MartinezM.C. Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health.Arch. Biochem. Biophys.2018644576310.1016/j.abb.2018.03.004 29518372
    [Google Scholar]
  7. RajhaH.N. PauleA. AragonèsG. BarbosaM. CaddeoC. DebsE. DinkovaR. EckertG.P. FontanaA. GebrayelP. MarounR.G. NapolitanoA. PanzellaL. PasinettiG.M. StevensJ.F. SchieberA. EdeasM. Recent advances in research on polyphenols: Effects on microbiota, metabolism, and health.Mol. Nutr. Food Res.2022661210067010.1002/mnfr.202100670 34806294
    [Google Scholar]
  8. Heenatigala PalliyageG. SinghS. AshbyC.R.Jr TiwariA.K. ChauhanH. Pharmaceutical topical delivery of poorly soluble polyphenols: Potential role in prevention and treatment of melanoma.AAPS PharmSciTech201920625010.1208/s12249‑019‑1457‑1 31297635
    [Google Scholar]
  9. DeaconuM. PrelipceanA.M. BrezoiuA.M. MitranR.A. IsopencuG. MateiC. BergerD. Novel collagen-polyphenols-loaded silica composites for topical application.Pharmaceutics202315231210.3390/pharmaceutics15020312 36839635
    [Google Scholar]
  10. OrlowskiP. ZmigrodzkaM. TomaszewskaE. Ranoszek-SoliwodaK. PajakB. SlonskaA. CymerysJ. CelichowskiG. GrobelnyJ. KrzyzowskaM. Polyphenol-conjugated bimetallic au@agnps for improved wound healing.Int. J. Nanomedicine2020154969499010.2147/IJN.S252027 32764930
    [Google Scholar]
  11. CaballeroS. LiY.O. McClementsD.J. Davidov-PardoG. Encapsulation and delivery of bioactive citrus pomace polyphenols: A review.Crit. Rev. Food Sci. Nutr.202262298028804410.1080/10408398.2021.1922873 33983085
    [Google Scholar]
  12. GharbaviM AmaniJ Kheiri-ManjiliH DanafarH SharafiA. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier.Adv Pharmacol Pharm Sci2018201810.1155/2018/6847971
    [Google Scholar]
  13. SubramanianP. Lipid-based nanocarrier system for the effective delivery of nutraceuticals. Vol. 26.Molecules20212618551010.3390/molecules26185510
    [Google Scholar]
  14. SugiyamaI. KaihatsuK. SomaY. KatoN. SadzukaY. Dual-effect liposomes with increased antitumor effects against 67-kDa laminin receptor-overexpressing tumor cells.Int. J. Pharm.20185411-220621310.1016/j.ijpharm.2018.02.041 29486285
    [Google Scholar]
  15. DasA. KonyakP.M. DasA. DeyS.K. SahaC. Physicochemical characterization of dual action liposomal formulations: Anticancer and antimicrobial.Heliyon201958e0237210.1016/j.heliyon.2019.e02372 31497672
    [Google Scholar]
  16. RichardC. CasselS. BlanzatM. Vesicular systems for dermal and transdermal drug delivery.RSC Advances202111144245110.1039/D0RA09561C 35423006
    [Google Scholar]
  17. SudhakarK. FuloriaS. SubramaniyanV. SathasivamK.V. AzadA.K. SwainS.S. SekarM. KarupiahS. PorwalO. SahooA. MeenakshiD.U. SharmaV.K. JainS. CharyuluR.N. FuloriaN.K. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system.Nanomaterials20211110255710.3390/nano11102557 34685005
    [Google Scholar]
  18. JiaW. ZhouL. LiL. ZhouP. ShenZ. Nano-based drug delivery of polyphenolic compounds for cancer treatment: Progress, opportunities, and challenges.Pharmaceuticals202316110110.3390/ph16010101 36678599
    [Google Scholar]
  19. SharmaS. MasudM.K. KanetiY.V. RewatkarP. KoradiaA. HossainM.S.A. YamauchiY. PopatA. SalomonC. Extracellular vesicle nanoarchitectonics for novel drug delivery applications.Small20211742210222010.1002/smll.202102220 34216426
    [Google Scholar]
  20. PatelV. Liposome: A novel carrier for targeting drug delivery system.Asian Journal of Pharmaceutical Research and Development.2020846776
    [Google Scholar]
  21. Al-JipouriA. AlmurisiS.H. Al-JapairaiK. BakarL.M. DoolaaneaA.A. Liposomes or extracellular vesicles: A comprehensive comparison of both lipid bilayer vesicles for pulmonary drug delivery.Polymers (Basel)202315231810.3390/polym15020318 36679199
    [Google Scholar]
  22. Al BadriY.N. ChawC.S. ElkordyA.A. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics.Pharmaceutics202315129410.3390/pharmaceutics15010294 36678922
    [Google Scholar]
  23. FergusonL.T. MaX. MyersonJ.W. WuJ. GlassmanP.M. ZamoraM.E. HoodE.D. ZaleskiM. ShenM. EssienE.O. ShuvaevV.V. BrennerJ.S. Mechanisms by which liposomes improve inhaled drug delivery for alveolar diseases.Adv. NanoBiomed Res.202333220010610.1002/anbr.202200106 37266328
    [Google Scholar]
  24. HudiyantiD PutriVNR HikmahwatiY ChristaSM SiahaanP AnugrahDSB Interaction of phospholipid, cholesterol, Beta-Carotene, and Vitamin C molecules in liposome-based drug delivery systems: An in silico study.Adv Pharmacol Pharm Sci.20232023
    [Google Scholar]
  25. DuongV.A. NguyenT.T.L. MaengH.J. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery.Pharmaceutics202315120710.3390/pharmaceutics15010207 36678838
    [Google Scholar]
  26. ColoradoD. FernandezM. OrozcoJ. LoperaY. MuñozD.L. AcínS. BalcazarN. Metabolic activity of anthocyanin extracts loaded into non-ionic niosomes in diet-induced obese mice.Pharm. Res.202037815210.1007/s11095‑020‑02883‑z 32700034
    [Google Scholar]
  27. HomayoonfalM. MousaviS.M. KianiH. AskariG. DesobryS. Arab-TehranyE. Encapsulation of berberis vulgaris anthocyanins into nanoliposome composed of rapeseed lecithin: A comprehensive study on physicochemical characteristics and biocompatibility.Foods202110349210.3390/foods10030492 33668998
    [Google Scholar]
  28. DoppalapudiS. MahiraS. KhanW. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo.J. Photochem. Photobiol. B2017174445710.1016/j.jphotobiol.2017.07.007 28753523
    [Google Scholar]
  29. SalemH.F. KharshoumR.M. Abou-TalebH.A. NaguibD.M. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: in vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination.J. Drug Target.201927101127113410.1080/1061186X.2019.1608553 31094230
    [Google Scholar]
  30. ChotphruethipongL. HutamekalinP. SukketsiriW. BenjakulS. Effects of sonication and ultrasound on properties and bioactivities of liposomes loaded with hydrolyzed collagen from defatted sea bass skin conjugated with epigallocatechin gallate.J. Food Biochem.2021458e1380910.1111/jfbc.13809 34145603
    [Google Scholar]
  31. MarwahM. PerrieY. BadhanR.K.S. LowryD. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer.J. Liposome Res.202030213614910.1080/08982104.2019.1604746 31010367
    [Google Scholar]
  32. MurugesanN. DamodaranC. KrishnamoorthyS. Niosomal formulation of quercetin and resveratrol and in vitro release studies.Journal of Integrated Science and Technology.2022102
    [Google Scholar]
  33. ChenW. ZouM. MaX. LvR. DingT. LiuD. Co‐encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity.J. Food Sci.201984111112010.1111/1750‑3841.14405 30548488
    [Google Scholar]
  34. GiordaniB. BasnetP. MishchenkoE. LuppiB. Škalko-BasnetN. Utilizing liposomal quercetin and gallic acid in localized treatment of vaginal Candida infections.Pharmaceutics2019121910.3390/pharmaceutics12010009 31861805
    [Google Scholar]
  35. YadavR ChananaA ChawraHS PalR Recent Advances in Niosomal Drug Delivery:. Review, A. IJFMR-International.J. Multidiscip. Res.202311010.36948/ijfmr.2023.v05i01.1324
    [Google Scholar]
  36. SrinivasanN. MuraliR. Niosomes: A promising novel drug delivery systems for phytoconstituents.Ann. Phytomed.20231211710.54085/ap.2023.12.1.18
    [Google Scholar]
  37. IzharM.P. HafeezA. KushwahaP. Simrah. Drug Delivery Through Niosomes: A Comprehensive Review with Therapeutic Applications.J Clust Sci2023117
    [Google Scholar]
  38. HaziraR.M.N. ReddyM.S. Niosomes: A nanocarrier drug delivery system.GSC Biological and Pharmaceutical Sciences202322212012710.30574/gscbps.2023.22.2.0062
    [Google Scholar]
  39. KulkarniP.R. YadavJ.D. VaidyaK.A. GandhiP.P. Transferosomes: An emerging tool for transdermal drug delivery.Int. J. Pharm. Sci. Res.201124735
    [Google Scholar]
  40. KolahdoozH. KhoriV. Erfani-MoghadamV. LivaniF. MohammadiS. MemarianA. Niosomal Curcumin Suppresses IL17/IL23 immunopathogenic axis in skin lesions of psoriatic patients: A pilot randomized controlled trial.Life2023135107610.3390/life13051076 37240721
    [Google Scholar]
  41. ShehataT.M. IbrahimM.M. ElsewedyH.S. Curcumin niosomes prepared from proniosomal gels: In vitro skin permeability, kinetic and in vivo studies.Polymers202113579110.3390/polym13050791 33806659
    [Google Scholar]
  42. ChenY-L. WangD. WangJ. LiY-J. WangX-T. Preparation of tea polyphenols ethosomes and their in vitro percutaneous absorption study.Chin. J. New Drugs20132217571760
    [Google Scholar]
  43. Ed NignpenseB. FrancisN. BlanchardC. SanthakumarA.B. Bioaccessibility and bioactivity of cereal polyphenols: A review. Vol. 10.Foods2021107159510.3390/foods10071595 34359469
    [Google Scholar]
  44. SamadizadehS. ArabiM.S. YasaghiM. SalimiV. TabarraeiA. MoradiA. TahamtanA. Anti-inflammatory effects of curcumin-loaded niosomes on respiratory syncytial virus infection in a mice model.J. Med. Microbiol.202271410.1099/jmm.0.001525 35417322
    [Google Scholar]
  45. LalamiZ.A. TafviziF. NasehV. SalehipourM. Characterization and optimization of co-delivery farnesol-gingerol niosomal formulation to enhance anticancer activities against breast cancer cells.J. Drug Deliv. Sci. Technol.20227210337110.1016/j.jddst.2022.103371
    [Google Scholar]
  46. NadzirM.M. FenT.W. MohamedA.R. HishamS.F. Size and stability of curcumin niosomes from combinations of tween 80 and span 80.Sains Malays.20204612
    [Google Scholar]
  47. LiY. XuF. LiX. ChenS.Y. HuangL.Y. BianY.Y. WangJ. ShuY.T. YanG.J. DongJ. YinS.P. GuW. ChenJ. Development of curcumin-loaded composite phospholipid ethosomes for enhanced skin permeability and vesicle stability.Int. J. Pharm.202159211993610.1016/j.ijpharm.2020.119936 33038455
    [Google Scholar]
  48. ChellappanD.K. HansbroP.M. DuaK. HsuA. GuptaG. NgZ.Y. WongJ.Y. ChellianJ. PanneerselvamJ. Vesicular systems containing curcumin and their applications in respiratory disorders: A mini review.Pharm. Nanotechnol.201754250254 28786351
    [Google Scholar]
  49. NegiP. AggarwalM. SharmaG. RathoreC. SharmaG. SinghB. KatareO.P. Niosome-based hydrogel of resveratrol for topical applications: An effective therapy for pain related disorder(s).Biomed. Pharmacother.20178848048710.1016/j.biopha.2017.01.083 28126673
    [Google Scholar]
  50. SapkotaR. DashA.K. Liposomes and transferosomes: A breakthrough in topical and transdermal delivery.Ther. Deliv.202112214515810.4155/tde‑2020‑0122 33583219
    [Google Scholar]
  51. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  52. NayakN. SomannaP. PatilA.B. RadhakrishnanA. Progress in novel ultradeformable vesicular drug carrier in the topical and transdermal treatment of psoriasis.Ther. Deliv.2020111280781910.4155/tde‑2020‑0081 33267650
    [Google Scholar]
  53. IqubalR. MathewV. M, K.; v, N.N.K.; Shamsudheen, S.; D, U. Transferosomes as a novel therapeutic delivery system: A review.J. Pharm. Res. Int.20213345B24125410.9734/jpri/2021/v33i45B32801
    [Google Scholar]
  54. KumarR.S. PradhanM. Transferosomes: Vesicular carrier for both hydrophilic and lipophilic drugs.J. Pharm. Res. Int.20223427B10612010.9734/jpri/2022/v34i27B36013
    [Google Scholar]
  55. MenkudaleA GalaveV. A Review on Phytosome and Transferosome as Novel Drug Release System.2020
    [Google Scholar]
  56. GuptaR. SinghalM. NimishaN. Transferosomes as an efficient carrier system for better therapeutic response of targeted drug delivery system.Res. J. Pharma. Tech.202215291392010.52711/0974‑360X.2022.00153
    [Google Scholar]
  57. FerraraF. BenedusiM. SguizzatoM. CortesiR. BaldisserottoA. BuzziR. ValacchiG. EspositoE. Ethosomes and transethosomes as cutaneous delivery systems for quercetin: A preliminary study on melanoma cells.Pharmaceutics2022145103810.3390/pharmaceutics14051038 35631628
    [Google Scholar]
  58. SalemH.F. KharshoumR.M. Abou-TalebH.A. NaguibD.M. Nanosized Transferosome-Based Intranasal In Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In vitro Evaluation, and In vivo Pharmacokinetic Study.AAPS PharmSciTech201920518110.1208/s12249‑019‑1353‑8 31049748
    [Google Scholar]
  59. AroraD. KhuranaB. NandaS. DoE directed optimization, development and evaluation of resveratrol loaded ultradeformable vesicular cream for topical antioxidant benefits.Drug Dev. Ind. Pharm.202046222723510.1080/03639045.2020.1716373 31928244
    [Google Scholar]
  60. JangdeyM.S. KaurC.D. SarafS. Efficacy of Concanavalin-A conjugated nanotransfersomal gel of apigenin for enhanced targeted delivery of UV induced skin malignant melanoma.Artif. Cells Nanomed. Biotechnol.201947190491610.1080/21691401.2019.1578784 30856018
    [Google Scholar]
  61. MancaM.L. Mir-PalomoS. CaddeoC. NacherA. Díez-SalesO. PerisJ.E. PedrazJ.L. FaddaA.M. ManconiM. Sorbitol-penetration enhancer containing vesicles loaded with baicalin for the protection and regeneration of skin injured by oxidative stress and UV radiation.Int. J. Pharm.201955517518310.1016/j.ijpharm.2018.11.053 30468844
    [Google Scholar]
  62. Abdel-HafezS.M. HathoutR.M. SammourO.A. Curcumin-loaded ultradeformable nanovesicles as a potential delivery system for breast cancer therapy.Colloids Surf. B Biointerfaces2018167637210.1016/j.colsurfb.2018.03.051 29626721
    [Google Scholar]
  63. Jin-guangC.H.E.N. Preparation of curcumin ethosomes.Afr. J. Pharm. Pharmacol.20137312246225110.5897/AJPP12.435
    [Google Scholar]
  64. GrimaldiN. AndradeF. SegoviaN. Ferrer-TasiesL. SalaS. VecianaJ. VentosaN. Lipid-based nanovesicles for nanomedicine.Chem. Soc. Rev.201645236520654510.1039/C6CS00409A 27722570
    [Google Scholar]
  65. GodinB. TouitouE. Ethosomes: New prospects in transdermal delivery.Crit. Rev. Ther. Drug Carrier Syst.20032016310210.1615/CritRevTherDrugCarrierSyst.v20.i1.20 12911264
    [Google Scholar]
  66. LuJ. GuoT. FanY. LiZ. HeZ. YinS. FengN. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery.Curr. Drug Deliv.202118557058210.2174/1567201817666200826093102 32851961
    [Google Scholar]
  67. HariharanbS JustincA Topical delivery of drugs using ethosomes: A review.Indian drugs20195687
    [Google Scholar]
  68. Paiva-SantosA.C. SilvaA.L. GuerraC. PeixotoD. Pereira-SilvaM. ZeinaliM. Mascarenhas-MeloF. CastroR. VeigaF. Ethosomes as nanocarriers for the development of skin delivery formulations.Pharm. Res.202138694797010.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  69. ArshadM. PradhanR.A. ZubairM. UllahA. Lipid-derived renewable amphiphilic nanocarriers for drug delivery, biopolymer-based formulations: Biomedical and food applications.Biopolymer-Based Formulations.Elsevier202028331010.1016/B978‑0‑12‑816897‑4.00013‑8
    [Google Scholar]
  70. RajputJ.S. SailajaA.K. Formulation and evaluation of curcumin loaded ethosomes as novel drug delivery system.Drug Discovery2023171917
    [Google Scholar]
  71. KumarB. SahooP.K. ManchandaS. Curcumin loaded ethosomal gel for improved topical delivery: Formulation, characterization and ex vivo studies.Pharm. Nanotechnol.20219428128710.2174/2211738509666210208225826 33563166
    [Google Scholar]
  72. BarbălatăC.I. TomuțăI. AchimM. BoșcaA.B. CherecheșG. SorițăuO. PorfireA.S. Application of the QbD approach in the development of a liposomal formulation with EGCG.J. Pharm. Innov.202217386788010.1007/s12247‑021‑09541‑w
    [Google Scholar]
  73. NikhatA. HasanN. IqbalZ. KesharwaniP. TalegaonkarS. Enhanced transdermal delivery of lutein via nanoethosomal gel: Formulation optimization, in vitro evaluation, and in vivo assessment.J. Drug Deliv. Sci. Technol.20227310344710.1016/j.jddst.2022.103447
    [Google Scholar]
  74. ChenY.L. WangD. WangJ. LiY.J. WangX.T. Preparation of tea polyphenols ethosomes and their in vitro percutaneous absorption study.Zhongguo Xin Yao Zazhi20132215
    [Google Scholar]
  75. AndleebM. Shoaib KhanH.M. DaniyalM. Development, characterization and stability evaluation of topical gel loaded with ethosomes containing Achillea millefolium L. extract.Front. Pharmacol.20211260322710.3389/fphar.2021.603227 33912036
    [Google Scholar]
  76. DwivediD. PandeyS. AsifS. AwasthiV. KaurG. NimishaN. Investigating the potential of Quercetin enthused nano lipoidal system for the management of dermatitis.Res. J. Pharma. Techno.202114126516652610.52711/0974‑360X.2021.01127
    [Google Scholar]
  77. MoolakkadathT. AqilM. AhadA. ImamS.S. PraveenA. SultanaY. MujeebM. Preparation and optimization of fisetin loaded glycerol based soft nanovesicles by Box-Behnken design.Int. J. Pharm.202057811912510.1016/j.ijpharm.2020.119125 32036010
    [Google Scholar]
  78. El-KayalM. NasrM. ElkheshenS. MortadaN. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation.Eur. J. Pharm. Sci.201913710497210.1016/j.ejps.2019.104972 31252049
    [Google Scholar]
  79. PeramM.R. JalalpureS. KumbarV. PatilS. JoshiS. BhatK. DiwanP. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation.J. Liposome Res.201929329131110.1080/08982104.2018.1556292 30526186
    [Google Scholar]
  80. HmingthansangaV. SinghN. BanerjeeS. ManickamS. VelayuthamR. NatesanS. Improved topical drug delivery: Role of permeation enhancers and advanced approaches.Pharmaceutics20221412281810.3390/pharmaceutics14122818 36559311
    [Google Scholar]
  81. AdnanM. HaiderM.F. NaseemN. HaiderT. Transethosomes: A promising challenge for topical delivery short title: Transethosomes for topical delivery.Drug Res.202373420021210.1055/a‑1974‑9078 36736354
    [Google Scholar]
  82. JoginpallyBR MoinabadRR AN An updated review on transethosomes.2019
    [Google Scholar]
  83. DeepikaP. ReathoreK.S. Novel and most prominent carrier system transethosome for topical delivery.Pharm. Res.202132027
    [Google Scholar]
  84. KumarP.K. KumarR.S. Review on transferosomes and transferosomal gels.J. Pharm. Res. Int.20213343B11412610.9734/jpri/2021/v33i43B32532
    [Google Scholar]
  85. MotaA.H. Santos-RebeloA. AlmeidaA.J. ReisC.P. Therapeutic implications of nanopharmaceuticals in skin delivery. nanopharmaceuticals.Principles and Applications20211205272
    [Google Scholar]
  86. RajanR. VasudevanD.T. Biju MukundV.P. JoseS. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.85524 22171309
    [Google Scholar]
  87. AdinS.N. GuptaI. RashidM.A. AlhamhoomY. AqilM. MujeebM. Nanotransethosomes for enhanced transdermal delivery of mangiferin against rheumatoid arthritis: Formulation, characterization, invivo pharmacokinetic and pharmacodynamic evaluation.Drug Deliv.2023301217333810.1080/10717544.2023.2173338 36729134
    [Google Scholar]
  88. MoolakkadathT. AqilM. AhadA. ImamS.S. IqbalB. SultanaY. Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies.Artif. Cells Nanomed. Biotechnol.2018462755765
    [Google Scholar]
  89. ChenZ.X. LiB. LiuT. WangX. ZhuY. WangL. WangX.H. NiuX. XiaoY. SunQ. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.Eur. J. Pharm. Sci.20179924024510.1016/j.ejps.2016.12.026 28039091
    [Google Scholar]
  90. MancaM.L. ZaruM. ManconiM. LaiF. ValentiD. SinicoC. FaddaA.M. Glycerosomes: A new tool for effective dermal and transdermal drug delivery.Int. J. Pharm.20134551-2667410.1016/j.ijpharm.2013.07.060 23911913
    [Google Scholar]
  91. GuptaP. MazumderR. PadhiS. Glycerosomes: Advanced liposomal drug delivery system.Indian J. Pharm. Sci.2020823
    [Google Scholar]
  92. MancaM.L. CencettiC. MatricardiP. CastangiaI. ZaruM. SalesO.D. NacherA. ValentiD. MaccioniA.M. FaddaA.M. ManconiM. Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration.Int. J. Pharm.2016511119820410.1016/j.ijpharm.2016.07.009 27418567
    [Google Scholar]
  93. MancaM.L. PerisJ.E. MelisV. ValentiD. CardiaM.C. LattuadaD. Escribano-FerrerE. FaddaA.M. ManconiM. Nanoincorporation of curcumin in polymer-glycerosomes and evaluation of their in vitro–in vivo suitability as pulmonary delivery systems.RSC Advances2015512710514910515910.1039/C5RA24032H
    [Google Scholar]
  94. SaravanakumarK. HuX. ChelliahR. OhD.H. KathiresanK. WangM.H. Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt).Postharvest Biol. Technol.202016011103910.1016/j.postharvbio.2019.111039
    [Google Scholar]
  95. ZhangK. ZhangY. LiZ. LiN. FengN. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: optimization, characterization, and evaluation in vitro and in vivo.Int. J. Nanomedicine2017123521353210.2147/IJN.S135749 28503066
    [Google Scholar]
  96. Pleguezuelos-VillaM. Diez-SalesO. MancaM.L. ManconiM. SauriA.R. Escribano-FerrerE. NácherA. Mangiferin glycethosomes as a new potential adjuvant for the treatment of psoriasis.Int. J. Pharm.202057311884410.1016/j.ijpharm.2019.118844 31751638
    [Google Scholar]
  97. ChengW. WenJ. Now and future: Development and perspectives of using polyphenol nanomaterials in environmental pollution control.Coord. Chem. Rev.202247321482510.1016/j.ccr.2022.214825
    [Google Scholar]
  98. YangS. LiuL. HanJ. TangY. Encapsulating plant ingredients for dermocosmetic application: An updated review of delivery systems and characterization techniques.Int. J. Cosmet. Sci.2020421162810.1111/ics.12592 31724203
    [Google Scholar]
  99. NasrM. Al-KarakiR. Nanotechnological innovations enhancing the topical therapeutic efficacy of quercetin: A succinct review.Curr. Drug Deliv.202017427027810.2174/18755704MTA1AMzAr5 32183669
    [Google Scholar]
  100. Szulc-MusiołB. Sarecka-HujarB. The use of micro-and nanocarriers for resveratrol delivery into and across the skin in different skin diseases—A literature review.Pharmaceutics202113445110.3390/pharmaceutics13040451 33810552
    [Google Scholar]
  101. SantosA.C. RodriguesD. SequeiraJ.A.D. PereiraI. SimõesA. CostaD. PeixotoD. CostaG. VeigaF. Nanotechnological break throughs in the development of topical phytocompounds-based formulations.Int. J. Pharm.201957211878710.1016/j.ijpharm.2019.118787 31678376
    [Google Scholar]
  102. RanaA. SamtiyaM. DhewaT. MishraV. AlukoR.E. Health benefits of polyphenols: A concise review.J. Food Biochem.20224610e1426410.1111/jfbc.14264 35694805
    [Google Scholar]
  103. KyriakoudiA SpanidiE MourtzinosI GardikisK Innovative delivery systems loaded with plant bioactive ingredients: formulation approaches and applications. plants.Note: MDPI stays neutral with regard to jurisdictional claims in published2021
    [Google Scholar]
  104. GanesanP. ChoiD.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy.Int. J. Nanomedicine2016111987200710.2147/IJN.S104701 27274231
    [Google Scholar]
  105. GuptaV. MohapatraS. MishraH. FarooqU. KumarK. AnsariM. AldawsariM. AlalaiweA. MirzaM. IqbalZ. Nanotechnology in cosmetics and cosmeceuticals—A review of latest advancements.Gels20228317310.3390/gels8030173 35323286
    [Google Scholar]
  106. ZhangS. Recent advances of polyphenol oxidases in plants. Vol. 28.Molecules2023
    [Google Scholar]
  107. LohaniA. VermaA. Vesicles: Potential nano carriers for the delivery of skin cosmetics.J. Cosmet. Laser Ther.201719848549310.1080/14764172.2017.1358451 28753057
    [Google Scholar]
  108. CunhaC. Daniel-da-SilvaA.L. OliveiraH. Drug delivery systems and flavonoids: Current knowledge in melanoma treatment and future perspectives.Micromachines20221311183810.3390/mi13111838 36363859
    [Google Scholar]
  109. ConteR. CalarcoA. NapoletanoA. ValentinoA. MargarucciS. Di CristoF. Polyphenols nanoencapsulation for therapeutic applications.J. Biomol. Res. Ther.201652
    [Google Scholar]
  110. SharmaV.K. SarwaK.K. MazumderB. Fluidity enhancement: A critical factor for performance of liposomal transdermal drug delivery system.J. Liposome Res.2014242838910.3109/08982104.2013.847956 24160895
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018265118231213094410
Loading
/content/journals/cdd/10.2174/0115672018265118231213094410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test